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Abstract

We analyze the short term trade-off between market return
and market risk by comparing a class of straightforward dynamic
index "switching” strategies. Because of the pronounced non-
normality of index returns at short horizons we measure risk ad-
justed performances by integrating standard variance based risk
measures with indicators of downside risk like VaR and Expected
Shortfall. Comparisons are carried out both through parametric
simulation and nonparametric bootstrap in order to account for
estimation and model risk. We find a significant contribution
of volatility rules in enhancing the trade-off between return and
downside risk. On the other hand, empirical differences observed
using mean variance criteria are not sufficient alone to motivate
making use of volatility timing. Moreover, the empirical strat-
egy rankings obtained by mean variance in this setting can be
paradoxical. Indeed, they often prefer ”fixed-weights” pay-offs
that are stochastically dominated by the end of period pay-off of
a dynamic strategy. We conclude that volatility strategies have
important economic value for investors and portfolio managers
that are concerned with the downside risk of their dynamic port-
folios.
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I Introduction

Numerous studies have investigated to which extent state variables de-
termining the opportunity set underlying an investor’s actions can be
predicted. This is a key issue for dynamic asset allocation since pre-
dictability implies dynamic optimal portfolio rules that are generally
intrinsically different from the solution implied by a pure i.i.d. setting?.
Indeed, when returns are predictable demand for risky assets is deter-
mined essentially by two components/motives: a conditionally optimal
mean variance allocation and a further intertemporal hedging position?,
as in standard intertemporal asset pricing models a la Merton (1969),
(1971). In these models optimal allocations are completely character-
ized by two ingredients: investor’s preferences (obviously) and the first
two conditional moments of the joint stochastic process of asset returns
and some further (possibly latent) risk factors. Since there is now am-
ple evidence in the literature that means, variances and covariances of
assets returns can be predicted to some extent3, investigating the im-
pact of this predictability on the performance of non-trivial dynamic
strategies (compared, for instance, to fix-weights trading rules) is an
important research area. It contributes first to our general understand-
ing of dynamic portfolio management, second to an objective evaluation
of the feasibility of such strategies for practical management purposes
and third to the development of more adequate (dynamic) benchmarks
for performance evaluation.

The economic relevance of returns predictability for dynamic as-
set allocation had been investigated already by a few authors. Mod-
els where a significant economic contribution of predictability in ex-
pected returns is documented are investigated by Brennan, Schwartz
and Lagnado (1997) and Bielecki, Pliska and Sherris (2000). In two re-
lated papers Barberis (2000) and Xia (2001) observe that predictability
and predictability coupled with learning, respectively, generate impor-
tant horizon effects when linked to different forms of parameter uncer-
tainty. Finally, unconditional models of performance evaluation that
incorporate the conditioning information contained in some popular
predictors of expected returns show that most investment funds can-
not beat such a dynamic benchmark; cf. Bansal and Harvey (1996)%.
Some research results on the effectivenes of some simple ”switching”
market volatility strategies has been produced by Graham and Har-
vey (1996) and Copeland and Copeland (1999). On the other hand,
Busse (1999) examines the trading behaviour of active portfolio man-
agers and documents a negative relation between the market exposure
of many investment funds and predicted volatility®. In a related pa-
per, Fleming, Kirby and Ostdiek (2000), investigate systematically the
economic value of volatility timing for (very) short term asset alloca-
tion strategies. Using mean variance based performance measures and
an investment universe composed by stocks, bonds and gold they find
that volatility timing is more effective than a ”static” (fix weights)
investment strategy®.

In this paper we focus on the effectiveness of daily volatility strate-
gies from the perspective of a short-term index investor (having invest-



ment horizons between 1 and 12 monthes, say) who is assumed to be
concerned with at least two relevant risk dimensions: volatility and
downside risk. This approach is partly motivated by the pronounced
non-normality of market returns at short horizons, which can lead to
strongly biased risk assessments when using only variances or related
risk measures. In fact, stochastic volatility is a feature causing uncon-
ditional non-normality even for conditionally normal returns’. It seems
therefore natural to measure the effectiveness of volatility strategies also
by their empirical ability/failure to change unconditional non-normality
in the returns of dynamic portfolios. Further, downside risk is a risk
dimension that is today largely known and taken into account by insti-
tutional investors in the praxis, where risk measures like Value-at-Risk
(VaR) are often ”the” official measure of risk for many risk manage-
ment and risk controlling purposes. Finally, from a more theoretical
perspective, downside risk and loss aversion (cf. Tversky and Kahne-
man (1992)) can be expected to be more relevant at short horizons
than at long horizons since at short horizons large losses on risky secu-
rities are realized more often (see also Benartzi and Thaler (1995) and
Barberis, Huang and Santos (1999)).

