
In this document we provide some proofs and additional results, which have
been omitted in the paper for the sake of saving space. To avoid confusion, the
numbering of sections and propositions (equations, respectively) in this docu-
ment is preceded by letter B (resp. letter b). Any other section, proposition or
equation number refers to the paper.

B.1 The functional score and the information
operator

In the paper we assume that the Hadamard derivative D log f(X,Y ;A0) is a
bounded operator, and that the information operator I is invertible (Assump-
tions A.2 and Assumption A.4, respectively). In this section we provide sufficient
conditions for these assumptions to be valid, when the information operator sat-
isfies the decomposition in Assumption A.3.

B.1.1 Boundedness of the Hadamard derivative

Under Assumption A.3, the boundedness of the Hadamard derivativeD log f(X,Y ;A0)
can be ensured by appropriate regularity conditions on functions α0, α1. We
have the following proposition.

Proposition B.1: Let us assume that the information operator satisfies the
decomposition in Assumption A.3. For any A ∈ A, let α(.;A) be a positive
definite q × q matrix function such that:Z Z °°°α (v;A)−1/2 α1(v,w;A)α (w;A)−1/2°°°2 dvdw <∞,∀A ∈ A,

where k.k is a matrix norm on Rq×q. Let λmax(v;A) denote the largest element
in the set of eigenvalues of matrix α0 (v;A) and eigenvalues of matrix α (v;A).
Suppose:

sup
v

λmax(v;A) < +∞, ∀A ∈ A. (b.1)

Then D log f(X,Y ;A) is a bounded operator from L2(λ) to L2(PA), for any
A ∈ A.

Proof: Let h ∈ L2(λ). We have:

khD log f (X,Y ;A) , hik2L2(PA) = EA

h
hD log f (X,Y ;A) , hi2

i
=

Z
h(v)

0
α0 (v;A)h(v)dv +

Z Z
h(v)

0
α1 (v,w;A)h(w)dvdw.

Both terms are easily bounded. For the first one we get:Z
h(v)

0
α0 (v;A)h(v)dv ≤

Z
λmax(v;A)h(v)

0
h(v)dv ≤ CA khk2L2(λ) ,
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where CA = supv λmax(v;A). Let us now consider the second term, and denote:

kA =

µZ Z °°°α (v;A)−1/2 α1 (v,w;A)α (w;A)−1/2°°°2 dvdw¶1/2 <∞.
We get:Z Z

h(v)
0
α1 (v,w;A)h(w)dvdw

=

Z Z ³
α (v;A)1/2 h(v)

´0 h
α (v;A)−1/2 α1 (v,w;A)α (w;A)

−1/2iα (w;A)1/2 h(w)dvdw
≤

Z Z °°°α (v;A)1/2 h(v)°°°°°°α (v;A)−1/2 α1 (v,w;A)α (w;A)−1/2°°°°°°α (w;A)1/2 h(w)°°° dvdw
≤

µZ Z °°°α (v;A)−1/2 α1 (v,w;A)α (w;A)−1/2°°°2 dvdw¶1/2µZ °°°α (v;A)1/2 h(v)°°°2 dv¶ , by applying twice Cauchy-Schwarz inequality,
= kA

Z
h(v)

0
α (v;A)h(v)dv ≤ kACA khk2L2(λ) .

Thus:
khD log f (X,Y ;A) , hik2L2(P0) ≤ CA (1 + kA) khk2L2(λ) ,

and Proposition B.1 is proved. Q.E.D.

B.1.2 Invertibility of the information operator

Assume that the differential has a zero null space:

hD log f(X,Y ;A0), hi = 0 PA0 -a.s., h ∈ L2 (λ) =⇒ h = 0,

[which is the sufficient condition for invertibility given in Section 3.1 iii) of the
paper]. Since I = D log f∗0D log f0, this condition is equivalent to the fact that
the information operator I has a zero null space:

Ih = 0, h ∈ L2 (λ)⇒ h = 0.

The following proposition shows that, under some regularity conditions on func-
tions α0, α1 in the decomposition of Assumption A.3, a zero null space of I
implies (and thus is equivalent to) the invertibility of the information operator.

Proposition B.2: Let us assume the conditions in Proposition B.1 and the
invertibility of matrix α0(v;A) for any v,A ∈ A. Let λmin(v;A) be the smallest
eigenvalue of matrix α0 (v;A), and assume that:

inf
v
λmin(v;A) > 0, ∀A ∈ A.
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If the information operator I has a zero null space, then the information operator
is continuously invertible.

Proof: The information operator can be decomposed in two components:

Ih(w) = α0(w;A0)h(w) +

Z
α1(w, v;A0)h(v)dv ≡ I0h(w) + I1h(w).

The invertibility of I is proved by using classical results of operator theory. In
particular, let us consider the following Theorem B.3, which is a consequence
of the so-called Fredholm alternative (see e.g. Rudin, 1973, Theorem 4.25 and
Exercise 15 in Chapter 4; see also Van der Vaart, 1994, Lemma 4, for another
application in statistics) and is proved below for completeness.

