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Migration Correlation: Definition and Efficient Estimation

Abstract

The aim of this paper is to explain why cross-sectional estimated migra-
tion correlations displayed in the academic and professional literature can
be either not consistent, or inefficient, and to discuss alternative approaches.
The analysis relies on a model with stochastic migration in which the pa-
rameters of interest, that are migration correlations, are precisely defined.
The impossibility of estimating consistently the migration correlations from
cross-sectional data only is emphasized. We explain how to handle with
individual rating histories, how to weight appropriately the cross-sectional
estimators and how to estimate efficiently the joint migration probabilities
at longer horizons.

Keywords: Credit Risk, Migration, Migration Correlation, Stochastic Tran-
sition, Rating.
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1 Introduction

The risk on a portfolio of corporate credits (including corporate bonds) de-
pends on the level of individual default and recovery rates of the different
borrowers, but also on their possible dependence. This dependence can be
the consequence of structural links between the firms. For instance the fail-
ure of a firm can increase the default rate of its suppliers, which can imply
chains of failures. This dependence can also be due to more general factors,
which affect the general state of the economy, and the situation of all firms,
or of a group of firms. For instance an increase of the exchange rate of the
Euro versus $ can diminish (resp. increase) the default rate of exporting
(resp. importing) US firms.
Typically the total risk in a portfolio of credits (with positive allocations)

is higher when the risks are positively correlated than when they can be as-
sumed independent. Moreover this correlation effect cannot be suppressed
by diversification. Even for portfolios including a large number of credits
of similar types and sizes, the effect of the underlying common risk factors
cannot be eliminated. Therefore the analysis of default correlation is a nec-
essary step for understanding credit portfolio diversification and determining
the capital required to compensate credit risk [see e.g. Gordy (1998), Nag-
pal, Bahar (1999), (2000), (2001)a, b, Lucas et alii (2001)]. In particular
the importance of default correlation (and of migration correlation) has been
recognized by the regulator and its value is a significant input in the com-
putation of the required capital by means of the quantile of the portfolio
credit losses (CreditVaR) [see The Basle Committee on Banking Supervision
(2002)]. Since the CreditVaR is very sensitive to the value of the default cor-
relation, this parameter has to be estimated carefully. An underestimation
of the default correlation will imply an underestimation of the risk and a too
low level of required capital. An unbiased, but inaccurate estimation of the
default correlation will induce levels of required capital which are too erratic
with respect to time.
Default correlations are generally deduced from data basis on default his-

tories1. These basis correspond to panel data doubly indexed by individual
(firm) and time. A special econometric literature is devoted to panel data.
Indeed the total number of observations depend on the number of individuals
(firms) in the panel [cross-sectional dimension] and of the number of obser-

1or rating histories for migration correlations.
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vation dates [time dimension]. Thus a large number of observations can be
obtained with a large cross-sectional dimension, a large time dimension, or
both. The need for large cross-sectional or time dimension will depend on the
parameters of interest. Loosely speaking a large cross-sectional dimension al-
lows for accurate estimation of parameters with "individual" interpretation,
but a large time dimension is also needed for the estimation of parameters
with dynamic interpretations.
The aim of this paper is to discuss in the panel framework the standard

descriptive estimation methods proposed in the literature to approximate
default correlation or migration correlation [see e.g. Lucas (1995), Nagpal,
Bahar (2001)b] and largely applied by practitioners and rating agencies for
the computation of CreditVaR2 [see e.g. de Servigny, Renault (2002)]. These
methods are generally introduced without specifying a model driving transi-
tions and, as we will see, they can be neither consistent, nor efficient. Our
specific contribution is to provide a framework where a precise definition
of migration correlation can be given and the consistency and efficiency of
the estimators can be discussed. In addition, a more accurate estimator of
migration correlations at longer horizons is presented.
The rest of the paper is organized as follows. In Section 2 the cross-

sectional estimation method is reviewed and discussed. In particular its lack
of consistency is pointed out. A precise definition of migration correlation is
given in Section 3, by considering a model with stochastic transition matrix.
The inconsistency of the cross-sectional estimator in this framework is dis-
cussed in Section 4. Then a consistent estimator of the migration correlation
at horizon 1 is introduced in Section 5. In Section 6 it is explained how
to deduce the migration correlations at longer horizons from the migration
correlations at horizon 1. The finite sample properties of the different esti-
mators are compared in a Monte-Carlo study presented in Section 7. Finally,
Section 8 concludes.

2Other estimation approaches of default correlations are also considered in Finance.
Some are based on the observation of equity prices, such as in the KMV approach, or on
the observation of bond prices [Lando (1998), Duffie, Singleton (1999), Gourieroux, Mon-
fort, Polimenis (2003)]. In particular they are used for pricing various credit derivatives
proposed in the market. They can only be applied to large firms, quoted on the market,
issuing bonds regularly. However for the regulator the CreditVaR has to be computed for
the whole credit portfolio, including small or medium size firms, with a lot of over-the-
counter credits. In this case the estimation approach from individual rating histories is
the only possible one. The same remark applies for portfolios of retail credits including
their derivatives, like the mortgage backed securities.
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2 Calculating one year migration correlation
[from Lucas (1995)]

In the financial literature the estimation of migration correlation has been
introduced directly without defining precisely the parameter of interest and
”without relying on a specific model driving transitions” [de Servigny, Re-
nault (2002)] 3. This section follows the usual presentation [see e.g. Lucas
(1995), Nagpal, Bahar (2001)b]. The available data consists in a panel of
rating histories:

Yi,t, i = 1, ..., n, t = 1, ..., T,

where i denotes the individual (either the firm, or the bond) and t the year.
The variable Yi,t is polytomous qualitative, with alternatives k = 1, ..., K,
indicating the different admissible grades. In general one of these alterna-
tives corresponds to default, k = K say. For instance there are eight grades
for Standard & Poor’s from the highest rating AAA to debt in default pay-
ment D, when the ratings C, CC, CCC are aggregated. The cross-sectional
dimension is from n = 10000 for Moody’s, S&P’s where the data concern
large international firms, up to n = 130000 for the French Central Bank,
which follows all French firms including small and medium size firms. The
time unit is generally the year, leading to a time dimension of T = 15− 20.
Thus the cross-sectional dimension is much larger than the time dimension
[see Foulcher, Gouriéroux, Tiomo (2003) for a comparison of the ratings of
the main rating agencies Moody’s, S & P’s, Fitch and of the French Central
Bank].
At any given year t, we can compute the structure of individuals (firms or

bonds) per rating grade: (Nk,t, k = 1, ...,K), where Nk,t denotes the number
of firms (bonds) in grade k at t. We can also consider the transitions. If
Nkl,t, k, l = 1, ..., K, denote the number of firms (bonds) migrating from
rating class k at t− 1 to rating class l at date t, the transition probabilities
are approximated by: bπkl,t = Nkl,t

Nk,t−1
, (say).