Looking behind the statistical problem of predicting volatility it is
difficult to decide which further selection or combination of predictive
variables (if any) the investor should focus on at short horizons. It is
intuitively obvious that different objective functions place different em-
phases on the various features of the conditional return distribution. In
the mean-variance paradigm the first order condition for optimization
implies that we should look at variables best predicting the ratio of
conditionally expected returns to variances. However, at daily frequen-
cies expected returns are well known to be extremely hard to predict
precisely (Merton (1980)). No economic variable acting as a significant
predictor of expected returns at short horizons has been really identified
in the literature®. Further, while standard equilibrium considerations
suggest a positive (possibly linear) relation between conditionally ex-
pected returns and variances the statistical evidence for this is sparse.
Indeed, while at monthly frequencies Campbell (1987), Glosten, Jagan-
nathan and Runkle (1993) and Whitelaw (1994) observe market volatil-
ity changing with information variables such as interest rates, most of
the evidence reported produced a negative or insignificant relation from
volatility? to monthly expected returns. On the other side, Li (1998)
finds monthly stock market risk premia to be related to the variance
of further economic variables but not to their own variance. At daily
frequencies, the link between expected returns and volatilities is even
more elusive.

Rather than trying to identify the underlying relation between (con-
ditional) expected returns and volatilities with a single model we there-
fore estimate some simple GARCH models (Bollerslev (1986)) under
the simplest possible hypothesis on the functional form of the relation
between returns and volatilities: constant expected returns. We make
then use of the obtained GARCH parameter estimates to construct a
set of straightforward market volatility timing rules for the S&P500,
the Dow Jones, the FTSE100 and the Nikkei indices. These strate-



gies are analyzed with respect to their effectiveness in enhancing the
unconditional trade-off between risk and expected return, when risk is
measured both by volatility and a measure of downside risk like VaR
and Expected Shortfall (Artzner et al. (1998)). Similarly to previ-
ous studies, we control for the impact of estimation and model risk by
making extensive use of both parametric Monte Carlo simulation and
nonparametric bootstrap (Efron (1979) and Kiinsch (1989)).

We limit our analysis to simple "switching” index strategies basi-
cally for the following reasons. First, including more than one risky
asset would possibly require a multifactor benchmark model in order to
quantify the variance/covariance risk of a dynamic strategy realistically
(see for instance Scruggs (1998)). Second, in a multi-assets framework
measures of downside risk like VaR have difficulties aggregating indi-
vidual risk (even for risks that are cross-sectionally independent) mak-
ing the empirical distinction between volatility and downside risk less
clear-cut, primarily because of some counter-intuitive effects of portfolio
diversification (cf. again Artzner et al. (1998)).

Our results indicate that volatility strategies have value in amelio-
rating the risk-return trade-off of short term investors: they system-
atically reduce the empirically observed end of period downside risk.
On the other hand, no such consistent differences between dynamic
and fix weight strategies are found when risk is measured by variances
or volatilities. In fact, by pure mean variance criteria we observe often
paradoxical strategy rankings where first order stochastically dominated
pay-offs are selected. Such counter-intuitive conclusions disappear when
downside risk is taken into account. This evidence suggests that volatil-
ity timing and related strategies are particularly effective when used as
a risk - management tool rather that as a pure asset allocation instru-
ment.

In Section 2 we describe our methodology for assessing the effective-
ness of volatility strategies in enhancing the trade-off between market
return and market risk. Section 3 presents the empirical results of our
analysis while Section 4 concludes with some final remarks and hints
for further research.

II Methodology

Let 7, and 7y, be the return at time ¢ of a stock index and of a condi-
tionally riskless asset, respectively, and

py = Ei1 (1) := E (r¢|,—1) (J’% :=Vari_y (ry) := Var (reli—1) :

(1
be the time ¢ — 1 conditional expectation and conditional variance, re-
spectively, of index returns.

We consider a short term investor investing only in the index and
in the conditionally riskless asset. Our manager is interested in the
unconditional performance of a trading rule (wt)tzo,__, 1 over the given
holding period [0, H], where w; is the fraction of current wealth she
is ready to invest in the risky asset at time ¢t — 1, depending on the
available market information I; ;. We are interested in quantifying the



effectiveness of dynamic strategies exploiting volatility predictability
and to find evidence of an enhanced trade-off between expected returns
and risk as measured by volatility and (or) downside risk.

II.LA  Optimizing Return vs. Volatility

Several dynamic portfolios (wt),_q p , are feasible, from a simple fix
weight rule holding fixed proportions wy; = w, fort =0, .., H—1, to more
sophisticated strategies attempting to exploit the kind of information
available at time ¢t — 1 given a market structure and an optimizing
utility criterion. We limit our analysis to standard mean variance based
volatility strategies.

The optimal choice of a conditional mean variance optimizer solving
the conditional optimizing problem

max | wy fiy + (1 —we)rpe — 5@030? (2)

is 10: 1
He —Tfe
Wy = — - ——5—— 3
DY o? (3)
where A is a constant that can be interpreted as a risk aversion param-
eter with respect to variance risk. Hence, all what is needed by a mean
variance investor to behave conditionally optimally is a prediction of

the reward to variance ratio £ ’;: iy

Notice that the allocation (é) is optimal with respect to a corre-
sponding conditional risk measure, but not generally with respect to
unconditional ones. The optimal rule of an investor solving the uncon-
ditional version of the optimizing problem (2):

A
ma:S<E (wepey + (1 —wy) rpy) — EVar [wep, + (L —wy) rpe] (4)

(we

is of the form (cf. Ferson and Siegel (1999)):

1 . He — Trt (5)
EQ) o2+ (e —rp)®

we =

with a A-dependent constant k (). In this case it can be readily verified
that the estimated numerical values of the optimal strategies implied
by a conditional and an unconditional mean variance criterium (as a
function of ¢,) are virtually indistinguishable in our empirical analysis
below. Hence, we can expect the unconditional performance observed
for the volatility strategy (3) to attain appoximately the optimum in
terms of unconditional mean variance criteria, at least over investment
horizons of one day!!.