Theorem B.3: Let H be a Banach space. Let I0 : H → H be a continuously
invertible operator, and let I1 : H → H be a compact operator. Assume that
I = I0 + I1 has a zero null space. Then I is continuously invertible.

Let us verify that the conditions of this theorem are satisfied by operators I0

and I1 defined above. In the proof of Proposition B.1 it has been shown that
they are both bounded operators of L2 (λ) into itself. Moreover:°°°I0−1h°°°2

L2(λ)
=

Z
h(v)

0
α0 (v;A0)

−2 h(v)dv ≤ eC−2A khk2L2(λ) ,

where eCA = infv λmin(v;A); thus I0 is continuously invertible. Let us now
consider the operator I1:

I1h(w) =

Z
α1(w, v;A0)h(v)dv.

We have:Z Z
kα1(v,w;A0)k2 dvdw

≤
Z Z

kα (v;A)k
°°°α (v;A)−1/2 α1(v,w;A)α (w;A)−1/2°°°2 kα (w;A)kdvdw

≤ c2C2A

Z Z °°°α (v;A)−1/2 α1(v,w;A)α (w;A)−1/2°°°2 dvdw <∞,

where c is a constant from the equivalence of norms. Thus we deduce from
Hilbert-Schmidt theorem (see e.g. Example 2 in Section 10.2 of Yosida, 1995)
that I1 is a compact operator. All conditions of Theorem B.3 are satisfied, and
Proposition B.2 is proved. Q.E.D.

We conclude this section by proving Theorem B.3.

Proof of Theorem B.3: Write I = I0
³
Id+

¡
I0
¢−1

I1
´
≡ I0 (Id+K). Since¡

I0
¢−1

is continuous and I1 is compact, operator K =
¡
I0
¢−1

I1 is compact.
From Theorem 4.25 a) in Rudin (1973), operator Id+K is continuously invert-
ible, and the conclusion follows. Q.E.D

3



B.2 Examples

In this section we prove some results for the differential and the information
operators in the examples of constrained nonparametric families discussed in
Section 3.2 of the paper.

B.2.1 Archimedean copula

i) Proof of Lemma 1

The Jacobian of the transformation is:

det
∂ (w, z)

∂ (u, v)
=

φ
0 £
φ−1 (u) + φ−1 (v)

¤
φ
0 £
φ−1 (u)

¤ ≡ J(u, v).

Thus:
c (u, v)

J(u, v)
=

φ
00 ©

φ−1 [C (u, v)]
ª

φ
0 ©
φ−1 [C (u, v)]

ª
φ
0 £
φ−1 (v)

¤ ,
and the joint p.d.f. of W and Z is given by:

f(w, z) =
φ
00 £

φ−1 (w)
¤

φ
0 £
φ−1 (w)

¤
φ
0 £
φ−1 (z)

¤Iw≤z.
Let us define the function:

f∗(w) = −φ
00 £

φ−1 (w)
¤

φ
0 £
φ−1 (w)

¤ = − d

dw
φ
0 £
φ−1 (w)

¤
, w ∈ [0, 1] .

Since φ
0 £
φ−1 (0)

¤
= φ

0
[+∞] = 0, we have:

φ
0 £
φ−1 (z)

¤
= −

Z z

0

f∗(v)dv = −F∗(z), say.

Thus the joint p.d.f. of W and Z can also be written as:

f(w, z) =
f∗(w)R z

0 f∗(v)dv
Iw≤z.

Let us now show that the generator φ and the p.d.f. f∗ are in one-to-one
relationship. We have:

F ∗ (w) = −φ0 £φ−1 (w)¤ ,
or equivalently:

− 1

F ∗ (w)
=

dφ−1 (w)
dw

.
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By integration, with φ−1(1) = 0, we get:

φ−1(y) =
Z 1

y

dvR v
0
f∗(w)dw

, y ∈ (0, 1) .

Let us finally check that this function satisfies the properties of a (strict) Archimedean
generator. The properties φ−1(1) = 0 and φ−1(0) =∞ are obvious. Moreover:

d

dy
φ−1(y) = − 1R y

0
f∗(w)dw

≤ 0,

d2

dy2
φ−1(y) =

f∗(y)¡R y
0 f∗(w)dw

¢2 ≥ 0,
and thus φ−1 is decreasing and convex. Lemma 1 is proved.

ii) The density of the variable W

The c.d.f. of W = C(U, V ) is given by (see Genest and Rivest, 1993):

FW (w) = P [C(U,V ) ≤ w] = w − φ−1(w)
dφ−1(w)/dw

= w − φ−1(w)φ
0 £
φ−1(w)

¤
= w + φ−1(w)F ∗(w).