Such matrices are regularly reported by Moody’s, S & P, the French Central
Bank, etc [see e.g. Brady, Bos (2002), Brady, Vazza, Bos (2003), Bardos,

3This can explain the following remark by Lucas (1995) p82: "These historical statistics
describe only observed phenomena, not the true underlying correlation relationship".
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Foulcher, Bataille (2004)]. They summarize the individual migrations of a
given firm. Such an estimated transition matrix is given in Table 1.
It is usually considered that joint migrations can be analyzed in a similar

way, by calculating the ratio between the number of pairs of firms (bonds) in
a given rating class, which actually migrated to a given category (for example
default), and the total number of pairs of firms (bonds) in the rating class.
Then an estimator is defined by:

bpkl,t = Nkl,t (Nkl,t − 1)
Nk,t−1 (Nk,t−1 − 1) , (1)

where k [resp. l] is the starting grade [resp. the final grade]. The intuitive
idea is to approximate a ”probability of joint migration” by drawing the pairs
of bonds without replacement in the population and taking the empirical
counterpart. This type of estimator is standard in survey sampling theory,
where it is used to estimate the so-called second order inclusion probability
involved in the Horvitz-Thompson estimator [see e.g. Kish (1967), Konijn
(1973)]. However it is clearly inappropriate in the framework of default
correlation. Let us study what the quantity bpkl,t is really approximating. It
is immediately realized that, for a large portfolio (n ∼ ∞), both Nk,t−1 and
Nkl,t will be large and: bpkl,t ∼ bπ2kl,t.
Thus, in our framework of large cross-sectional dimension, the estimatorsbpkl,t, k, l = 1, ...,K, bring no additional information than the estimatorsbπkl,t, k, l = 1, ...,K, of the individual transitions and in particular cannot
be used to measure a notion of joint migration. A similar argument can be
given for the migration correlations. The cross-sectional estimator is given
by: bρkl,t = bpkl,t − (bπkl,t)2bπkl,t (1− bπkl,t) . (2)

If the size n of the portfolio is large, estimator bpkl,t is close to (bπkl,t)2, andbρkl,t is close to zero, no matter of the true value of the underlying migration
correlation4.
This argument5 will be developed in greater details in the next section,
4Estimator bρkl,t is numerically equal to −1/(Nk,t−1 − 1).
5The same argument holds for the modified estimator of de Servigny, Renault (2002)

corresponding to drawing with replacement, introduced to avoid negative estimated prob-
abilities of joint migration.
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where a model with stochastic transition is introduced and used to define
the parameters of interest, that are the probabilities of joint migration or the
migration correlations.

3 Stochastic migration intensity

A basic model for understanding migration dependence is the extension of
the stochastic intensity model introduced for default risk [see e.g. Lando
(1998), Duffie, Singleton (1999), Gouriéroux, Monfort, Polimenis (2003)].
This specification assumes that the rating chains (Yi,t, t varying) , i = 1, ..., n,
are independent identically distributed Markov processes, when the common
transition matrices (Πt), with elements πkl,t, are given, and the model is
completed by assuming that the transition matrices are stochastic. For ex-
pository purpose, we assume6:

Assumption A.1: The transition matrices at horizon 1 are stochastic, in-
dependent with identical distributions (i.i.d.).

Thus the joint (serial and instantaneous) dependence between ratings passes
through the stochastic transition. This explains why it is not possible to
identify "whether historical fluctuations in default rates are caused by de-
fault correlation or simply by (stochastic) changes in default probabilities"
[Lucas (1995), p82]. We get a nonlinear factor model in which the factors are
the elements of the transition matrices. The number of independent factors
is (K − 1)2 due to the unit mass restrictions on transition probabilities and
the interpretation of default as an absorbing barrier.
Since the underlying time dependent transition matrices are not observ-

able, the joint distribution of rating chains has to be derived by integrating
out the unobservable factor Πt. When the transitions have been integrated
out, the joint rating vector (Y1,t, ..., Yn,t)

0
still defines an homogeneous Markov

chain [see Appendix 1] with Kn admissible states. In practice K = 10, the
number of firms is several thousands (about 10000 for the data base of S &
P, 130000 for the data base of the French Central Bank) and the state space

6See Gagliardini, Gouriéroux (2003) for the general framework of serially dependent
stochastic transition matrices. For serially dependent transition matrices, the migration
correlation has to be defined conditional on the whole rating histories, not only the last
rating; but consistent estimators of the path dependent migration correlation can also be
derived, and differ from the estimator introduced in this paper.
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dimension of the joint rating chain is for instance 1010000 7. Therefore the
transitions corresponding to the joint rating processes are difficult to display,
even in the framework of Assumption A.1. However this framework is ap-
propriate for a first analysis of joint migration of a pair of firms (or bonds).
For instance there is dependence between the ratings of two different firms
(bonds), given their lagged ratings. The migration dependence is a conse-
quence of the unobservable factor which jointly influences the ratings of all
firms (bonds). Typically the realization at date t of the transition matrix
Πt can correspond to a matrix with larger probabilities of downgrades (resp.
upgrades), which will imply more (joint) downgrades (resp. upgrades) of in-
dividual ratings. This effect is illustrated below in Figure 1, where two rating
histories are displayed8.

[Figure 1: Simulated rating histories]

Due to a regime switching of the transition matrix, we observe some un-
derlying effect towards downgrades at dates 7 and 13. This implies joint
downgrades, but with different sensitivities for the two firms.
In the stochastic transition framework it is now possible to define precisely

the parameters of interest. For this purpose let us focus on a pair of firms
(bonds) i, j 9. The bivariate process (Yi,t, Yj,t) is also an homogeneous Markov
process [see Appendix 1] with state space including the admissible pairs of
grades (k, l). Let us consider its transition matrix. The elements of this
matrix are joint transition probabilities defined by:

pkk∗,ll∗ = P [Yi,t+1 = k∗, Yj,t+1 = l∗ | Yi,t = k, Yj,t = l] . (3)

These joint transition probabilities do not depend on the selected couple of
firms (bonds) (i, j). Moreover they admit a simple expression in terms of the
stochastic transition probabilities10:

pkk∗,ll∗ = E [πkk∗,tπll∗,t] . (4)

7The number of firms is still large if the homogeneity (i.i.d.) assumption is introduced
on subsets of firms to account for region or industry specific effects [see e.g. Nagpal, Bahar
(2001)].

8The simulation is based on the three states ordered probit model presented in Section
7.