II.B Predicting Conditional Means and Variances

The practical implementation of the optimal stategy in the last section
needs a model for predicting reward to variance ratios of excess index



returns. This can be achieved by estimating a parametric model of the
time behaviour of the first two conditional moments of index returns'2.

We consider some well-known parametric models for the conditional
distribution of ry — 7, where conditional means and variances are pa-
rameterized by some corresponding functions m; and h; evaluated at

an unknown parameter vector ¥ = (o, 6')/:
pe—rpe=mi(0) , of=h(9) . (6)

A huge number of articles has investigated the predictive power of para-
metric volatility models'3 of the general form (6), finding that volatility
is to some extent predictable across a wide range of assets and us-
ing different volatility specifications. While the explanatory power of
these models is typically low, based on standard volatility measures,
Andersen and Bollerslev (1998) show that GARCH models explain
about 50% of the variation in ex-post volatility, measured by cumulative
squared intraday returns (a more precise measure of daily volatility).
This evidence supports the hypothesis that these models deliver rea-
sonably accurate volatility predictions. In this paper we concentrate on
a broadly used asymmetric GARCH volatility specification (Glosten,
Jagannathan and Runkle (1993)) of the form:

he = By + Ba€s_1 + Bshy_q + 541(51.740)6%71 ) (7)

with the indicator function 14 of the set A taking values 1 if and only
if x € A and zero otherwise. On the other hand, due to the well known
difficulties in precisely estimating expected returns (Merton (1980)), we
focus on the constant expected returns case, (as in Fleming, Kirby and
Ostdiek (2001)):

my =oq . (8)

The asymmetric GARCH-M model implied by the the mean equa-
tion (8) is estimated by Pseudo Maximum Likelihood (Bollerslev and
Wooldridge (1992)). The obtained parameter estimates ¥ are used as
inputs to determine the implied estimated conditionally optimal weights
@ (which are functions only of conditional volatilities). They are given
by (cf. also (3)):

, 9)

II.C Measuring the Effectiveness of Volatility Tim-
ing

We analyze the unconditional performance of the estimated dynamic
strategies implied by the optimal rules @w; and compare it to that of a
fixed weights trading rule using a parametric and a nonparametric re-
sampling methodology: Monte Carlo resampling based on simulations

of the estimated parametric mean and volatility processess (mi (?9))

A~

and (ht (ﬂ))and block bootstrap (Efron (1979) and Kiinsch (1989))
based on block resampling of the empirical distribution of the observed



data. Each of these resampling techniques is used to generate ”artifi-
cial” time series of daily excess index returns (r; — r ft)gi)o CHo1>

desired holding period [0, H]. Given an estimated optimal strategy @,

over a

each ”artificial” excess index return series (r; — Tft)gi)o,.., 1 yields a
corresponding ”artificial” continuously discounted end of period wealth
WI({}c ) of the optimal strategy under scrutiny. Repeating this procedure
k=1,..,N, times yields a distribution of N ”artificial” holding period
returns for our estimated volatility strategies.

By parametric simulation, we investigate the effectiveness of volatil-
ity timing when the parametric model underlying our volatility strate-
gies is correct. This exercise allows us first to assess if volatility timing
has value at all, given a correct model structure, when estimation risk
is present.

By nonparametric block bootstrap we analyze if volatility has value
when the data are blockwise randomly generated by a refined empirical
support of the data (rather than by one of the parametric models used
to contruct our dynamic strategies). Hence, nonparametric bootstrap
allows us to investigate the impact of some forms of refined ”historical”
model risk on the performance of our trading rules.

For each relevant investment horizon we provide a marginal and
a global description of the ”artificial” unconditional performance of
volatility strategies. First, we estimate standard unconditional Sharpe
Ratios and some VaR and Expected Shortfall modified versions of an
unconditional Sharpe Ratio (we denote these ratios by SR, VaRR® and
ESR*~, respectively, see below). Second, we draw the unconditional
mean-variance, mean-VaR and mean-Expected Shortfall frontiers for
both strategies under scrutiny. The impact of the investment horizon is
analyzed by comparing how these entities vary over investment horizons
H between 1 and 12 monthes.

While VaR is by far the most popular and broadly used measure
of downside risk in the praxis it is well known that it possesses some
conceptual drawbacks, especially when used in an intertemporal port-
folio context with several risky assets. Specifically, VaR has difficulties
in aggregating individual risks and it may discourage diversification
(cf. again Artzner et al. (1998)). Second, in a multiperiod setting a
VaR-constrained investor frequently chooses a larger risk exposure than
an otherwise equivalent unconstrained investor'# (as shown for exam-
ple in Basak and Shapiro (1998)). These two paradoxical features are
not inherited by Expected Shortfall. Therefore, we look at both these
risk measures to assess the effectivenes of volatility timing in dynamic
portfolio management.