Thus the density of W is given by:

fW (w) = 1 +
1

φ
0 £
φ−1(w)

¤F ∗(w) + φ−1(w)f∗(w) = φ−1(w)f∗(w).

B.2.2 Extreme value copula

Let (Zi,Wi), i = 1, ..., n be independent pairs of random variables. Extreme
value bivariate copulas are associated with the limiting joint distribution of
marginal maxima (maxi Zi,maxiWi), as n tends to infinity. Extreme value
copulas are of the form (see e.g. Joe, 1997):

Cχ(u, v) = exp

½
(log u+ log v)χ

µ
log u

log u+ log v

¶¾
,

where the generator χ is a function defined on [0, 1], is convex, and satisfies:

max(v, 1− v) ≤ χ(v) ≤ 1.
The extreme value copula is parameterized by one-dimensional functional pa-
rameter χ.

i) Copula p.d.f.
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Let us introduce the variables x = logu, y = log v, and the function:

D(x, y) = (x+ y)χ

µ
x

x+ y

¶
.

Then we have:
C(u, v) = exp [D(x, y)] ,

∂C(u, v)

∂u
=

C(u, v)

u

∂D(x, y)

∂x
,

∂2C(u, v)

∂u∂v
=

C(u, v)

uv

½
∂D(x, y)

∂x

∂D(x, y)

∂y
+

∂2D(x, y)

∂x∂y

¾
.

The partial derivatives of function D are:

∂D(x, y)

∂x
= χ

µ
x

x+ y

¶
+

y

x+ y
χ
0
µ

x

x+ y

¶
,

∂D(x, y)

∂y
= χ

µ
x

x+ y

¶
− x

x+ y
χ
0
µ

x

x+ y

¶
,

∂2D(x, y)

∂x∂y
= − xy

(x+ y)3
χ
00
µ

x

x+ y

¶
.

By substitution, the expression of the copula p.d.f. follows:

cχ(u, v) =
Cχ(u, v)

uv

½
− euev
logu+ log v

χ
00
(eu)

+
h
χ (eu) + evχ0

(eu)i hχ (eu)− euχ0
(eu)io , (b.2)

where eu = log u/ (log u+ log v), ev = log v/ (log u+ log v). This copula p.d.f.
does not satisfy Assumption A.3 if generator χ is chosen as the functional pa-
rameter. To introduce another parameterization satisfying Assumption A.3 we
need a specific characterization of generator χ.

ii) Characterization of the generator χ

By the Pickands representation (see e.g. Joe, 1997, Theorem 6.3), a c.d.f.
C with uniform margins is an extreme value copula iff function K(x, y) =
− logC (e−x, e−y) admits the representation:

K(x, y) =

Z
S1
max {q1x, q2y}σ (dq) ,

where σ is a finite measure on the one-dimensional simplex S1 = {q = (q1, q2) ∈
R2+ : q1+q2 = 1}. Thus the generator χ of an extreme value copula is such that
there exists a measure F ∗ on [0, 1] with:

χ (v) = 2

Z 1

0

max {(1− z) v, z (1− v)} dF ∗(z),
χ(0) = χ(1) = 1.
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The boundary conditions on χ are equivalent to:Z 1

0

(1− z) dF ∗(z) =
Z 1

0

zdF ∗(z) =
1

2
,

that is F ∗ is a c.d.f. such that
R 1
0
zdF ∗(z) = 1/2.

iii) Expression of the generator and of its derivatives

When F ∗ admits a density f∗, we get:

χ (v) = 2v

Z v

0

(1− z) f∗(z)dz + 2 (1− v)

Z 1

v

zf∗(z)dz.

Let us now compute the derivatives of χ. We get:

χ
0
(v) = 2

Z v

0

(1− z) f∗(z)dz − 2
Z 1

v

zf∗(z)dz = 2
Z v

0

f∗(z)dz − 1,

and:
χ
00
(v) = 2f∗(v).

Let us select the functional parameter a = f∗. Using the restrictions on f∗, we
deduce the expressions of χ, χ

0
and χ

00
in terms of functional parameter a:

χ (v) = 2v

Z v

0

a(w)dw − 2
Z v

0

wa(w)dw + 1− v,

χ
0
(v) = 2

Z v

0

a(w)dw − 1, χ
00
(v) = 2a(v).

By substitution of these expressions in the copula p.d.f. given in equation (b.2),
it is easily verified that the copula family is differentiable with respect to func-
tional parameter a and satisfies Assumptions A.2 and A.3. Functions α0 and
α1 are available upon request by the authors.

B.3 Kernel estimators

In this section we provide some results on kernel estimators, which are used in
the proofs of the asymptotic properties of the minimum chi-square estimator.

B.3.1 Functionals of kernel estimators

Let us first recall the following theorem for functionals of kernel estimators (see
Theorem 3 of Aït-Sahalia, 1993).