9It would be also possible to consider joint migration for three, four, etc, firms in
order to study migration clustering phenomenon [see Gouriéroux, Monfort (2002) for the
analysis of clustering for default risk].
10The expressions of the joint transition probabilities are modified when the stochastic
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Instead of the joint migration transition matrix, it is also possible to define
the migration correlation11:

ρkk∗,ll∗ = Corr
£
IYi,t+1=k∗, IYj,t+1=l∗ | Yi,t = k, Yj,t = l

¤
, (5)

where IY=k = 1, if Y = k, and 0 otherwise. The migration correlation is
equal to:

ρkk∗,ll∗ =
pkk∗,ll∗ − αkk∗αll∗p

αkk∗ (1− αkk∗)
p
αll∗ (1− αll∗)

, (6)

where: αkk∗ = E [πkk∗,t] is the expected transition probability. The migration
correlation can be written as:

ρkk∗,ll∗ =
cov (πkk∗,t, πll∗,t)p

αkk∗ (1− αkk∗)
p
αll∗ (1− αll∗)

= corr (πkk∗,t, πll∗,t)

s
V (πkk∗,t)

αkk∗ (1− αkk∗)

s
V (πll∗,t)

αll∗ (1− αll∗)
,

where V (π) denotes the variance of π. In the latter decomposition, the
first component corr (πkk∗,t, πll∗,t) measures the link between the underlying
transition probabilities. The two other terms account for the relationship
between the discrete rating indicators IY=k and the continuous transition
probabilities.
To summarize, joint (bivariate) migrations can be equivalently described

in terms of the (K2,K2) matrices p or ρ. All joint migrations provide infor-
mation on the risk of a credit portfolio, and have to be estimated. However
for illustration some specific ones are often presented and discussed. For in-
stance the joint migration towards default corresponds to k∗ = l∗ = K, and
is summarized by K2 different numbers. The up-up migrations corresponds
to k∗ = k + 1, l∗ = l + 1, that is to joint upgrade by one tick. There exist
(K − 1)2 such measures. Similarly it is possible to define down-down, and
up-down migration probabilities. At this step it is important to note that the

transition matrices are serially correlated. Indeed the expectation has to be evaluated
conditional on the whole individual rating histories. Since the parameter of interest has a
different expression, its consistent estimator has to be modified accordingly [see Gagliar-
dini, Gouriéroux (2003)].
11The joint transition probabilities pkk∗,ll∗ are often called migration correlations in the

literature. It seems important to distinguish the definitions of p and ρ to avoid misleading
interpretations.
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Basle Committee has recently proposed to account for migration correlation,
but has only proposed a model when k∗ = l∗, k = l, which is not sufficient
to take account of all dependences [see The Basle Committee on Banking
Supervision (2002)].
At the end of Section 3 and under Assumption A.1, the parameters of

interest either the joint migration probabilities pkk∗,ll∗, or the associated mi-
gration correlations ρkk∗,ll∗ are clearly defined.

4 Non-consistency of the cross-sectional esti-
mator

Let us explain the reason for the inconsistency of the cross-sectional estima-
tor, when the cross-sectional dimension n is large. As mentioned in Section 2,
for large portfolios (n ∼ ∞), the cross-sectional estimator bpkl,t converges to
π2kl,t and not to the parameter of interest pkl,kl corresponding to the diagonal
term defined in equation (3). This result is a consequence of the factor rep-
resentation of the rating processes. Conditional on Πt,Πt−1, ... the individual
rating chains are independent identically distributed. Thus the strong law of
large numbers can be applied conditional on the factors and we get:

lim
n→∞

bpkl,t = π2kl,t. (7)

The possibility of applying the law of large numbers and the central limit
theorem conditional on the factors corresponds to the so-called infinitely fine
grained assumption proposed by the Basle Committee. In particular, if the
number of firms (bonds) n is large, the realization of the transition matrix at
date t will be completely known. In fact it is easily seen that the set of empir-
ical transitions (bπkl,t, k, l = 1, ...,K, t = 1, ..., T ) is a sufficient statistics for
the model with stochastic transition. From the cross-sectional information
at year t, it is at best possible to reconstitute the transition matrix Πt. But
it is not possible to reconstitute the matrices p and ρ. In financial terms
the systematic risk Πt cannot be eliminated by a cross-sectional averaging,
that is by individual diversification. For instance an unbiased estimation of
a covariance Cov (πkk∗,t, πll∗,t) requires at least two dated observations of the
transition, that is three successive years of data, and a pure cross-sectional
approach cannot allow for identifying joint migrations.
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At a first sight it can be surprising that the cross-obligor default corre-
lation cannot be estimated consistently from an infinite number n of (cross-
sectional) data. In fact it is important to note that different asymptotic
theories can be considered in a panel framework according to the dimension,
either n, or T , which tends to infinity. Some parameters, such as the transi-
tion matrix of date t, can be estimated consistently when n tends to infinity
and only one observation date (that is t) is available. Other parameters, such
as the migration correlations, have an interpretation involving time and need
also T tending to infinity to be consistent12.
The same argument applies to the maximum likelihood estimator consid-

ered by Gordy, Heitfield (2002) in a model where Πt = Π is time independent
and stochastic. The time dimension is not sufficient to get consistency since
the data are both with equal correlation with respect to time and individual.

5 A time averaged estimator

Let us assume a rather large portfolio (n/K ≥ 30 approximately) and several
years of observations. In a first step the underlying transition probabilities
(πkl,t) will be replaced by their cross-sectional empirical counterparts (bπkl,t).
Then the parameter of interest p or ρ will be approximated by averaging
on time. More precisely, from equation (4), the joint migration probability
pkk∗,ll∗ is the common mean of all the products πkk∗,tπll∗,t, t = 1, ..., T. For
a large portfolio, we have [by central limit theorem applied conditional on
(Πt)]: bπkk∗,tbπll∗,t ' πkk∗,tπll∗,t + ukk∗,ll∗,t, t = 2, ..., T, (8)

where V (ukk∗,ll∗,t) = ωkk∗,ll∗, say, is independent of the year. We deduce
that: bπkk∗,tbπll∗,t ' pkk∗,ll∗ + ukk∗,ll∗,t + vkk∗,ll∗,t, t = 2, ..., T, (9)

where vkk∗,ll∗,t = πkk∗,tπll∗,t − pkk∗,ll∗ are i.i.d. errors with zero-mean and a
variance independent of t (Assumption A.1). Moreover the errors u and v
are independent. The relation (9) defines a linear model, with the constant

12Generally the consistency of an estimator requires some geometric ergodicity condi-
tion on the observations, that is a correlation between observations tending to zero at a
geometric decay rate with the distance between the observation indexes: ∃r, 0 ≤ r < 1,
c > 0 such that |corr (Yi,t, Yj,t) | Yi,t−1 = k, Yj,t−1 = l| ≤ crj−i. This condition is typically
not satisfied in the present framework where the cross-sectional correlation is constant.
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as explanatory variable, pkk∗,ll∗ as the parameter. Since the model is ho-
moscedastic, the optimal weights to compute the least squares estimator are
identical. Thus the estimator is:

bpkk∗,ll∗ = 1

T − 1
TX
t=2

bπkk∗,tbπll∗,t. (10)

The estimator of the migration correlation is [see equation (6)]:

bρkk∗,ll∗ = bpkk∗,ll∗ − bαkk∗bαll∗pbαkk∗ (1− bαkk∗)
pbαll∗ (1− bαll∗)

, (11)

where bαkk∗ =
1

T−1
PT

t=2 bπkk∗,t. The estimators of matrices p or ρ are consis-
tent when both the cross sectional and time dimensions, n and T , respec-
tively, tend to infinity. When n is large bπkk∗,tbπll∗,t is close to πkk∗,tπll∗,t and
the approximated linear model (9) is valid. For n large, the OLS estimator
is unbiased, efficient (among linear estimators). However its variance can be
far from zero if T is small. Thus the additional condition T →∞ is needed
to get the consistency of the OLS with T aggregated transitions.
The consistency result is valid if the Markov chain is recurrent ergodic.