The Sharpe Ratio related performance measures used in the paper
are defined by:

E() (ln WH) In E() (WH) In E() (WH)
SR=—————=l— VaRR" = ——— % ESR* = ——

Varg (In W) ¢ VaR* (Wg) ES*(Wg)

(10)

where the unconditional VaR and Expected Shortfall measures
VaR* (Wg) and ES® (Wp) are defined by:

o = Po(WH—1+VCLRa(WH)<O) s



ES*(Wg) = —Ey(Wg—-1)|Wg —1+VaR*(Wg) <0)

Notice that Eo(-), Vare (-) and Py(-) are the unconditional expectations,
variances and probabilities associated to the Monte Carlo and bootstrap
distributions of W in each of our resampling experiments. Intuitively,
VaR™ (W) is the amount of reserve capital that is needed ad the end of
the investment period in order to maintain the probability of a risky loss
under a prescribed level . Similarly, ES® (W) is the excess expected
loss when considering only excess risky losses exceeding VaR* (W)
in absolute value, that is losses that cannot be covered by the reserve
amount implied by VaR* (Wg).

We estimate the Sharpe Ratio-related performance measures (10)
by their empirical conterparts:

& In (Eo (Wg)
Spo= —2WWi) oy imRe - —(A )
Varg (In Wg) VaR* (Wy)
o In (Eo (WH))
ESe (Wg)
where:
~ 1 X
Eo(mWry) = Smw)
k=1
. 1 & _ 2
Varo(InWg) = N Z (ln WI(;C) — Eyp(In WH)) ,
k=1
- 1 X
k=1

| X
a = - Zl( )14 VaR>( (Wi)<0)
_ 1 B
ES™(Wg) = TaN ; (WH - 1) (Wg"')—1+v/a§ﬂ(wu)<0)

ITIT Results

In this section we present the results of our empirical analysis. After
describing our data and discussing some preliminary summary statis-
tics and M-GARCH parameter estimates we first investigate by simula-
tion how estimation risk affects the effectiveness of volatility strategies,
assuming constant expected returns. After a standard unconditional
mean-variance analysis we extend the discussion to mean VaR/Expected
Shortfall considerations. Here, we also present an empirical illustra-
tion of the well-known drawbacks of a pure mean-variance analysis



when non-normality of returns has to be taken into account. In a
second subsection we perform analogous investigations by taking into
account model risk through resampling procedures based on nonpara-
metric block bootstrap.

III.A Data and Preliminary Analysis

We consider daily closing prices from June 1989 to January 1999 for
four main stock indices: the S&P500, the Dow Jones Industrials, the
FTSE 100 and the Nikkei. The source for all indices is Datastream
International. Table 1 presents summary statistics of our return series.

Insert Table 1 here

By means of daily mean statistics the S&P500 shows the highest re-
turn, followed by the DOW and the FTSE. Remark the negative mean
performance of the Nikkei, due to the weakness of the Japanese market
over our sampling period. In terms of unconditional estimated standard
deviations the S&P500, the FTSE and the Dow have behaved similarly.
The Nikkei shows a standard deviation that is almost twice that of
the further indices. Finally, higher moments statistics evidence strong
nonnormalities.

Asymmetric M-GARCH(1,1) Quasi Maximum Likelihood parame-
ter estimates of model (7), (8) are presented in Table 2. Bollerslev-
Wooldridge (1992) robust ¢-statistics are given in parentheses.

Insert Table 2 here

The estimated mean parameters o are rather consistent with the sum-
mary mean statistics discussed above. The FTSE and the S&P500
indices yield the most persistent volatilities, followed by the DOW and
the Nikkei. On the other hand, all indices show strongly significant
asymmetries in the volatility process, with particularly high estimated
parameters for the Nikkei. The response to symmetric shocks is signif-
icant and similar across all indices. Finally, notice that the parameter

estimates for the FTSE imply an almost integrated volatility process!®.

III.B Quantifying the Effectiveness of Volatility Tim-
ing
We consider the distribution of discounted ”artificial” end-of-period
portfolio values Wl(f ) implied by the estimated volatility strategy (9) for
holding periods horizons of H=20, 60, 120 and 250 days, respectively.
The next sections investigate the extent to which these strategies

enhance the unconditional trade-off between return and risk relatively
to standard deviation and (or) VaR/Expected Shortfall.

ITII.B.1 The Impact of Estimation Risk

We first focus on Monte Carlo simulations of the estimated volatility
process (7) and generate 10000 artificial daily time series of excess index



returns over the given holding period of length H. 10000 time series
of portfolios excess returns are then constructed for the optimal esti-

mated strategies (9), yielding 10000 ” artificial” end of period discounted

wealths VVI({}c ) for each strategy and investment horizon under scrutiny.

