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A Speci�cation Test for Nonparametric Instrumental Variable Regression

Abstract

We consider testing for correct speci�cation of a nonparametric instrumental variable

regression. First we study the notion of correct speci�cation, misspeci�cation and overiden-

ti�cation in this ill-posed inverse problem setting. Second we study a test statistic based

on the empirical minimum distance criterion corresponding to the conditional moment re-

striction evaluated with a Tikhonov Regularized estimator of the functional parameter. The

test statistic admits an asymptotic normal distribution under the null hypothesis, and the

test is consistent under global alternatives. A bootstrap procedure is available to get simu-

lation based critical values. Finally, we explore the �nite sample behavior with Monte Carlo

experiments, and provide an empirical illustration for an estimated Engel curve.
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1 Introduction

Testing for correct speci�cation of a relationship that is written as a moment restriction has

a long history in econometrics. At the end of the 50�s Sargan suggests a speci�cation test

for an instrumental variable (IV) linear model (Sargan (1958)), and its generalization for

a nonlinear-in-parameters IV model (Sargan (1959)). Hansen (1982) extends this type of

speci�cation test to the general nonlinear framework known as the Generalized Method of

Moments (GMM). These tests are known as Hansen-Sargan tests or �J-tests�, and are part

of standard software reports on IV and GMM estimation.

In this paper we consider testing for correct speci�cation of a nonparametric instrumental

variable regression de�ned by the conditional moment restriction

E0 [Y � '0 (X) jZ] = 0; (1)

where E0 [�jZ] denotes expectation with respect to the true conditional distribution F0 of

W = (Y;X) given Z, and the parameter of interest '0 is a function de�ned on X � R.

There has recently been much interest in nonparametric estimation of '0 in (1) (see, e.g., Ai

and Chen (2003), Darolles, Florens, and Renault (2003), Newey and Powell (2003), Hall and

Horowitz (2005)), and testing a parametric speci�cation in (1) (see, e.g., Donald, Imbens,

and Newey (2003), Tripathi and Kitamura (2003, TK), Horowitz (2006)). Up to now there

is no attempt to directly test whether (1) holds or not on the data in a functional setting.

Equation (1) is a linear integral equation of the �rst kind in '0, and we face an ill-posed

inverse problem. In a di¤erent ill-posed setting, namely parametric GMM estimation with
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a continuum of moment conditions, Carrasco and Florens (2000) also study speci�cation

testing, and show the asymptotic normality of their J-test statistic. Below we often refer

to the handbook chapter by Carrasco, Florens and Renault (2006, CFR) for background on

ill-posed problems in econometrics.

Section 2 outlines the speci�cation testing problem. Section 2.1 describes the null hypoth-

esis of correct speci�cation, the alternative hypothesis of misspeci�cation, and the concept of

overidenti�cation in a nonparametric IV setting. We clarify these notions with two Gaussian

examples in Section 2.2. In Section 2.3 we introduce appropriate regularity spaces to derive

the asymptotics of the test statistic under the null and the alternative hypotheses. Section

3 describes the testing procedure and its asymptotic properties. We give the test statistic in

Section 3.1, establish its asymptotic normality under the null hypothesis in Section 3.2, and

show consistency of the test under global alternatives in Section 3.3. Results are �rst given

under a known weighting function in the construction of the test statistic before discussing

the extension to an estimated weighting function in Section 3.4. We further explain how to

implement a bootstrap procedure to get simulation based critical values in Section 3.5. Sec-

tion 4 explores the �nite sample behavior with Monte Carlo experiments. Section 5 provides

an empirical illustration for an estimated Engel curve. In Appendices 1-5 we gather the list

of regularity conditions and the technical arguments justifying the asymptotic distribution

under the null hypothesis and consistency of the test under the alternative hypothesis. All

omitted proofs of technical Lemmas are collected in a Technical Report, which is available

online at our web pages.
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2 The speci�cation testing problem

2.1 The null hypothesis and overidenti�cation

Let L2(X ) and L2(Z) be the L2-spaces w.r.t. the scalar products h'1; '2iL2(X ) =
Z
X
'1(x)'2(x)

�X (dx) and h 1;  2iL2(Z) =
Z
Z
 1(z) 2(z)�Z(dz), respectively, where �X and �Z are given

measures on the supports X � R of X; and Z � R of Z. The parameter set is the Sobolev

space H2(X ), which is the completion of the linear space f' 2 L2(X ) j r' 2 L2(X )g w.r.t.

the scalar product h'1; '2iH := h'1; '2iL2(X ) + hr'1;r'2iL2(X ). The Sobolev space H2(X )

is an Hilbert space w.r.t. the scalar product h:; :iH ; and the corresponding Sobolev norm is

denoted by k'kH = h'; 'i
1=2
H .