It is important to note that the recurrence condition, that is the fact that
the chain visits each state an infinite number of dates, is not satisfied when
the state space includes an absorbing barrier, such as default. However the
recurrence condition can be recovered if the population of interest is renewed
at each date. More precisely it has to be assumed that some new firms
are created to balance the defaulted individuals. This latter assumption is
approximately satisfied for the data base of the rating agencies and of the
French Central Bank [see Gagliardini, Gouriéroux (2003) for a more detailed
discussion].
Estimators of the joint (bivariate) transition probability averaged on sev-

eral dates have already been considered in the literature [see e.g. Bahar,
Nagpal (2001)b, de Servigny, Renault (2002)], without underlying statisti-
cal model and without any justification in terms of consistency or efficiency.
They have often been defined with different weights for the different dates.
For instance the estimator of pkl,kl introduced by Bahar, Nagpal (2001)b
and by de Servigny, Renault (2002) are considered below. The estimator by
Bahar, Nagpal (2001)b is:

epkl,kl = PT
t=2Nkl,t (Nkl,t − 1)PT

t=2Nk,t−1 (Nk,t−1 − 1)
∼
PT

t=2N
2
kl,tPT

t=2N
2
k,t−1

=
TX
t=2

N2
k,t−1PT

t=2N
2
k,t−1

bπ2kl,t.
12



It is easily checked that, if n is large, and if the population is renewed to
ensure the recurrence of the chain, we get:

N2
k,t−1 ∼ n2p2k,

TX
t=2

N2
k,t−1 ∼ (T − 1)n2p2k,

where (pk) is the marginal distribution of the chain, and therefore epkl,kl ∼bpkl,kl. Thus the introduction of weights is absolutely not necessary. Similarly
the estimator proposed by de Servigny, Renault (2002) is given by:

TX
t=2

Nk,t−1PT
t=2Nk,t−1

bπ2kl,t,
and the same remark applies.

6 Longer horizons

It is a common practice to use the estimation formula (10) simultaneously
for different horizons [see e.g. Nagpal, Bahar (2001)]. For instance the joint
bivariate transition probability at horizon 2:

pkk∗,ll∗(2) = P [Yi,t+2 = k∗, Yj,t+2 = l∗ | Yi,t = k, Yi,t = l] , (12)

is estimated by:

epkk∗,ll∗(2) = 1

T − 2
TX
t=3

bπkk∗,t(2)bπll∗,t(2), (13)

where bπkk∗,t(2) denotes the empirical cross-sectional transition probability
for period (t− 2, t) . It is important to note that it is not appropriate to use
simultaneously the empirical estimator of the joint transition probability for
different horizons. Indeed, whereas bpkk∗,ll∗ is efficient for pkk∗,ll∗, the es-
timator epkk∗,ll∗(2) can be improved, by taking into account the information
included in the statistical model. Indeed, under Assumption A.1, the tran-
sition matrices at horizon 2 such as Πt(2) = Πt−1Πt and Πt+1(2) = ΠtΠt+1

depend on the common matrix Πt and therefore are dependent. Thus As-
sumption A.1 cannot be satisfied simultaneously at horizons 1 and 2. Under
Assumption A.1 the estimators bΠt(2) and bΠt+1(2) are also dependent, since

13



they are computed on overlapping periods. Loosely speaking the estimatorep computed from T = 20 observations for horizon 7 [see e.g. Nagpal, Bahar
(2001)] has an accuracy equivalent to an estimator under independence com-
puted from about 20/7 ∼ 3 observations. Therefore it is not very accurate
due to the non-consistency of cross-sectional estimators 13.
A better accuracy can be recovered along the following lines. By the law

of iterated expectations the joint transition probability at horizon 2 can be
written as:

pkk∗,ll∗(2) = E [πkk∗,t(2)πll∗,t(2)]

=
X
m

X
n

E [πkm,t−1πmk∗,tπln,t−1πnl∗,t]

=
X
m

X
n

E [πkm,t−1πln,t−1]E [πmk∗,tπnl∗,t]

=
X
m

X
n

pkm,lnpmk∗,nl∗ .

An estimator with an accuracy of the same order of magnitude as bpkk∗,ll∗, that
is taking into account the whole time dimension, and which is asymptotically
efficient is: bpkk∗,ll∗(2) =X

m

X
n

bpkm,lnbpmk∗,nl∗, (14)

where bpkm,ln is given by formula (10) applied to horizon 1. This approach
is easily understood if it is noted that under Assumption A.1 the bivariate
process (Yi,t, Yj,t) is a Markov process of order 1 with transition matrix:

P = [pkk∗,ll∗] .

Therefore its transition matrix at horizon 2 is:

P (2) = P 2,

which is precisely the formula used in (14).
Estimators for any horizon h corresponding to (13) and (14) are derived

in a similar way by formula P (h) = P h.

13The same remark applies to the ten-year default correlations estimated in Lucas
(1995).
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Finally, estimators (13) and (14), and their generalizations for longer hori-
zons, can be used to define estimators for migration correlations at horizon
h: eρkk∗,ll∗(h) = epkk∗,ll∗(h)− eαkk∗(h)eαll∗(h)peαkk∗(h) [1− eαkk∗(h)]

peαll∗(h) [1− eαll∗(h)]
, (15)

where eαkk∗(h) =
1

T−h
PT

t=h+1 bπkk∗,t(h), and:
bρkk∗,ll∗(h) = bpkk∗,ll∗(h)− bαkk∗(h)bαll∗(h)pbαkk∗(h) [1− bαkk∗(h)]

pbαll∗(h) [1− bαll∗(h)]
, (16)

where bα(h) = bαh.
It has been usual to compare the migration correlations estimated for

different horizons by the crude empirical estimation method. It is clear that
such a comparison has to be performed carefully since the migration correla-
tions do not have the same interpretations for different terms. The formula
P (h) = P h derived under Assumption A.1 explains how to correct the esti-
mated probabilities of joint transitions for the term effect. Loosely speaking
the matrices to be compared are not eP (h), but rather eP (h)1/h, in order to
check for a "flat term structure" of migration correlation.

7 An illustration

In order to highlight the difference between estimation approaches at the
different horizons, a Monte-Carlo study is performed in this section. Let us
first present the model for the stochastic transition matrices (Πt) used for
the simulation, and then discuss the Monte-Carlo results.

