Discussion of "Does Risk-Neutral Skewness Predict the Cross-Section of Equity Option Portfolio Returns? " by Turan Bali and Scott Murray

Discussed version: February 2011

Peter H. Gruber*

*University of Lugano, Switzerland

Eastern Finance Annual Meeting - Savannah, GA, April 15, 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The paper

Context

Is skewness risk priced?

In a nutshell

- Information content of the cross-sectional dispersion of the option-implied, risk-neutral skewness using three new assets
 - Hedge the first two moments of the return distribution (Δ, Vega)
 - Almost pure skewness exposure
 - Separate left tail and right tail using PUT and CALL assets
- \blacktriangleright Hold these assets until maturity \rightarrow payoff is difference between risk-neutral and realized skewness
- Explain returns in a Fama-French and Fama-McBeth framework

Contribution:

- First analysis of cross-section of skewness returns
- Methodological extensions to Goyal-Saretto (2009) methods

Results

Main Results

- Strong negative cross-sectional relation between risk-neutral skew signal and returns of skewness assets.
- ▶ This is driven by the left (loss) side of the risk-neutral distribution.

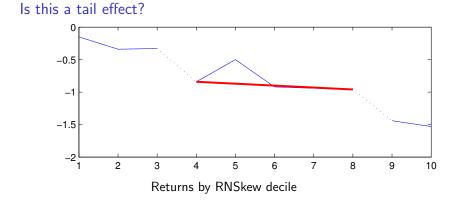
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Cannot be explained away by several standard measures of risk.

Comments

Praise

- An interesting and relevant topic
- ► A natural progression from Goyal-Saretto 2009
- Very good and detailed econometric work


Questions

Why not use excess skewness as signal variable?

Improvements – exposition

- Summary statistics of the data (fraction of days w/ insufficient data)
- Influence of the crisis (pre-crisis analysis as robustness check?)
- Appendix: add relation of PUTCALL asset to the skew
- ▶ Provide more details on the Fama-McBeth regressions, add R^2
- Explain in more detail, why and how the robustness checks support your hypothesis

Comments (2)

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Comments (3)

Risk-based explanation

Long putcall asset			
Quantile pf	(1)	(10)	
return	-0.15	-1.5	
σ	3.17	4.12	
ES	7.28	11.74	
Higher return, lower vol			

Short PUTCALL asset			
Quantile pf	(1)	(10)	
return	0.15	1.5	
σ	3.17	4.12	
ES	(?)	(?)	
Higher return, higher vol			

Related paper: volatility premia

▶ How are these results similar or different to Goyal-Saretto (2009)

Related paper: volatility and skewness premia

- Kozhan-Neuberger-Schneider (wp, 2010) find that the volatility and skewness premium in option prices is 99% correlated
- ► If one of these risks is hedged away, the premium for the other one is insignificant → contradiction to this paper?

(Minor) Comments (4)

Definition of excess return

- \blacktriangleright Short positions require lots of margin \rightarrow over-estimate returns
- Alternative denominators
 - Estimate of margin (difficult)
 - ▶ Sum of absolute asset prices: |put| + |call| + stock
 - (Absolute) Notional value

Robustness check: transaction cost/liquidity

- Why restrict to large cap stocks?
- Open interest, trading volume?
- Slightly larger bid-offer spread to increase "liquid" sample

• Options still traded at midquote \rightarrow problem?

Additional robustness

Extra question: violations of put-call parity?

Ideas

Alternative interpretation (1): This is a hedge fund strategy

- Literature on hedge fund managers' performance:
 - Do not control for some risk factors \rightarrow spurious α
 - Add more and better risk factors
- See Kosowski, Naik, Teo (JFE 2007)

Alternative interpretation (2): differences in beliefs

Differences in beliefs can explain the cross-section of option prices

See Buraschi, Trojani, Vedolin (wp)

Alternative interpretation (3): mean reversion of skew

Similar phenomenon to mean reversion in VIX options