The conditional moment restriction (1) corresponds to the linear integral equation

AF0'0 = rF0 ; (2)

for '0 2 H2(X ); with AF'(z) =
Z
f (wjz)'(x)dw, rF (z) =

Z
yf(wjz)dy, and f the pdf of

W given Z.

Assumption 1: F0 2 F , where F denotes the set of conditional distributions F of W given

Z such that rF 2 L2 (Z) and AF is a compact linear operator from H2(X ) into L2 (Z).

The assumption of compactness of the operator AF0 implies that (2) is an integral equation

of the �rst kind which yields an ill-posed inverse problem (see CFR, Sections 3 and 5.5).

The modelM� F is the subset of distributions F such that equation AF' = rF admits

a solution, that is

M = fF 2 F : rF 2 Range (AF )g ; (3)
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where Range(AF ) denotes the range of operator AF on H2(X ). The null hypothesis of

correct speci�cation is

H0 : F0 2M; (4)

while the alternative hypothesis is H1 : F0 2 �M := F nM: The de�nition (3) clari�es that

the null hypothesis depends on the function space on which AF operates, and thus on the

postulated smoothness of the functional regression parameter.

Identi�cation is a maintained hypothesis.

Assumption 2: F0 2 fF 2 F : ker (AF ) = f0gg :

Assumption 2 ensures that, under the null hypothesis H0; the solution '0 of (2) is unique,

since the condition ker (AF ) = f0g on the null space of operator AF is equivalent to the

injectivity of AF (see CFR, Section 3.1). Primitive assumptions on the distribution F that

ensure the identi�cation condition ker (AF ) = f0g are derived, e.g., in Newey and Powell

(2003).

It is well-known that in the standard parametric GMM setting, the test of correct speci�-

cation is meaningful only in an overidenti�ed case, that is, when the number of unconditional

moment restrictions is larger than the number of parameters. In our functional setting with

conditional moment restrictions, the de�nition of overidenti�cation is less straightforward,

since the number of moment restrictions is in�nite and the parameter is in�nite dimensional.

The model is overidenti�ed ifM & F . Otherwise, ifM = F a unique solution of AF' = rF

always exists for any F 2 F . In this case, the conditional moment restriction (1) has no

informational content for the true conditional distribution of W given Z since (4) does not
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imply a constraint on F0. This is the analogue of the just identi�ed case in the standard

parametric GMM setting.

It turns out that the nonparametric instrumental variable regression model is overiden-

ti�ed by construction: M cannot be equal to F . More precisely,M is a strict subset of F

that can be characterized explicitly by Picard Theorem. Let us introduce the singular sys-

tem
�
�j;  j; !j; j = 1; 2; : : :

	
of operator AF , 1 de�ned by AF�j = !j j and A�F j = !j�j;

where �j 2 H2(X ),  j 2 L2 (Z), !j � 0, and A�F is the adjoint operator of AF w.r.t. the

scalar products h:; :iH and h:; :iL2(Z) (e.g., Kress (1999), Theorem 15.16, and CFR, Section

2.3). Functions �j are an orthonormal basis of eigenfunctions of the operator A
�
FAF in

H2(X ) to the eigenvalues �j = !2j . Functions  j are an orthonormal basis of ker (A
�
F )
?,

that is the linear subspace of L2(Z) orthogonal to ker (A�F ) w.r.t. h:; :iL2(Z): Then, Picard

Theorem (e.g., Kress (1999), Theorem 15.18) states that:

M =

8<:F 2 F : rF 2 ker (A�F )? and
1X
j=1



rF ;  j

�2
L2(Z)

�j
<1

9=; : (5)

For the compact operator AF we have ker (A�F )
? = Range (AF ); that is the closure of Range

(AF ) in L2 (Z) (e.g., Kress (1999), Theorem 15.8). Thus, the setM consists of the distribu-

tions F such that function rF 2 Range (AF ) and such that the basis coe¢ cients


rF ;  j

�
L2(Z)

weighted by the inverse eigenvalues �j satisfy a summability condition. This summability

condition alone is not an equivalent characterization of (3) even under Assumption 2. The

1 To simplify the notation, we omit the index F in �j ,  j and !j :
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set �M characterizing the alternative hypothesis of misspeci�cation can be decomposed as:

�M =

8<:F 2 F : rF 2 ker (A�F )? and
1X
j=1



rF ;  j

�2
L2(Z)

�j
=1

9=;
[
n
F 2 F : rF =2 ker (A�F )

?
o

=: �Mc [ �Ms:

For F 2 �Mc we have rF 2 Range (AF ), while for F 2 �Ms we have rF =2 Range (AF ). Thus,

the alternatives in �Mc are �arbitrarily close�to correct speci�cation, while the alternatives

in �Ms can be �separated� from the set of correctly speci�ed models. We call the former

close misspeci�cations, and the latter separated misspeci�cations.