Theorem B.4: Let us consider a functional Φ from an open subset of Cs
¡
Rd
¢
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to R. Suppose that Φ is Hadamard differentiable at the true c.d.f. F with
Hadamard derivative hDΦ (F ) ,Hi = R ϕ [F ] (x, y)dH(x, y):

Φ(F +H) = Φ (F ) +

Z
ϕ [F ] (x, y)dH(x, y) +R [F,H] ,

with R [F,H] = O
³
kHk2L∞

´
, uniformly on H in the class of compact sets.

Let bFT be the c.d.f. of a d-dimensional kernel estimator, and assume that the
bandwidth hT is such that:

hT → 0, ThdT →∞.

Then under Assumptions A.5, A.6, A.8 and A.9:

i) if ϕ [F ] is a cadlag function:

√
T
h
Φ
³ bFT´−EΦ

³ bFT´i d−→ N [0, VΦ (F )] ,

where:

VΦ (F ) =
∞X

k=−∞
cov (ϕ [F ] (Xt, Yt) , ϕ [F ] (Xt−k, Yt−k)) .

ii) If d = 2, and ϕ [F ] admits the decomposition ϕ [F ] (x, y) = γ0 (x, y) δx0 (x)+
γ1 (x, y) δy0 (y), where γ0, γ1 ∈ C0, then:p

ThT

h
Φ
³ bFT´−EΦ

³ bFT´i d−→ N [0, VΦ (F )] ,

where:

VΦ (F ) =

µZ
K(u)2du

¶³
E
h
γ0 (Xt, Yt)

2 | Xt = x0
i
fX(x0)

+E
h
γ1 (Xt, Yt)

2 | Yt = y0
i
fY (y0)

´
.

(The same result applies for any dimension d when the Dirac measures of
the singular components of ϕ [F ] have dimension 1).

iii) If ϕ [F ] is of the form ϕ [F ] (x, y) = α (x, y) δ(x0,y0) (x, y), with α cadlag :q
ThdT

h
Φ
³ bFT´−EΦ

³ bFT´i d−→ N [0, VΦ (F )] ,

where:

VΦ (F ) =

µZ
K(u)2du

¶d
α (x0, y0) f (x0, y0) .
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Let us apply this theorem to deduce the asymptotic distribution of some
relevant statistics.

i) Density estimators

Let us consider the kernel density estimator at (x0, y0), bfT (x0, y0). The func-
tional Φ (F ) = f (x0, y0) is Hadamard differentiable, with ϕ [F ] (x, y) = δ(x0,y0) (x, y),
and R [F,H] = 0. Thus, under Assumptions A.5, A.6, A.8 and A.9, and if
ThdT →∞ we have:q

ThdT

³ bfT (x0, y0)−E bfT (x0, y0)´ d−→ N

"
0, f (x0, y0)

µZ
K(u)2du

¶d#
.

ii) Partial moment estimators

Let us assume d = 2 and consider a partial moment of the type:

g(x0, y0) =

Z
γ0 (x0, y) f (x0, y) dy +

Z
γ1 (x, y0) f (x, y0) dx

= fX (x0)E [γ0 (X,Y ) | X = x0] + fY (y0)E [γ1 (X,Y ) | Y = y0] ,

where γ0, γ1 ∈ C0, and x0, y0 ∈ R. The functional Φ (F ) = g(x0, y0) is
Hadamard differentiable, with ϕ [F ] (x, y) = γ0 (x, y) δx0 (x) + γ1 (x, y) δy0 (y),
and R (F,H) = 0. Then under Assumptions A.5, A.6, A.8 and A.9, and if
ThdT →∞, the partial moment estimator:

gT (x0, y0) =

Z
γ0 (x0, y)

bfT (x0, y) dy + Z γ1 (x, y0)
bfT (x, y0) dx,

is asymptotically normal, with:p
ThT [gT (x0, y0)−EgT (x0, y0)]

d−→ N (0, VΦ (F )) ,

where:

VΦ (F ) =

µZ
K(u)2du

¶³
E
h
γ0 (Xt, Yt)

2 | Xt = x0
i
fX(x0)

+E
h
γ1 (Xt, Yt)

2 | Yt = y0

i
fY (y0)

´
.

Formula (10) in the paper is a special case. For a general d, the results extend
to partial moments involving integrals of dimension d− 1.

iii) Moment estimators

Finally let us consider a moment estimator
R R

γ(x, y) bfT (x, y)dxdy, where γ
is cadlag. The functional Φ(F ) =

R R
γ(x, y)f(x, y)dxdy = E [γ (X,Y )] is

9



Hadamard differentiable, with ϕ [F ] (x, y) = γ(x, y) and R [F,H] = 0. Thus,
under Assumptions A.5, A.6, A.8 and A.9, and if ThdT →∞, we get:
√
T

µZ Z
γ(x, y) bfT (x, y)dxdy −E

Z Z
γ(x, y) bfT (x, y)dxdy¶ d−→ N (0, VΦ (F )) ,

where:

VΦ (F ) =
∞X

k=−∞
cov [γ (Xt, Yt) , γ (Xt−k, Yt−k)] .