Unconditional Mean Variance Analysis. Table 3 presents esti-
mated annualized Sharpe Ratios SR (cf. (10)) and 95% confidence
bounds for a straightforward fix weight strategy and the mean variance
strategy (3). The last row of the table provides asymptotic t-tests for
the null-hypothesis of a zero difference in the Sharpe Ratios of the two
strategies'®. The investment horizon in this table has been fixed to H
= 60 days. The results for horizons H = 20, 120, 250 are similar and
are omitted.
Insert Table 3 here

Estimated Sharpe Ratios range between 65%-71% for the S&P500, 56%-
60% for the DOW, 36%-39% for the FTSE and 9%-19% for the Nikkei,
with differences that are significant in favour of the dynamic rule for
all indices analyzed. The mean variance frontiers implied by the two
strategies are given in Figure 1 for the DOW (for all horizons under
investigation)'?, and in Figure 2 for the S&P500 (only for'® an horizon
H=60). The frontiers obtained for the other indices are similar and are
omitted!?.
Insert Figure 1-2 here

In all these graphs, the differences observed between fix weight and
dynamic strategies for given level of risk or expected return are small.
For instance, when H = 60 in the case of the Dow (cf. top left panel in
Figure 1) and the S&P500 (cf. Figure 2) an investor with risk aversion?®
A = 5 loses an ex post estimated difference in annualized mean excess
return of no more than 0.5%-1%, when switching from a dynamic to
a static strategy and for the same level of standard deviation. On
the other hand, for given level of annualized return the differences in
standard deviation units for this same investor are?! about 0.5%-1.5%.

As a consequence, no consistent economically relevant evidence of
an enhanced risk-return trade-off between dynamic strategies and fix
weight rules is observed by means of standard mean variance criteria in
our simulations.

Looking Behind Mean Variance. The mean variance model of as-
set prices has been analyzed extensively in finance since its develop-
ment by Markowitz (1952) and is broadly used by practitioners. If fact,
a preference for expected return and an aversion to variance can be
motivated by monotonicity and strict concavity of individual’s utility
function within a standard expected utility paradigm?2. However, for
arbitrary return distributions expected utilities cannot be defined only
in terms or expected returns and variances. Clearly, this is a partic-
ularly relevant point for non-normal and generally for leptokurtic and
(or) asymmmetric return distributions. Notice that the existence of
GARCH volatilities already implies a leptokurtotic unconditional dis-
tribution even for conditionally normal returns (cf. Milhoj (1985) and

10



Bollerslev (1986)). Similarly, asymmetric GARCH volatilities generate
unconditional skewness even when returns are conditionally symmet-
ric. Therefore, it appears quite natural to look behind mean-variance
when analyzing the effectivenes of volatility strategies in the presence
of (asymmetric) GARCH effects.

As an illustration Figure 3 presents an histogram of the end of period
wealth values WI({k ) simulated over an investment horizons of H = 60
days based on the estimated asymmetric M-GARCH parameters for the

DOW (cf. again Table 2).
Insert Figure 3 here

The lighter histogram represents the distribution of end of period wealth
obtained for a fixed weight stategy. The darker histogram represents
a corresponding simulated distribution for the conditionally optimal
mean variance strategy (3) with estimated weights @, given by (9).
Clearly, the lighter histogram is skewed to the left while the darker
one is to the right. Hence, non-normality of holding period returns
matters even at horizons of about 3 months in this context??. Looking
at the corresponding cumulative distributions in Figure 5 an even more
interesting feature emerges.

Insert Figure 4 here

Indeed, the cumulative distribution function of end of period wealth for
the dynamic strategy (given by the dashed line in Figure 4) stochasti-
cally dominates that of the fixed weights strategy (the second line in
Figure 4). Similar features are found for the S&P500 and partly for the
FTSES500.

Clearly, this feature would be missed by a pure mean-variance anal-
ysis. The motivation for evaluating volatility strategies also by other
risk measures than variance in order to avoid counter-intuitive risk as-
sessments is confirmed by this simple empirical example.

Unconditional Mean Var/Expected Shortfall Analysis. Table
4 and 5 present the estimated ”downside risk” modified Sharpe Ratios
VaRR® and ESR* in (10) (with 95% confidence bounds) estimated
in our simulations. As for the standard Sharpe Ratios the investment
horizon in these tables is H = 60 days. The results for horizons H =
20, 120, 250 are similar and are omitted.

Insert Table 4-5 here

Estimated VaR-modified (Expected Shortfall-modified) Sharpe Ratios
in Table 4 range between 68%-104% (52%-91%) for the S&P500, 59%-
83% (48%-72%) for the DOW, 36%-47% (29%-41%) for the FTSE and
11%-17% (7%-15%) for the Nikkei. Compared to the standard Sharpe
Ratio case in Table 3 differences in performance are now more significant
for all indices with exception of the Nikkei (cf. the t-statistics in the
last row of Table 4 and 5).

These differences seem to be also economically more relevant than
those obtained by a pure mean variance analysis. For instance, in the

11



unconditional frontiers in Figure 5 an investor with risk aversion A = 5
following a volatility timing strategy in the DOW at horizons H = 60
gets a higher annualized excess returns of about 3.5%, compared to a
fix weight investment having the same 1%-VaR. This same difference
amounts to more than 4% for the S&P500 (cf. Figure 6 below). For
the FTSE the gain in mean return is less significant and for the Nikkei
it is factly negligigle.