2.2 Examples

In light of de�nition (3), the notion of misspeci�cation in a nonparametric IV regression

setting is intimately linked with the properties of Range (AF ). To illustrate this point,

we develop two simple examples based on the regression model Y = m(X) + U; where

E [U jZ = z] = �(z) for m 2 H2 (X ) and � 2 L2(Z). Then, rF is such that rF = AFm + �;

and F 2M if and only if

� 2 Range (AF ) : (6)

Example 1: Let (X;U; Z) be jointly normal with zero means, unit variances, Cov (X;Z) =

�XZ 6= 0, and Cov (U;Z) = �UZ under F . Then, �(z) = �UZz and we have � = AF�'

where �'(x) =
�UZ
�XZ

x. Thus, � 2 Range (AF ).

In Example 1 the moment restriction is correctly speci�ed, even when the innovation and

the instrument are correlated (�UZ 6= 0). This exempli�es a di¤erence between restrictions
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induced by a parametric conditional moment setting and their nonparametric counterpart.

In the �nite-dimensional setting with E0[Y �'(X; �0)jZ] = 0; we get a correct speci�cation

in Example 1 if and only if there exists �0 such that '(x; �0) = m(x) +
�UZ
�XZ

x, 8x 2 X .

For the second example, assume that operator AF is such that the functions in its range

are continuous, i.e., Range (AF ) � C(Z). Then, for a discontinuous function � we have

� 62 Range (AF ) and F 2 FnM.

Example 2: Let (X;Z) be as in Example 1 and U = V + �, where V is independent of Z,

and � = aIfZ � 0g � aIfZ > 0g, with a 6= 0. Using the smoothness of fXjZ(xjz) w.r.t. z

and the Lebesgue Theorem, it follows that Range (AF ) � C(Z). Thus, � 62 Range (AF ).

A similar argument is possible when Range (AF ) � C1(Z), and function � is not di¤eren-

tiable. In the Monte Carlo section we consider discontinuous and non-di¤erentiable functions

� to investigate the power of our testing procedure.

In light of de�nition (5), we can also revisit Examples 1 and 2 through the character-

ization of the set M in terms of the singular system of operator AF . Let us derive the

singular value decomposition when the distribution F is such that (X;Z) is jointly normal,

with zero means, unit variances and correlation �XZ 6= 0, and when �X and �Z are the

standard Gaussian measure on X = Z = R. The singular system of operator AF is given

by �j(x) =
1p
j
Hj�1(x),  j(z) = Hj�1(z) and !j =

1p
j
�j�1XZ , where the Hj are the Hermite

polynomials (see CFR, Section 2.3, for the case of AF operating on L2(R) instead of H2(R)).

The adjoint operator is A�F = D�1 ~A (see Gagliardini and Scaillet (2006, GS)), where ~A is the

conditional expectation operator for Z given X de�ned by ~A (x) =
Z
Z
f (zjx) (z)dz, and
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D�1 is the inverse of the di¤erential operator D = 1�r2 + xr. Moreover ker (A�F ) = f0g,

and thus �Ms is empty. We deduce that F 2M if and only if
1X
j=1

j

�
2(j�1)
XZ

hrF ; Hj�1i2L2(Z) <1

and the alternative �M consists of close misspeci�cations only: �M = �Mc.

Examples 1 and 2 (Cont.): The condition for correct speci�cation becomes
1X
j=1

j

�
2(j�1)
XZ

h�;Hj�1i2L2(Z) <1: In Example 1, the condition is satis�ed since �(z) = �UZH1(z),

and the series equals
2�2UZ
�2XZ

: In Example 2, the condition is not satis�ed since �(z) = aIfz �

0g � aIfz > 0g, h�;Hj�1i2L2(Z) � C=(j � 1) for j > 1 and some constant C > 0, and the

series diverges.

2.3 Regularity spaces

In this section we introduce a sequence of function spaces, that characterize either the

smoothness of the function '0 under the null hypothesis H0 of correct speci�cation, or the

strength of a close misspeci�cation under the alternative hypothesis H1. These regularity

spaces coincide with those introduced in Darolles, Florens, Renault (2003) and CFR, Section

3.2, under the null hypothesis H0: We use these regularity spaces in Section 3 to derive the

large sample properties of the test statistic. The postulated smoothness drives the rate of

convergence to zero of the regularization bias under the null hypothesis (Section 3.2), and the

rate of divergence of the noncentrality parameter under the alternative hypothesis (Section

3.3).