B.3.2 Convergence of kernel density estimators

In this section we prove Lemma A.1 of the paper and we provide some additional
results on the convergence of kernel density estimator bfT . The following theorem
proves the uniform convergence and is established in Bosq (1998), Theorem 2.2.

Theorem B.5 : Under Assumptions A.5, A.6, A.9 and if the bandwidth hT is

such that

r
ThdT

(logT )3
→∞, we have:

sup
(x,y)∈[0,1]d

¯̄̄ bfT (x, y)− f (x, y)
¯̄̄
= O (hmT ) + op(

log Tq
ThdT

).

We deduce Lemma A.1 of the paper as a corollary.

Proof of Lemma A.1: Let us prove point ii) [the proof of point i) is similar].
We have:¯̄̄̄

¯ bfT (x, y)− f(x, y)bfT (x, y)
¯̄̄̄
¯ =

¯̄̄̄
¯̄ bfT (x, y)− f(x, y)

f(x, y)

1

1 +
bfT (x,y)−f(x,y)

f(x,y)

¯̄̄̄
¯̄

≤
¯̄̄̄
¯ bfT (x, y)− f(x, y)

f(x, y)

¯̄̄̄
¯ 1

1−
¯̄̄ bfT (x,y)−f(x,y)

f(x,y)

¯̄̄ ,
whenever the last term is positive. Moreover:

sup
(x,y)∈ΩT

¯̄̄̄
¯ bfT (x, y)− f(x, y)

f(x, y)

¯̄̄̄
¯ ≤ sup(x,y)∈ΩT

¯̄̄ bfT (x, y)− f(x, y)
¯̄̄

inf(x,y)∈ΩT f(x, y)

= O ((log T )
γ
hmT ) + op

(log T )1+γ · 1q
ThdT


(by Theorem B.5 and Assumption A.7)

= O
¡
(log T )γ · T−αm¢+ op

³
(log T )1+γ · T−(1/2−dα/2)

´
= op(T

−β1),
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for any β1 < min {αm, 1/2− dα/2}. By Assumption A.10 we get:
min {αm, 1/2− dα/2} > 1

4

³
1 + 1

2
2m−1

4m2+2m+1

´
, and the conclusion follows. Q.E.D.

The following theorem proves the convergence of the L2-norm and is derived
in Gouriéroux and Tenreiro (2001).

Theorem B.6: Under Assumptions A.5, A.6, A.8, and A.9:

i) If the bandwidth hT is such that ThdT →∞ and lim supT T δhdT <∞, for
some δ ∈ (0, 1), then:Z Z h bfT (x, y)− f(x, y)

i2
dxdy = op (1) .

ii) If moreover lim supT Thd+2mT <∞ then:Z Z h bfT (x, y)− f(x, y)
i2

dxdy = Op

µ
h2mT +

1

ThdT

¶
.

We deduce the following Corollary.

Corollary B.7: Under Assumptions A.5-A.10:

Z Z h bfT (x, y)− f(x, y)
i2

f(x, y)
IΩT (x, y)dxdy = op (1) .

Proof: We have:

Z Z h bfT (x, y)− f(x, y)
i2

f(x, y)
IΩT (x, y)dxdy

≤
µ

inf
(x,y)∈ΩT

f(x, y)

¶−1 Z Z h bfT (x, y)− f(x, y)
i2

dxdy

≤ Op

µ
(logT )

γ · h2mT +
1

ThdT
(log T )γ

¶
= op(1),

by Theorem B.6 ii) and Assumption A.10 on the bandwidth. Q.E.D.

B.4 Asymptotic properties of the minimum chi-
square estimator

In this section we prove some results which are used in Appendix A.2 of the
paper to derive the asymptotic properties of the minimum chi-square estimator.
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B.4.1 Consistency of the minimum chi-square estimator

Proof of Lemma A.2 i): To show the continuity of the limiting criterion
Q∞ = Q , we have to prove:

lim
h→0

Q(A+ h) = Q(A), ∀A ∈ Θ,

where h → 0 denotes convergence in norm k.kL2(λ). For this purpose let us
consider the expansion of the chi-square criterion:

Q(A+ h) =

Z Z
[f(x, y)− f(x, y;A+ h)]2

f(x, y)
dxdy

=

Z Z
[f(x, y)− f(x, y;A)− hDf(x, y;A), hi−R(x, y;A,h)]

2

f(x, y)
dxdy

= Q(A) +

Z Z hDf(x, y;A), hi2
f(x, y)

dxdy +

Z Z
R(x, y;A,h)2

f(x, y)
dxdy

−2
Z Z

[f(x, y)− f(x, y;A)]
hDf(x, y;A), hi

f(x, y)
dxdy

+2

Z Z hDf(x, y;A), hi
f(x, y)

