Discussion of "The Information Content of Option Demand" by Kerstin Kehrle and Tatjana-Xenia Puhan

Discussed versions: Finrisk Working Paper 745, March 2012 and private version, June 1, 2012

Peter H. Gruber*

*University of Lugano, Switzerland

9th Finrisk Research Day, Gerzensee, June 11, 2011

The paper

Information flow between option and stock markets

- ► Informed agents use options to trade on private information Informed agents do not have to trade
- Open interest predicts stock movements

In a nutshell

- Options are assets in zero net supply
- Insiders have specific Q measure and buy out-of-the money (OTM) options for optimal leverage and "risk"/return tradeoff
- Risk-neutral market makers provide these options
- \Rightarrow presence of informed traders detected in open interest imbalances

Contribution:

- New measure: option marked sidedness (OMS)
- Large US data set (N = 4157)

Tools, results, praise

Option Market Sidedness (OMS)

$$OMS_{t}^{C} = \frac{\frac{1}{\tau} \sum_{z=Z_{t-\tau}}^{Z_{t}} \left(\Delta OI_{z_{t}OTM}^{C} - \overline{\Delta OI}_{\tau,OTM}^{C} \right) \left(\Delta OI_{z,ITM}^{P} - \overline{\Delta OI}_{\tau,ITM}^{P} \right)}{\sqrt{\sigma_{OI_{\tau,OTM}}^{2}} \sqrt{\sigma_{OI_{\tau,TTM}}^{2}}}.$$

▶ $-1 \leq OMS \leq 1$; typical values (quartiles): $0.12 \sim 0.79$ Only increases in open interest relevant?

Results

- ▶ Excess returns of up to 0.2% daily for strong OMS signal
- Larger effect if (i) firms is small and (ii) stock more volatile
- Informed trading (small OMS) increases spread of OTM options and (possibly) PCP violations

Praise

- Well written and very clear exposition
- Convincing results

Comments I

Trade on a signal

> Trade if signal is strong (low OMS), do nothing if signal is weak

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

^{0.2%} daily excess return = 65% annual return

Comments II

Statistics of OMS

- ▶ How often does an *OMS* signal occur?
- Include some plot/statistics of the time-series properties?

Distribution over stocks?

Panel A: Single Sorted Portfolio Returns in Percent										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Low OMS_{t-1}^C									High
mean return N_{PF}	0.2034 34722	$\begin{array}{c} 0.1595 \\ 46398 \end{array}$	0.0977 73500	$0.0786 \\ 119622$	$\begin{array}{c} 0.0579 \\ 475600 \end{array}$	$0.029 \\ 764753$	-0.0338 679025	-0.046 812852	-0.0292 926336	$\begin{array}{c} 0.0731 \\ 1013504 \end{array}$
Low OMS_{t-1}^{P}										High
mean return N_{PF}	-0.1257 33309	-0.0822 43050	-0.0638 69471	$\begin{array}{c} 0.0224 \\ 112235 \end{array}$	$\begin{array}{c} 0.0441 \\ 472177 \end{array}$	$\begin{array}{c} 0.0747 \\ 737474 \end{array}$	$\begin{array}{c} 0.1231 \\ 683548 \end{array}$	$\begin{array}{c} 0.1216 \\ 848467 \end{array}$	$\begin{array}{c} 0.0923 \\ 1029269 \end{array}$	-0.013 1303315

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comments IIa

Reporting of excess portfolio returns

- ▶ How often can we trade, how diversified are these portfolios?
- Cumulative returns of the OMS trading strategy?
- Risk measures: Sharpe ratio, higher moments
- Additional risk factors: event risk, differences in beliefs, liquidity, availability of leverage This is a HF strategy

Test of non-event

 \blacktriangleright OMS large \rightarrow no insider trading \rightarrow no significant excess return

The drivers of this effect

▶ Which options (especially: which maturities) drive the OMS-signal?

Calendar effects?

Comments III

Assumption: excess OTM demand caused by insiders

- ► Counter-example: replicate a single-name variance swap, different weights for OTM puts and OTM calls (1/K²)
- Disentangle skewness risk from informed trading?

Assumption: insider trades on events

- Blurred line between public and private information
- Realized events (earnings surprises, corporate actions, merger activities, product announcements)?
- Higher moments of returns predicted even better (large jumps after announcements)?
- \blacktriangleright Anticipation: more insiders \rightarrow better signal \rightarrow smaller excess return $_{\text{Does not seem to be the case.}}$

Comments IV

Predicting volatility

- ▶ If we can predict "events", we can also predict (realized) volatility
- \rightarrow variance risk premium

Small items

- Microeconomic model adds little insight; I do not see a direct link.
- Alternatively: cast in terms of order book model (how deep are the insiders' pockets)?
- Add min/max to summary statistics.
- Usage of some symbols (τ)
- End-of day bid/ask spread is not reliable.
- More sophisticated identification of OTM options

Conclusion

Impressive results, need additional risk measures and time series statistics