Insert Figure 5-6 here

On the other hand, the gain in VaR and Expected Shortfall achieved by
the same investor at a given targeted mean return appears to be even
more relevant. For instance, in the case of the DOW and the S&P500
one gets a 1%-VaR reduction from about 0.89 to 0.84 and 0.87 to 0.80,
respectively, when switching from the dynamic to the static strategy at
a given targeted level of expected return. These differences appear to
be economically relevant also for the FTSE and the Nikkei where VaR
shrinks from 0.93 to 0.90 and from 0.93 to 0.89, respectively. Differences
in terms of Mean-Expected Shortfall frontiers are even more clear-cut
(cf. for instance Figure 7 for the S&P500)24.

Summarizing, our simulations suggest that for the DOW and the
S&P500 volatility timing and related strategies ameliorate the risk-
return index investment profile both by enhancing return at a given
level of downside risk and by lowering downside risk at a given targeted
expected return. For the FTSE and the Nikkei only the second of these
two effects appears to be economically significant.

ITII.B.2 The Impact of Model Risk

We make use of nonparametric bootstrap to generate 10000 artificial
daily time series of excess index returns over a given holding period
of length H. 10000 time series of portfolios excess returns are then
constructed for the optimal strategy (9), yielding 10000 ”artificial” end
of period wealth level Wl(f ) for each strategy and investment period
under scrutiny.

Block Bootstrap. Block bootstrap is a resampling methodology that
allows for a stationary dependence structure in the underlying process
(at variance with the original i.i.d. bootstrap by Efron (1979)). This
is an important feature when investigating stochastic processes where
GARCH volatilities can induce quite strong dependence features. At
variance with Fleming, Kirby and Ostdiek (2001) we therefore make use
of a particular block bootstrap methodology with overlapping blocks
(Kiinsch (1989)) in order to produce a refined nonparametric estimator
of the historical data distribution. This allows us to assess how far a
misspecification of our GARCH models could affect the performance of
the strategies under scrutiny.

We bootstrap directly the index returns empirical distribution, rather
than - as done by others (cf. for instance Barone Adesi, Giannopoulos
and Vosper (1999)) - using an i.i.d bootstrap procedure on the filtered
GARCH residuals. This fully nonparametric approach is not dependent

12



on the supposed parametric GARCH volatility structure. However, as-
sessing the validity of the hypotheses used and interpreting the empirical
evidence in a full nonparametric setting can be sometimes cumbersone
(see for instance Maddala (1996) for a review). Therefore, we check
carefully for consistency of our bootstrap results with the above para-
metric simulation evidence.

Unconditional Mean Variance Analysis. Table 6 presents esti-
mated annualized Sharpe Ratios SR (cf. (10)) with 95% confidence
bounds, estimated in our bootstrap experiments for a fix weight strat-
egy and the optimal mean variance strategy (3), respectively. The in-
vestment horizon in this table has been fixed to H = 60 days. The
results for horizons H = 20, 120, 250 are similar and are omitted.

Insert Table 6 here

Estimated Sharpe Ratios range between 89%-67% for the S&P500, 69%-
60% for the DOW, 26%-22% for the FTSE and 24%-34% for the Nikkei.
Somehow surprisingly, the mean-variance rule (3) performs worse for
all indices (with strongly significant t-tests) with the exception of the
Nikkei.

While this seems to suggest a poor effectiveness of volatility strate-
gies in our bootstrap experiments, the next section shows that this
finding is completely determined by the inadequacy of mean variance
criteria when used to rank non-normal return pay-offs.

Unconditional Mean Var/Expected Shortfall Analysis. Table
7 and 8 present the estimated ”downside risk” modified Sharpe Ratios
VaRR* and ESR® in (10) (with 95% confidence bounds), estimated
in our bootstrap experiments. Again, the investment horizon in these
tables is H = 60 days. The results for horizons H = 20, 120, 250 are
similar and are omitted.

Insert Table 7-8 here

Estimated VaR-modified (Expected Shortfall-modified) Sharpe Ratios
VaRR® (ESR®™) range between 100%-106% (83%-93%) for the S&P500,
76%-86% (64%-77%) for the DOW, 29%-28% (25%-25%) for the FTSE
and 24%-29% (20%-24%) for the Nikkei. Differences between static
and dynamic strategies are statistically significant in favour of dynamic
strategies, with exception of the FTSE presenting no significant test
statistic.

Only for the Nikkei, similar strategy rankings to those obtained by
standard Sharpe Ratios in the last section arise. On the other hand,
for the S&P500, the DOW and partly for the FTSE different strategy
orders arise. In fact, by a standard mean variance analysis we have
seen that fix weights strategies would be tendentially preferred to dy-
namic ones for these three indices. However, as for the distribution
obtained by parametric simulation we observe in Figure 8 an end of
period wealth bootstrap distribution for the fix weight strategy that is
stochastically dominated by that of the dynamic strategy (9) in the case
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of the DOW. The same feature is found for the S&P500 end of period
wealth bootstrap distribution.