R(x, y;A,h)dxdy

−2
Z Z

f(x, y)− f(x, y;A)

f(x, y)
R(x, y;A,h)dxdy, (b.3)

where R(x, y;A,h) is defined in Assumption A.13. Let us now upper bound the
terms in the last three lines. For the first one we have:¯̄̄̄

¯
Z Z

[f(x, y)− f(x, y;A)]p
f(x, y)

hDf(x, y;A), hip
f(x, y)

dxdy

¯̄̄̄
¯

≤
ÃZ Z

[f(x, y)− f(x, y;A)]2

f(x, y)
dxdy

!1/2ÃZ Z hDf(x, y;A), hi2
f(x, y)

dxdy

!1/2

= Q(A)1/2

ÃZ Z hDf(x, y;A), hi2
f(x, y)

dxdy

!1/2
.
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Similar upper bounds can be obtained for the last two terms. Thus the expansion
of Q is:

Q(A+ h) = Q(A) +

Z Z hDf(x, y;A), hi2
f(x, y)

dxdy +

Z Z
R(x, y;A,h)2

f(x, y)
dxdy

+O

Q(A)1/2ÃZ Z hDf(x, y;A), hi2
f(x, y)

dxdy

!1/2
+O

ÃZ Z hDf(x, y;A), hi2
f(x, y)

dxdy

!1/2µZ Z
R(x, y;A,h)2

f(x, y)
dxdy

¶1/2
+O

"
Q(A)1/2

µZ Z
R(x, y;A,h)2

f(x, y)
dxdy

¶1/2#
. (b.4)

Under Assumption A.13, continuity follows. Q.E.D.

Proof of Lemma A.2 ii): For A = A0, the first, the fourth and the sixth term
in equation (b.3) are zero, whereas the second term is equal to (h, Ih)L2(λ). As
in equation (b.4) we get:

Q (A0 + h) = (h, Ih)L2(λ) +O
³
khk3L2(λ) + khk4L2(λ)

´
, A0 + h ∈ Θ. (b.5)

Since Θ is bounded (Assumption A.15), the result follows. Q.E.D.

Proof of Lemma A.2 iii): From Lemma A.2 ii) we deduce that:

sup
A∈Θ

Q(A) = sup
h:A0+h∈Θ

Q (A0 + h) ≤ sup
h:A0+h∈Θ

³
(h, Ih)L2(λ) +O

³
khk3L2(λ)

´´
<∞,

since the operator I is bounded [Assumption A.13 i)] and Θ is a bounded set
(Assumption A.15). Q.E.D.

Finally let us consider the rate of convergence of the minimum chi-square
discrepancy as A → A0. Since I is a bounded operator (Assumption A.2) and
Θ is a bounded set (Assumption A.15), from Lemma A.2 ii), we have:

Q(A0 + h) = O
³
khk2L2(λ)

´
,

for A0 + h ∈ Θ, and thus:
inf

h∈(Θ−A0)\Bε(0)
Q(A0 + h) ≤ Cε2, (b.6)

for some constant C. From inequality (a.6) in Appendix A.2.3 of the paper and
inequality (b.6) we deduce the rate of convergence of the chi-square proximity
measure as ε→ 0 :

inf
A∈Θ\Bε(A0)

Q(A) ' ε2.

13



B.4.2 Asymptotic expansions of the minimum chi-square
estimator

i) A bound for the residual term

Proof of Lemma A.3: Let us bound separately the six terms in the expression
of R

³
δ bAT , g

´
.

i) The first term is such that:

¯̄̄
R1
³
δ bAT , g

´¯̄̄
≤ sup

(x,y)∈ΩT

¯̄̄̄
¯δ bfT (x, y)bfT (x, y)

¯̄̄̄
¯
2 Z

|hD log f (x, y;A0) , gi|
¯̄̄ bfT (x, y)¯̄̄ IΩT (x, y)dxdy

≤ τ2T,1


Z
|hD log f (x, y;A0) , gi|

p
f(x, y)

¯̄̄ bfT (x, y)− f(x, y)
¯̄̄

p
f(x, y)

IΩT (x, y)dxdy

+

Z
|hD log f (x, y;A0) , gi|

p
f(x, y)

p
f(x, y)dxdy

¾

≤ τ2T,1(g, Ig)
1/2
L2(λ)


Z Z h bfT (x, y)− f(x, y)

i2
f(x, y)

IΩT (x, y)dxdy


1/2

+ 1


(by Cauchy-Schwarz inequality applied to both components)

= Op

h
kgkL2(λ) τ21,T

i
,

by continuity of the information operator I (Assumption A.2) and Corollary
B.7.

ii) The second term is such that:¯̄̄
R2
³
δ bAT , g

´¯̄̄
≤

Z Z ¯̄̄D
D log f (x, y;A0) , δ bAT

E
hD log f (x, y;A0) , gi

¯̄̄
f(x, y) |ωT (x, y)− 1| dxdy
+

Z Z ¯̄̄D
D log f (x, y;A0) , δ bAT

E
hD log f (x, y;A0) , gi

¯̄̄
f(x, y)

¯̄̄̄
¯δ bfT (x, y)bfT (x, y)

¯̄̄̄
¯ωT (x, y)dxdy

14



≤
°°°hD log f(., .;A0), giDD log f(., .;A0), δ bAT

E
f(.; .)