7.1 An ordered probit model for the stochastic transi-
tion matrices

A standard specification for the transition matrices proposed in the acad-
emic literature [see e.g. Bangia et alii (2002), Albanese et alii (2003), Feng,
Gouriéroux, Jasiak (2003)] and often adopted by market practice [see e.g.
Gupton, Finger, Bhatia (1997), Crouhy, Galai, Mark (2000)] is the ordered
probit model. This approach assumes a continuous quantitative grade for
each firm, which is used to define the qualitative ratings. Let us denote by
sit the continuous latent grade of firm (bond) i at date t. Such a latent
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grade is sometimes computed regularly by the rating specialists, especially
for internal ratings. Generally it is confidential and has to be considered
as unobservable. In other approaches based on Merton’s model [see Merton
(1974)], this latent grade is defined as the ratio of asset value and liabili-
ties14. It is also unobservable, whenever a detailed balance sheet of the firm
is unknown. The ordered probit model [see e.g. Maddala (1986), Gouriéroux
(2000)] is defined by i) specifying the latent model, that is the dynamics of
the latent variables, and ii) by explaining how the observable endogenous
variables, that are the qualitative ratings, are related to the underlying con-
tinuous grades.

i) The latent model

Let us assume known the ratings of the different firms (bonds) at date t− 1.
Given these ratings, we assume that the underlying grades sit, i = 1, ..., n,
t = 1, ..., T, can be written as:

sit = αk + Zt + εit,

where the errors (εit) , i = 1, ..., n, and the common factor (Zt) are indepen-
dent standard gaussian variables, and the intercept αk depends on the lagged
rating Yi,t−1 = k of firm (bond) i. Note that the conditional distribution of
the score of a firm given the past depends on the previous rating of the firm
only.

ii) The link between the latent and observed variables

Let us now consider a model with K = 3 states, where k = 3 denotes the
default absorbing barrier. The qualitative ratings at date t are deduced by
discretizing the underlying continuous grades:

Yit = l, iff cl−1 ≤ sit < cl,

where c0 = −∞ < c1 < c2 < c3 = ∞ are given thresholds. Then the
transition matrix is given by:

Πt =

 Φ (a11 − Zt) Φ (a12 − Zt)− Φ (a11 − Zt) 1− Φ (a12 − Zt)
Φ (a21 − Zt) Φ (a22 − Zt)− Φ (a21 − Zt) 1− Φ (a22 − Zt)

0 0 1

 ,

14In other words Merton’s model corresponds to a crude specification of the score, where
the score coincides with this ratio. In the usual scoring methodology this ratio is one
explanatory variable included among several other ones.
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where the parameters akl = cl − ak, k, l = 1, 2, are set to15:

a11 = 1, a12 = 4, a21 = −1, a22 = 2 .
Thus the first two rows of the transition matrix correspond to an ordered
probit model, with a common latent variable. This type of probit model has
been suggested for the analysis of credit risk. It has been proposed to identify
the common factor with one macroeconomic variable as a cycle indicator [see
e.g. Bangia et alii (2003)] 16. This interpretation is difficult to test from
the available data which concern a limited period of time. Moreover the
model has to be completed by a dynamic model for cycles. When the factor
is let unspecified as in the present model, the transition matrix becomes
stochastic by means of Zt. The distribution of the transition matrix Πt,
that is the distribution of the four independent transition probabilities, has
a rather complicated form. However it is easy to derive its first and second
moments by simulation. For this purpose the number of replications has been
fixed to 1000000. The expected transition matrix α = E (Πt) is given by:

α =

 0.761 0.237 0.002
0.240 0.682 0.078
0 0 1

 .

Thus, as observed in practice, the diagonal elements are rather large. More-
over the values 0.237 and 0.240, corresponding to one tick downgrade and
upgrade, are of the same order of magnitude. The class k = 1 is less risky
than k = 2 as revealed by the ranking of the associated default probabilities.
Let us now consider the variance-covariance matrices of the first and second
rows, π1,t and π2,t, of Πt. They are are given by:

V (π1,t) =

 0.056 −0.054 −0.002
−0.054 0.053 0.001
−0.002 0.001 0.001

 , V (π2,t) =

 0.055 −0.039 −0.016
−0.039 0.040 −0.001
−0.016 −0.001 0.017

 ,

whereas their covariance is:

Cov (π1,t, π2,t) =

 0.042 −0.014 −0.028
−0.041 0.014 0.027
−0.001 −0.000 0.001

 .

15The parameters satisfy the constraint: a11 + a22 = a12 + a21.
16Under this interpretation, it would be necessary to assume serially dependent transi-

tion matrices to get dynamics of switching regimes.
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Since the rows of the transition matrix sum up to 1, the rows and columns
of the variance and covariance matrices sum up to zero. Since the diagonal
elements of the variance-covariance matrices have to be positive, at least one
correlation is negative. Thus the unit mass restriction can be a source of
misleading interpretations of the migration correlation sign.

7.2 Results

A Monte-Carlo study has been performed to analyze the finite sample prop-
erties of the joint migration probability and migration correlation estimators
discussed in Sections 2, 5 and 6. It is based on S = 10000 replications of
the rating transitions of n = 1000 firms over T = 20 years in the ordered
probit model defined in Section 7.1. Note that the number of firms is kept
fixed. The population is not renewed by introducing new created firms to
balance default. Even if the estimators are not consistent without renewing
the population, it is still possible to study the finite sample properties of the
estimators.

7.2.1 Migration correlations at horizon 1

Table 2 displays the estimated joint (bivariate) transition probabilities at
horizon 1 obtained by using the time averaged estimator. We focus on the
case k = l, k∗ = l∗, which corresponds to transitions with identical starting
rating classes and identical final rating classes for the pair of firms. In Table
3 we provide the corresponding results obtained using the cross-sectional
estimator evaluated at date t = 10. For both estimators we report the
average, the median, the standard deviation, the Mean Squared Error (MSE),
and the range between the α and 1− α quantiles, for α = 5% and 1%. The
true value of the corresponding parameters of interest are reported in Table
4.
For both estimators the expectation is very close to the true parame-

ter value, pointing out that they are both unbiased for the selected sample
sizes. However, the two estimators strongly differ in terms of accuracy: the
time averaged estimator features better accuracy with respect to the pure
cross-sectional one. This is immediately seen by comparing the standard
deviations. For the estimator proposed in this paper, they are smaller by a
factor of about

√
20 ∼ 4.5. These findings are reinforced by comparing the

interquantile ranges, for α = 0.05, 0.01. These intervals are much tighter for
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the time averaged estimator, indicating that its distribution is more concen-
trated around the mean value. In order to better visualize these results, Fig-
ures 2 and 3 display the histograms of the time averaged and cross-sectional
estimators, respectively, for the following transitions: (1, 1) → (2, 2) (joint
downgrade), (1, 1) → (3, 3) (joint default starting from the better rating),
(2, 2) → (1, 1) (joint upgrade), and (2, 2) → (3, 3) (joint default starting
from the worst rating).