Insert Figure 8 here

Again a pure mean-variance criterium does not tell the whole story
when comparing short-term volatility strategies. It appears, that a
further look at downside risk tends to avoid a paradoxical conclusion
on the effectiveness of volatility strategies.

The differences obtained with respect to a downside risk criterium
seem to be economically relevant also in the presence of model risk.

Insert Figure 9 here

For example, in the unconditional frontiers in Figure 9 an investor
with A = 5 obtains in the case of the Dow and at horizons H = 60
an expected excess return that is about 1.5% higher that that obtained
by a fix weights rule having the same unconditional 1%-VaR?®. On the
other hand, for given targeted expected excess return switching to the
"static” rule implies a VaR falling from?® about 89% to about 87%.
In the case of the Nikkei, this same investor reduces expected excess
returns by about 0.5%-1% for given VaR when investing in the fixed
weight rule. Finally, by given expected excess returns the implied VaR
reduction in the Nikkei case is between 1%-3%. Differences in terms of
Expected Shortfall are even more clear-cut?”.

As a conclusion, the bootstrap evidence suggests that volatility tim-
ing and related strategies are effective in ameliorating the downside
risk-return investment profile of market portfolio positions. This evi-
dence is consistent with the simulation results obtained above.

IV  Conclusions

We have found a substantial effectiveness of volatility strategies in en-
hancing the trade-off between market downside risk and market re-
turn in the presence of both estimation and model risk. These effects
are robust to transaction cost amounts as they are typically required
for futures positions on liquid markets. On the other hand, mean-
variance comparisons do not yield a consistent evidence in favour of
volatility strategies because they often paradoxically select pay-offs that
are stochastically dominated by those of dynamic volatility strategies.
Topics for future research are first the analysis of the relation between
volatility timing effectiveness and index structure and second the inves-
tigation of the effectiveness of volatility strategies in ameliorating the
risk return profile of dynamic asset allocations for private investors.
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Notes

n this last framework, it is known at least since Merton (1969) that
CRRA investors allocate a constant fraction of current wealth to risky
assets.

2Moreover, optimal intertemporal allocations do then generally de-
pend on the investor’s horizon, thereby making time diversification less
effective (see for instance Samuelson (1989), (1990) for a discussion).

3References documenting predictability of expected returns using
different sets of economic intrumental variables are Campbell (1987),
Campbell and Shiller (19988a, 19988b), Cochrane (1991), Fama and
Schwert (1977), Fama and French (1988, 1989), Ferson and Harvey
(1991), Keim and Stambauch (1986), Lamont (1998), Lettau and Lud-
vigson (1999), Pontiff and Shall (1998). Some prominent studies on
variance predictability are Andersen and Bollerslev (1998), Bollerslev
(1986), Bollerslev Engle and Nelson (1994), Diebold and Lopez (1995),
Engle (1982), Harvey (1991), Palm (1996), Schwert (1989) and Whitelaw
(1994).

4As in many papers on expected returns predictability, this evidence
is based on parameter estimates obtained using monthly data.

5While this suggests that many fund managers behave like volatility
timers their trading decisions may however be driven by other factors
than volatility.

6The economic value of volatility timing is quantified by an estimated
annual fee of no less than about 100 basis points (when estimation risk
is considered) for switching from the static to the dynamic strategy.

"See for instance Ané and Geman (2000) for a nice economic inter-
pretation of this point.

8As a consequence, at daily frequencies the problem of synthesizing
returns predictability by an appropriate index of predictive variables
(see for instance Ait-Sahalia and Brandt (2000)) for dynamic portfo-
lio management purposes seems to be less stringent than at monthly
frequencies.

9As has ben shown in Whitelaw (2000) these empirical facts are
not necessarily inconsistent with financial intuition. In that paper, a
non linear and time-varying relation duplicating the salient feature of
the risk/return trade-off in the data is estimated based on a switching
regime general equilibrium model with state dependent regime proba-
bilities.

10The same solution is obtained for an investor maximizing exponen-
tial conditional expected utility.

"1 The multiperiod unconditional mean variance problem has been
solved recently by Li and Ng (2000), for the case of i.i.d. asset returns.
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To our knowledge, no solution for the stochastic volatility case has been
derived yet in the literature.

12 Alternatively, the optimal weights (3) could be estimated directly
by a nonparametric estimator using a conditional Euler equation ap-
proach (see Brandt (1999) and Ait Sahalia and Brandt (2000)). Since we
are interested in assessing the value of well-known parametric volatility
forecast models we do not follow such a nonparametric approach here.
Clearly, a non parametric estimation of the optimal weights could pro-
duce insights about a misspecification of the optimal weights implied
by a parametric model. On the other hand, if the given parametric
model is misspecified the estimated portfolio rules are systematically
sub-optimal. Hence, if volatility timing has value in reducing downside
risk when using a suboptimal strategy it is likely that more involved
strategies will yield even better performances.

13Some rewiews of this research are provided by Bollerslev, Chou
and Kroner (1992), Bollerslev, Engle and Nelson (1994) and Diebold
and Lopez (1995).

14 This second feature could be more relevant for our analysis since
we focus on simple market timing strategies rather than on dynamic
portfolios of several risky assets.