°°°
Lp
kωT − 1kLq

+τT,1

°°°hD log f(., .;A0), giDD log f(., .;A0), δ bAT

E
f(., .)

°°°
L1| {z }

≤
°°°hD log f(.,.;A0),gi

√
f(.,.)

°°°
L2

°°°hD log f(.,.;A0),δ bAT i√f(.,.)
°°°
L2

= Op

·
kgkL2(λ)

°°°δ bAT

°°°
L2(λ)

µ
λ
³eΩcT´1/q + τT,1

¶¸
= Op

·
kgkL2(λ)

°°°δ bAT

°°°
L2(λ)

(τ1,T + τ2,T )

¸
,

by Assumptions A.2, A.11 and A.20.

iii) The third term satisfies:

¯̄̄
R3
³
δ bAT , g

´¯̄̄
≤ (1 + τT,1)

Z Z
|hD log f (x, y;A0) , gi|

p
f(x, y)

¯̄̄
R
³
x, y; δ bAT

´¯̄̄
p
f(x, y)

dxdy

≤ (1 + τT,1) (g, Ig)
1/2
L2(λ)

Z Z R
³
x, y; δ bAT

´2
f(x, y)

dxdy


1/2

= Op

µ
kgkL2(λ)

°°°δ bAT

°°°2
L2(λ)

¶
,

by Assumptions A.2, A.13 and Lemma A.1 i).

iv) The term R4 is such that:

¯̄̄
R4
³
δ bAT , g

´¯̄̄
≤ (1 + τ1,T ) τ1,T

Z Z ¯̄̄ eR³x, y; δ bAT , g
´¯̄̄

f(x, y)

¯̄̄ bfT (x, y)¯̄̄ IΩT (x, y)dxdy
≤ (1 + τ1,T ) τ1,T


Z Z ¯̄̄ eR³x, y; δ bAT , g

´¯̄̄
p
f(x, y)

¯̄̄ bfT (x, y)− f(x, y)
¯̄̄

p
f(x, y)

IΩT (x, y)dxdy

+

Z Z ¯̄̄ eR³x, y; δ bAT , g
´¯̄̄

p
f(x, y)

p
f(x, y)dxdy


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≤ (1 + τ1,T ) τ1,T

Z Z eR³x, y; δ bAT , g
´2

f(x, y)
dxdy


1/2

·


Z Z h bfT (x, y)− f(x, y)

i2
f(x, y)

IΩT (x, y)dxdy


1/2

+ 1


= Op

µ
τ1,T kgkL2(λ)

°°°δ bAT

°°°
L2(λ)

¶
,

by Assumption A.19, Lemma A.1 i) and Corollary B.7.

v) The fifth term is bounded by:

¯̄̄
R5
³
δ bAT , g

´¯̄̄
≤ (1 + τ1,T )

³
δ bAT , Iδ bAT

´1/2
L2(λ)

Z Z eR³x, y; δ bAT , g
´2

f(x, y)
dxdy


1/2

= Op

µ
kgkL2(λ)

°°°δ bAT

°°°2
L2(λ)

¶
,

due to Assumptions A.2, A.19 and Lemma A.1 i).

vi) Finally, the last term:

¯̄̄
R6

³
δ bAT , g

´¯̄̄
≤ (1 + τT )

Z Z R
³
x, y; δ bAT

´2
f(x, y)

dxdy


1/2

·

Z Z eR³x, y; δ bAT , g
´2

f(x, y)
dxdy


1/2

= Op

µ
kgkL2(λ)

°°°δ bAT

°°°3
L2(λ)

¶
,

by Assumptions A.13, A.19 and Lemma A.1 i). By gathering the dominant

terms, the bound for R
³
δ bAT , g

´
is proved.

Q.E.D.

ii) The residual term is negligible pointwise

We provide a detailed proof of Lemma A.5.

Proof of Lemma A.5: Since the first order condition holds for any given T :³
gT , Iδ bAT

´
L2(λ)

= (gT , ψT )L2(λ) +R
³
δ bAT , gT

´
.
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From Lemma A.1 ii), A.3, A.4 i) and Assumptions A.10, A.21 we get:

R
³
δ bAT , gT

´
= kgT kL2(λ)Op

·
T−2β1 +

³
T−β1 + T−β2/q

´³
T−1/2 + hmT

´
+
³
T−1/2 + hmT

´2¸
= Op

³
T−1/2

³
T−2(β1−1/4) + T−β1 + T−β2/q

+ T 1/4hmT + T 1/4hmT + T−1/2 + hmT + h2mT T 1/2
´´

[since β1, β2/q > 1/4 ],

= Op

³
T−1/2

³
T−2(β1−1/4) + T−β1 + T−β2/q + T−(αm−1/4) + T−1/2 + T−2(αm−1/4)