[Insert Figure 2: Histogram of the distribution of the time averaged estimator]

[Insert Figure 3: Histogram of the distribution of the cross-sectional estimator]

The distributions corresponding to the cross-sectional estimator are much
more dispersed and feature fatter tails. In particular, the distributions of
the estimator admit a peak at 0, which implies a significant probability of
strongly underestimating the joint migrations. The same type of feature will
of course be observed with a time averaged estimator when the number of
observation dates is too small.
Similar tables can be derived for the time averaged and cross-sectional

estimators of the migration correlation matrix ρ. The estimates by the time
averaged method (resp. the cross-sectional estimator) are provided in Table 5
(resp. 6), whereas the true correlations are given in Table 7. It is immediately
seen that the cross-sectional estimator of the ρ matrix is highly biased, with
values uniformly close to zero.
To summarize, the Monte-Carlo study shows that the theoretical inconsis-

tency of the cross-sectional estimator has serious consequences for any time
averaged estimator with small finite time dimension T (even if the population
is not renewed), such as very erratic estimates and strong underestimation
of the probability of joint migrations. This bias has direct consequences for
risk management. Indeed by underestimating the joint migrations we un-
derestimate the default correlation and thus the risk included in the credit
portfolio.

7.2.2 Longer horizons

Let us now consider the estimation of migration correlations at horizon longer
than 1. Table 8 displays the estimated bivariate transition probabilities at
horizon h = 7 obtained using the standard estimator epkl,kl(7) defined in
equation (13). The corresponding results for estimator bpkl,kl(7) taking into
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account the Markov property [see equation (14)] are displayed in Table 9.
The true value of the parameters of interest are reported in Table 10.
Let us first consider the mean of the estimators. Both estimators fea-

ture a moderate finite sample bias, which is in general smaller for estimatorepkl,kl(7) 17. However, estimator bpkl,kl(7) is preferable in terms of the median.
Indeed, for both estimators the median is often below the mean, but the
median of bpkl,kl(7) is generally closer to the true parameter value. In particu-
lar, the median of epkl,kl(7) often underestimates quite severely the true joint
migration probability, especially in the cases of joint default. These features
are confirmed by the empirical distributions of the two estimators, which are
reported in Figures 4 and 5.

[Insert Figure 4: Histogram of the distribution of epkl,kl(7)]
[Insert Figure 5: Histogram of the distribution of bpkl,kl(7)]

The distributions of the elements of epkl,kl(7) are more skewed to the right,
and assign a larger probability mass to values close to zero.
Let us now consider the dispersion of the estimators. The distribution ofbpkl,kl(7) is more concentrated around the mean value, as deduced by compar-

ing the standard deviations and the interquantile ranges, or the histograms
of the estimators. It is important to note that the time averaged estimator,
which is more precise than the cross-sectional one, is itself not very accurate.
Finally, we can compare the results for migration correlations at horizon

h = 7 obtained using estimators eρkl,kl(h) and bρkl,kl(h) [see equations (15)
and (16)], which are displayed in Tables 11 and 12, respectively. The true
values of migration correlations are reported in Table 13. The empirical
distributions of the estimators eρkl,kl(h) and bρkl,kl(h) are reported in Figures
6 and 7, respectively.

[Insert Figure 6: Histogram of the distribution of eρkl,kl(h)]
[Insert Figure 7: Histogram of the distribution of bρkl,kl(h)]

The proposed estimator bρkl,kl(h) taking into account the Markov property is
both less biased and more accurate. In particular, migration correlations es-
timated using the standard estimator eρkl,kl(h) are severely downward biased.
Their use for computing a Credit VaR will automatically imply significant
underestimation of the required capital.
17The (finite sample) bias of estimator bpkl,kl(7) is due to the fact that it is the power of

an unbiased estimator: bP (7) = bP 7.
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8 Concluding remarks

The aim of this paper was to define precisely the notion of migration cor-
relation, in order to study the properties of the cross-sectional estimators
and compare them with alternative estimators taking into account the time
dimension and the dynamic properties of the underlying model. It has been
explained why the cross-sectional estimator is not consistent and the Monte-
Carlo study points out its poor performance even if the cross-sectional di-
mension is large. In fact these basic cross-sectional estimators can be used to
deduced the efficient time averaged estimator. We have also explained how
to construct simultaneously the estimators of migration correlations at differ-
ent horizons without loosing the information contained in the time dimension
and in the underlying model. Since the estimated migration correlations are
important tools for evaluating the risk on a credit portfolio, the estimation
bias or the lack of accuracy will induce errors in the corresponding required
capital. In practice by underestimating the true migration correlation, the
estimated required capital will also be too small.
Since mainly the time dimension matters (not the cross-sectional dimen-

sion), there is a need for rather long individual rating histories. In practice
the data bases of Moody’s, Standard & Poor’s, the French Central Bank, etc
include between 15 and 20 years of reliable data. This is a minimal number
to estimate the one-year migration correlation under an i.i.d. assumption on
the underlying stochastic transition matrix. This is not sufficient to test this
assumption of flat term structure of migration correlation with a sufficient
power or to introduce more complicated dynamics on these transition matri-
ces. This lack of time dimension is ever increased when some macroeconomic
effects on transitions are introduced, for instance when different distributions
of transition matrices are considered for recession and expansion periods [see
e.g. Nickell, Perraudin, Varotto (2000), Bangia et alii (2002), and the dis-
cussion in Klaassen, Lucas (2002)]. This approach is much more appropriate
for retail credits, such as classical consumption credit, mortgages, revolving
credit, ... for which internal scores and ratings can be available on a monthly
basis, with a time dimension of T = 150− 200.
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Appendix 1
Markov properties

Let us consider the joint rating vector Yt = (Y1,t, ..., Yn,t). Its transition
is characterized by:

P
³
Y1,t+1 = k∗1, ..., Yn,t+1 = k∗n | Y1,t, ..., Yn,t

´
= E

h
P
³
Y1,t+1 = k∗1, ..., Yn,t+1 = k∗n | Y1,t, ..., Yn,t, (Πt)

´
| Y1,t, ..., Yn,t

i
= E

£
πk1k∗1 ,t+1...πknk∗n,t+1

¤
, where Y1,t = k1, ..., Yn,t = kn.

We deduce that the process (Yt) is a Markov process. By a similar argument,
the bivariate process (Yi,t, Yj,t), t varying, is also a Markov process, with
transition probabilities:

P [Yi,t+1 = k∗, Yj,t+1 = l∗ | Yi,t = k, Yj,t = l] = E [πkk∗,tπll∗,t] .
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Table 1

AAA AA A BBB BB B CCC D
AAA 90.26 3.59 0.00 0.51 0.00 0.00 0.00 0.00

AA 0.16 89.42 5.69 0.32 0.00 0.00 0.00 0.16

A 0.00 2.11 86.59 5.28 0.08 0.08 0.00 0.08

BBB 0.00 0.37 3.75 85.82 3.48 0.00 0.00 0.18

BB 0.00 0.00 0.13 2.77 80.10 6.17 0.50 1.13

B 0.00 0.00 0.22 0.33 2.21 77.65 3.65 6.97

CCC 0.00 0.00 0.00 2.70 0.00 2.70 55.41 31.08

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Table 1: One-year transition probabilities (in %) for year 2001 drawn
from the rating histories of 9769 obligors rated by Standard & Poor’s [from
Brady, Bos (2002)]. The transition probabilities on a row fail to sum to
100.00, since some obligors migrated in the non-rated category at the end of
the year.
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Table 2