I5For this reason the parametric and nonparametric simulation exper-
iments for the FTSE in the next sections have to be interpreted with
caution.

16T his test makes use of the asymptotic distributions of the statistics,
which are available from the authors.

1"The underlying risk aversion parameters A ranges between 2.5 and
10. Circles correspond to risk aversions A=2.5, 5, 10, respectively.

18Since, as for the DOW (cf. Figure 1) no numerically important
horizon effects in mean standard deviation space are observed.

YThe corresponding figures are available from the authors.

20For this risk aversion level the mean position in the index of a
dynamic volatility strategy is approximately 1.

21For the other indices the differences obtained are smaller.

22This is immediately seen by a second order Taylor expansion of the
individual’s utility function.

23 As a comparison, remember that under normality of holding period
returns end of period wealth is lognormaly distributed.

24Further graphs for the Expected Shortfall case are available from
the authors.

25For the S&P500 this same increase in expected return amount to
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about 1%.

26For the S&P 500 index 1%-VaR decreases from about 88% to about
86%.

2"Details are available from the authors.
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TABLES

TABLE 1
| | S&«P500 | DOW | FTSE | NIKKEI ||
Mean 0.000471 | 0.000381 | 0.000164 | —0.000313
Median 0.000237 | 0.000171 | —0.000100 | —0.000103
Maximum 0.049793 | 0.048451 | 0.054103 | 0.124083
Minimum || —0.071221 | —0.074704 | —0.041658 | —0.068467
Std. Dev. 0.008791 | 0.008856 | 0.008978 [ 0.014552
Skewness || —0.465679 | —0.572547 | 0.054215 | 0.330777
Kurtosis 0.174395 | 9.633212 | 5.225211 | 7.419384
Jarque-Bera | 4388.065 5099.347 558.5802 2247.301
(0.00000) (0.00000) (0.00000) (0.00000)
TABLE 2
[ || S&P500 | DOW | FTSE | NIKKEI ||
o || 0.000398 0.000338 0.000200 [ —0.000207
(2.920641) (2.313962) (1.321809) (—0.997177)
B, [ 878E —07 [ 1.82E — 06 | 5.15E — 07 | 2.46E — 06
(3.565701) (3.288707) (2.533461) (3.242123)
By || 0.012544 0.015005 0.014154 0.018459
(1.201800) (1.371729) (2.105027) (1.668012)
B || 0.943024 0.926882 0.960000 0.911703
(87.76735) (65.45508) (130.2840) (76.43995)
B, || 0.066477 0.067758 0.036631 0.125399
(3.942419) (3.096684) (3.737376) (5.173562)
TABLE 3
[ Simulation | S&P500 | DOW | FISE | NIKKEI |
SR | | | | |
static 0.649 +0.046 | 0.558 +0.044 | 0.356 +0.042 | 0.087 £ 0.040
dynamic || 0.710 +0.038 | 0.602 +0.039 | 0.387 =0.039 | 0.195 4 0.041
t — stat 7.905 10.625 4.544 6.692




TABLE 4

[ Simulation | S&P500 | DOW | FTSE | NIKKEI ||
In
| vart i | | | | |
static 0.675+0.042 | 0.587 £0.048 | 0.363 +0.042 | 0.109 £+ 0.041
dynamic 1.045 £ 0.062 | 0.826 +0.057 | 0.466 +0.048 | 0.172 £ 0.033
t — stat 18.449 14.164 7.556 3.888
TABLE 5

[ Simulation [ S&P500 | DOW | FTSE | NIKKEI ||

| st

lnE

SV, i a)
static 0.519 0.476 0.290 0.074
dynamic 0.911 0.721 0.407 0.147
TABLE 6
[Bootstrap | _S&P500 | DOW | FISE | NIKKEL ||
SR | | | | I
static 0.891 +£0.043 | 0.691 +0.043 | 0.262 + 0.040 | 0.236 + 0.040
dynamic 0.673 £0.037 | 0.598 +£0.038 | 0.224 +0.039 | 0.345 + 0.043
t — stat —23.085 —13.178 —5.457 8.796
TABLE 7
[ Bootsttap | S&P500 | DOW | FTSE | NIKKEI |
InE(V,)
| varttiar | | | | |
static 1.000 £+ 0.046 | 0.759 £ 0.039 | 0.294 4+ 0.020 | 0.237 4+ 0.006
dynamic 1.059 +0.031 | 0.858 £0.024 | 0.281 £0.010 | 0.287 +£0.010
t — stat 2.771 4.920 —1.289 3.345




TABLE 8

[ Bootstrap [ S&P500 | DOW | FTSE | NIKKEI ||

| it | 1 |
static 0.828 0.644 0.252 0.204
dynamic 0.926 0.767 0.248 0.242
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Figure 1: Mean-Variance Analysis using simulations for the DOW at various horizons H = 20,

60, 120 and 250.
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Figure 2: Mean-Variance analysis using simulations for the S&P at horizon H = 60.



Figure 3: Distributions of simulated end-of-period portfolio value Wy for DOW. Darker distribu-

tion is dynamic strategy, lighter distribution is fixed weight strategy.
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Figure 6: Mean-Value at Risk simulations for S&P.
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