´´
= Op(T

−β∗−1/2),

for β∗ = min
n
2
¡
β1 − 1

4

¢
, β1,

β2
q , αm− 1

4 ,
1
2 , 2

¡
αm− 1

4

¢o
> 1

4
2m−1

4m2+2m+1 . Q.E.D.

iii) Expansion of the constrained density estimator

Proof of Proposition 6: Since (ψT −EψT ) (w) = Op

¡
1/
√
ThT

¢
[Lemma 7]

and I−1EψT (w) = O (hmT ) [Section B.4.3 ii) below], we deduce from Corollary
5 ii):

δ bAT (w) = Op

µ
1√
ThT

+ hmT

¶
, λ-a.s. in w ∈ [0, 1] . (b.7)

Let us consider the asymptotic expansion of the constrained estimator bf0T (x, y).
We have:

bf0T (x, y)−f(x, y) = f(x, y; bAT )−f(x, y;A0) =
D
Df(x, y;A0), δ bAT

E
+R(x, y; δ bAT ).

Under Assumption A.13 iii), we deduce from Lemma A.4 i), equation (b.7) and
the bandwidth condition A.10: R(x, y; δ bAT ) = op

¡
1/
√
ThT

¢
. Proposition 6

follows. Q.E.D.

B.4.3 The efficient score ψT

i) Definition
For any T ∈ N, function

³
δ bfT/f´ωT ∈ L2(PA0) with probability 1. By Riesz

representation theorem there exists ψT ∈ L2 (λ) such that:

(ψT , h)L2(λ) = E0

"
δ bfT (X,Y )

f(X,Y )
ωT (X,Y ) hD log f(X,Y ;A0), hi

#
, ∀h ∈ L2 (λ) .
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Function ψT is given by ψT =
D
D log f∗0 ,

³
δ bfT /f´ωTE. In particular, when the

differential admits decomposition (5) in the paper, function ψT is given by:

ψT (w) =

Z
δ bfT (w, y)ωT (w, y) γ0 (w, y) dy + Z δ bfT (x,w)ωT (x,w) γ1(x,w)dx

+

Z Z
δ bfT (x, y)ωT (x, y) γ2(x, y, w)dxdy.

ii) Asymptotic bias

Let us now consider the expected score:

EψT (w) '
Z ³

E bfT − f
´
(w, y)γ0 (w, y) dy +

Z ³
E bfT − f

´
(x,w)γ1(x,w)dx

+

Z Z ³
E bfT − f

´
(x, y)γ2(x, y, w)dxdy.

By the standard argument we have:Z ³
E bfT (w, y)− f(w, y)

´
γ0 (w, y) dy

=

Z µZ Z
K(u)K(v) [f(w − hTu, y − hT v)− f(w, y)] dudv

¶
γ0 (w, y) dy

=
hmT
m!

µZ
K(u)umdu

¶Z µ
∂mf

∂xm
(w, y) +

∂mf

∂ym
(w, y)

¶
γ0 (w, y) dy + o (hmT ) ,

and similarly for the other terms. We get:

EψT (w) =
hmT
m!

µZ
K(u)umdu

¶
b(w) + o (hmT ) ,

where function b is given by:

b(w) =

Z
∆mf(w, y)γ0 (w, y) dy+

Z
∆mf(x,w)γ1(x,w)dx+

Z Z
∆mf(x, y)γ2 (x, y, w) dxdy,

with:

∆mf(x, y) =
∂mf

∂xm
(x, y) +

∂mf

∂ym
(x, y).

Using the boundedness of I−1 (Assumption A.4), equation (18) in the paper
follows.

B.5 Nonparametric efficiency bound

In this section we derive the nonparametric efficiency bound in the time series
framework.
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Proof of Proposition 14 ii): The score is given by:

∂ log f

∂θ
(x | y;A (θ0)) =

¿
D log f(x | y;A0), dA

dθ
(θ0)

À
,

and the Fisher information is:

E0

"µ
∂ log f

∂θ
(Xt | Xt−1;A (θ0))

¶2#
= E0

"¿
D log f(Xt | Xt−1;A0),

dA

dθ
(θ0)

À2#

=

µ
dA

dθ
(θ0), IX|Y

dA

dθ
(θ0)

¶
L2(λ)

.

Thus the Cramer-Rao bound is given by:

BA(g, θ) =

µ
dA

dθ
(θ0), IX|Y

dA

dθ
(θ0)

¶−1
L2(λ)

.

The solution of maximization problem (21) in the paper is similar to that of the
i.i.d framework in Appendix A.3, and the nonparametric efficiency bound:

BA (g) =
¡
g, IX|Y g

¢
L2(λ)

,

immediately follows. Q.E.D.
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