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.633 0.112 0.000

(2, 2) 0.114 0.505 0.024

(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.635 0.108 0.000

(2, 2) 0.110 0.507 0.020

(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.069 0.040 0.001

(2, 2) 0.043 0.053 0.017

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.005 0.002 0.000

(2, 2) 0.002 0.003 0.000

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.517/0.744 0.053/0.182 0.000/0.001

(2, 2) 0.051/0.190 0.416/0.590 0.004/0.057

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.462/0.782 0.035/0.225 0.000/0.004

(2, 2) 0.032/0.234 0.375/0.618 0.002/0.079

(3, 3) − − −

Table 2: Estimated joint transition probabilities using estimator bpkk∗,ll∗
defined in (10). In the first four tables we report the average, the median,
the standard deviation and the Mean Squared Error, respectively, of the
estimator bpkk∗,ll∗ in the Monte-Carlo sample. The ranges between the 0.05
and the 0.95, resp. 0.01 and 0.99, quantiles of the estimator are reported in
the last two tables. The rows correspond to the starting grades (k, k), the
columns to the final grades (k∗, k∗), k, k∗ = 1, 2, 3.
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Table 3

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.634 0.109 0.000

(2, 2) 0.115 0.504 0.023

(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.710 0.024 0.000

(2, 2) 0.024 0.572 0.000

(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.306 0.173 0.006

(2, 2) 0.189 0.234 0.074

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.093 0.030 0.000

(2, 2) 0.035 0.055 0.005

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.064/0.997 0/0.534 0/0.000

(2, 2) 0/0.558 0.056/0.772 0/0.131

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.007/1 0/0.726 0/0.002

(2, 2) 0/0.833 0.006/0.823 0/0.391

(3, 3) − − −

Table 3: Estimated joint transition probabilities using estimator bpkl,t de-
fined in (1) at date t = 10. In the first four tables we report the average, the
median, the standard deviation and the Mean Squared Error, respectively, of
the estimator bpkl,t in the Monte-Carlo sample. The range between the 0.05
and the 0.95, resp. 0.01 and 0.99, quantiles of the estimator are reported in
the last two tables. The rows correspond to the starting grades (k, k), the
columns to the final grades (l, l), k, l = 1, 2, 3.
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Table 4

(1, 1) (2, 2) (3, 3)

(1, 1) 0.634 0.109 0.000

(2, 2) 0.113 0.505 0.023

(3, 3) 0 0 1

Table 4: Joint transition probabilities pkk∗,kk∗. The rows corresponds to
the starting grades (k, k), the columns to the final grades (k∗, k∗), k, k∗ =
1, 2, 3.
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Table 5

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.297 0.285 0.025

(2, 2) 0.295 0.179 0.210

(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.294 0.284 0.011

(2, 2) 0.292 0.176 0.191

(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.083 0.075 0.044

(2, 2) 0.084 0.062 0.107

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.007 0.006 0.004

(2, 2) 0.007 0.004 0.012

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.166/0.438 0.165/0.410 0.002/0.096

(2, 2) 0.163/0.439 0.083/0.287 0.070/0.413

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.124/0.502 0.123/0.466 0.001/0.214

(2, 2) 0.117/0.498 0.056/0.344 0.044/0.515

(3, 3) − − −

Table 5: Estimated migration correlations using estimator bρkk∗,ll∗ defined
in (11). In the first four tables we report the average, the median, the stan-
dard deviation and the Mean Squared Error, respectively, of the estimatorbρkk∗,ll∗ in the Monte-Carlo sample. The ranges between the 0.05 and the
0.95, resp. 0.01 and 0.99, quantiles of the estimator are reported in the last
two tables. The rows correspond to the starting grades (k, k), the columns
to the final grades (k∗, k∗), k, k∗ = 1, 2, 3.
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Table 6

Mean (1, 1) (2, 2) (3, 3)

(1, 1) −0.007 −0.007 −0.007
(2, 2) −0.007 −0.007 −0.007
(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) −0.003 −0.003 −0.003
(2, 2) −0.003 −0.003 −0.003
(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.029 0.029 0.029

(2, 2) 0.026 0.026 0.026

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.099 0.091 0.007

(2, 2) 0.098 0.037 0.058

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) −0.019/− 0.001 −0.019/− 0.001 −0.019/− 0.001
(2, 2) −0.019/− 0.002 −0.019/− 0.002 −0.019/− 0.002
(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) −0.067/− 0.001 −0.067/− 0.001 −0.067/− 0.001
(2, 2) −0.063/− 0.001 −0.063/− 0.001 −0.063/− 0.001
(3, 3) − − −

Table 6: Estimated migration correlations using estimator bρkl,t defined
in (2) at date t = 10. In the first four tables we report the average, the
median, the standard deviation and the Mean Squared Error, respectively, of
the estimator bρkl,t in the Monte-Carlo sample. The range between the 0.05
and the 0.95, resp. 0.01 and 0.99, quantiles of the estimator are reported in
the last two tables. The rows correspond to the starting grades (k, k), the
columns to the final grades (l, l), k, l = 1, 2, 3.
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Table 7

(1, 1) (2, 2) (3, 3)

(1, 1) 0.305 0.293 0.072

(2, 2) 0.305 0.184 0.232

(3, 3) − − −

Table 7: Migration correlations ρkk∗,kk∗ . The rows corresponds to the
starting grades (k, k), the columns to the final grades (k∗, k∗), k, k∗ = 1, 2, 3.
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Table 8

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.268 0.174 0.058

(2, 2) 0.201 0.136 0.137

(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.255 0.176 0.035
(2, 2) 0.182 0.137 0.103
(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.129 0.048 0.065

(2, 2) 0.118 0.039 0.102

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.017 0.002 0.004

(2, 2) 0.014 0.002 0.010

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.081/0.499 0.091/0.251 0.003/0.193

(2, 2) 0.043/0.423 0.070/0.200 0.017/0.340

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.040/0.606 0.060/0.279 0.001/0.300

(2, 2) 0.019/0.540 0.046/0.223 0.006/0.454

(3, 3) − − −

Table 8: Estimated joint transition probabilities at horizon h = 7 using
estimator epkk∗,ll∗(7) defined in (13). In the first four tables we report the
average, the median, the standard deviation and the Mean Squared Error,
respectively, of the estimator epkk∗,ll∗(7) in the Monte-Carlo sample. The
ranges between the 0.05 and the 0.95, resp. 0.01 and 0.99, quantiles of
the estimator are reported in the last two tables. In each table the rows
correspond to the starting grades (k, k), the columns to the final grades
(k∗, k∗), k, k∗ = 1, 2, 3.
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Table 9

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.277 0.168 0.066
(2, 2) 0.213 0.131 0.137
(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.268 0.169 0.051

(2, 2) 0.201 0.131 0.120

(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.110 0.031 0.057

(2, 2) 0.102 0.023 0.089

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.012 0.001 0.003

(2, 2) 0.011 0.001 0.008

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.114/0.476 0.115/0.218 0.007/0.181

(2, 2) 0.072/0.404 0.095/0.170 0.025/0.311

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.072/0.569 0.086/0.239 0.002/0.256

(2, 2) 0.043/0.502 0.078/0.189 0.011/0.404

(3, 3) − − −

Table 9: Estimated joint transition probabilities at horizon h = 7 using
estimator bpkk∗,ll∗(7) defined in (14). In the first four tables we report the
average, the median, the standard deviation and the Mean Squared Error,
respectively, of the estimator bpkk∗,ll∗(7) in the Monte-Carlo sample. The
ranges between the 0.05 and the 0.95, resp. 0.01 and 0.99, quantiles of
the estimator are reported in the last two tables. In each table the rows
correspond to the starting grades (k, k), the columns to the final grades
(k∗, k∗), k, k∗ = 1, 2, 3.
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Table 10

(1, 1) (2, 2) (3, 3)

(1, 1) 0.265 0.173 0.058

(2, 2) 0.198 0.135 0.131

(3, 3) 0 0 1

Table 10: Joint transition probabilities pkk∗,ll∗(7) at horizon h = 7. The
rows corresponds to the starting grades (k, k), the columns to the final grades
(k∗, k∗), k, k∗ = 1, 2, 3.
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Table 11

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.200 0.134 0.096

(2, 2) 0.172 0.128 0.126

(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.186 0.127 0.068

(2, 2) 0.157 0.121 0.103

(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.089 0.059 0.089

(2, 2) 0.083 0.058 0.092

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.011 0.004 0.015

(2, 2) 0.011 0.003 0.014

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.081/0.365 0.049/0.241 0.012/0.277

(2, 2) 0.064/0.331 0.049/0.236 0.027/0.307

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.053/0.465 0.030/0.297 0.006/0.421

(2, 2) 0.042/0.422 0.030/0.294 0.015/0.445

(3, 3)

Table 11: Estimated migration correlations at horizon h = 7 using estima-
tor eρkk∗,ll∗(7) defined in (15). In the first four tables we report the average, the
median, the standard deviation and the Mean Squared Error, respectively,
of the estimator epkk∗,ll∗(7) in the Monte-Carlo sample. The ranges between
the 0.05 and the 0.95, resp. 0.01 and 0.99, quantiles of the estimator are
reported in the last two tables. In each table the rows correspond to the
starting grades (k, k), the columns to the final grades (k∗, k∗), k, k∗ = 1, 2, 3.

37



Table 12

Mean (1, 1) (2, 2) (3, 3)

(1, 1) 0.243 0.143 0.159

(2, 2) 0.222 0.135 0.179

(3, 3) 0 0 1

Median (1, 1) (2, 2) (3, 3)

(1, 1) 0.243 0.142 0.149

(2, 2) 0.220 0.134 0.168

(3, 3) 0 0 1

Std. dev. (1, 1) (2, 2) (3, 3)

(1, 1) 0.053 0.040 0.074

(2, 2) 0.051 0.037 0.077

(3, 3) − − −

MSE (1, 1) (2, 2) (3, 3)

(1, 1) 0.003 0.002 0.006

(2, 2) 0.003 0.001 0.007

(3, 3) − − −

5% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.155/0.331 0.079/0.211 0.053/0.293

(2, 2) 0.142/0.309 0.077/0.198 0.071/0.320

(3, 3) − − −

1% Interquantile (1, 1) (2, 2) (3, 3)

(1, 1) 0.121/0.368 0.057/0.242 0.030/0.356

(2, 2) 0.111/0.351 0.056/0.230 0.045/0.393

(3, 3) − − −

Table 12: Estimated migration correlations at horizon h = 7 using estima-
tor bρkk∗,ll∗(7) defined in (16). In the first four tables we report the average, the
median, the standard deviation and the Mean Squared Error, respectively,
of the estimator bρkk∗,ll∗(7) in the Monte-Carlo sample. The ranges between
the 0.05 and the 0.95, resp. 0.01 and 0.99, quantiles of the estimator are
reported in the last two tables. In each table the rows correspond to the
starting grades (k, k), the columns to the final grades (k∗, k∗), k, k∗ = 1, 2, 3.
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Table 13

(1, 1) (2, 2) (3, 3)

(1, 1) 0.257 0.145 0.182

(2, 2) 0.236 0.136 0.203

(3, 3) 0 0 1

Table 13: Migration correlations ρkk∗,ll∗(7) at horizon h = 7. The rows
corresponds to the starting grades (k, k), the columns to the final grades
(k∗, k∗), k, k∗ = 1, 2, 3.
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Figure 1: Rating histories of two firms.
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Figure 2: Histogram of S = 10000 Monte-Carlo replications of the estimatorbpkk∗,ll∗ in (10). From left to right and top to bottom, the four panels report
the estimators for k = l = 1, k∗ = l∗ = 2 (joint downgrade), k = l = 1, k∗ =
l∗ = 3 (joint default starting from the best rating) k = l = 2, k∗ = l∗ = 1
(joint upgrade), and k = l = 2, k∗ = l∗ = 3 (joint default starting from the
worst rating). 41



Figure 3: Histogram of S = 10000 Monte-Carlo replications of the estimatorbpkl,t in ( 1) for t = 10. From left to right and top to bottom, the four
panels report the estimators for k = 1, l = 2 (joint downgrade), k = 1, l = 3
(joint default starting from the best rating) k = 2, l = 1 (joint upgrade), and
k = 2, l = 3 (joint default starting from the worst rating).
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Figure 4: Histogram of S = 10000 Monte-Carlo replications of the estimatorepkl,kl(7) in (13). From left to right and top to bottom, the four panels report
the estimators for k = 1, l = 2 (joint downgrade), k = 1, l = 3 (joint default
starting from the best rating) k = 2, l = 1 (joint upgrade), and k = 2, l = 3
(joint default starting from the worst rating).
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Figure 5: Histogram of S = 10000 Monte-Carlo replications of the estimatorbpkl,kl(7) in (14). From left to right and top to bottom, the four panels report
the estimators for k = 1, l = 2 (joint downgrade), k = 1, l = 3 (joint default
starting from the best rating) k = 2, l = 1 (joint upgrade), and k = 2, l = 3
(joint default starting from the worst rating).
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Figure 6: Histogram of S = 10000 Monte-Carlo replications of the estimatoreρkl,kl(7) in (15). From left to right and top to bottom, the four panels report
the estimators for k = 1, l = 2 (joint downgrade), k = 1, l = 3 (joint default
starting from the best rating) k = 2, l = 1 (joint upgrade), and k = 2, l = 3
(joint default starting from the worst rating).
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Figure 7: Histogram of S = 10000 Monte-Carlo replications of the estimatorbρkl,kl(7) in (16). From left to right and top to bottom, the four panels report
the estimators for k = 1, l = 2 (joint downgrade), k = 1, l = 3 (joint default
starting from the best rating) k = 2, l = 1 (joint upgrade), and k = 2, l = 3
(joint default starting from the worst rating).
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