Let us de�ne the sets for � � 0:

M�=

8<:F 2 F : rF 2 ker (A�F )? and
1X
j=1



rF ;  j

�2
L2(Z)

�1+�j

<1

9=; :
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The sequence of sets M� is decreasing w.r.t. the parameter �, that is M�1 � M�2 for

�1 � �2. We have M0 =M when � = 0. The condition F0 2 M� for � � 0 implies the

null hypothesis H0 of correct speci�cation, and the parameter � characterizes the regularity

of function '0 2 H2(X ). More precisely, since


rF0 ;  j

�2
L2(Z) =

1

�j



AF0'0; AF0�j

�2
L2(Z) =

�j


'0; �j

�2
H2(X ), the condition F0 2 M� is equivalent to the source condition '0 2 �� :=(

' 2 H2(X ) :
1X
j=1



'; �j

�2
H

��j
<1

)
introduced in Darolles, Florens, Renault (2003). The

sets ��, � � 0, are dense in H2(X ) (CFR, Proposition 3.5), and the regularity of '0 2 ��

increases as � increases.

Similarly, let us de�ne the sets for �1 < �� � 0:

�Mc;��=

8<:F 2 F : rF 2 ker (A�F )? and
1X
j=1



rF ;  j

�2
L2(Z)

�1+
��

j

=1

9=; :

The sequence of sets �Mc;�� is increasing w.r.t. the parameter ��. We have �Mc;0 = �Mc when

�� = 0. The condition F0 2 �Mc;�� for �1 < �� � 0 implies the alternative hypothesis H1

in the form of a close misspeci�cation. The parameter �� characterizes the strength of the

misspeci�cation, in terms of a lack of regularity of rF , that increases as �� decreases.

Examples 1 and 2 (Cont.): In Example 1, F 2 M� for all � � 0. In Example 2,

F 2 �Mc;�� for all �1 < �� � 0.

3 The test statistic and its asymptotic properties

3.1 The test statistic

Estimation of functional parameter '0 from conditional moment restriction (1) is an ill-

posed inverse problem. Di¤erent estimation procedures have been proposed in the literature
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(see Ai and Chen (2003), Darolles, Florens, and Renault (2003), Newey and Powell (2003),

Hall and Horowitz (2005)). They di¤er according to the de�nition of the operators, the

scalar products, and the regularization scheme. Ideally we would like to develop a test-

ing theory as versatile as possible irrespective of the chosen estimator. Unfortunately the

asymptotic properties and the regularity conditions under the null and alternative hypothe-

ses are much a¤ected by these di¤erences, and it is di¢ cult to provide a uni�ed treatment

independent of how '0 is estimated. Here we focus on the approach of GS designed for

functions in H2[0; 1]. The assumption of a compact support X = [0; 1] greatly simpli-

�es the derivation of the asymptotic properties. By the same token we set �X (dx) = dx

and �Z(dz) = 
0(z)I fz 2 S�gFZ(dz); where 
0 is a given positive function on Z with


0(z) = 1=V0 [Y � '0 (X) jZ = z] under H0; set S� � Z is compact, and FZ is the true cdf

of Z. We consider the Tikhonov Regularized (TiR) estimator de�ned by

'̂ = arg min
'2H2[0;1]

QT (')+�T k'k2H , where QT (') =
1

T

TX
t=1


0(Zt)I fZt 2 S�g
h
r̂(Zt)� Â'(Zt)

i2
;

(7)

r̂(z) =

Z
yf̂ (wjz) dw, Â'(z) =

Z
f̂ (wjz)'(x)dw, and f̂ is a kernel estimator of f . The

minimum distance criterion QT (') is penalized by a term that involves the squared Sobolev

norm k'k2H (see Chernozhukov, Gagliardini and Scaillet (2007) for a theoretical under-

pinning for including a derivative term in a penalization approach). Penalization is re-

quired to overcome ill-posedness and is tuned by regularization parameter �T > 0, which

converges to 0 as T ! 1. The TiR estimator is given in closed form by '̂ = (�T +

Â�Â)�1Â�r̂; where Â� = D�1b~A and b~A denotes the linear operator de�ned by b~A (x) =
11



1

T

TX
t=1

f̂ (xjZt) I fZt 2 S�g
0 (Zt) (Zt), for  2 L2(Z). The linear operator Â� is an esti-

mator of A�F0 :

Following Sargan (1958), (1959) and Hansen (1982), the testing procedure is based on

the minimized criterion value QT ('̂). The value QT ('̂) is an empirical counterpart of

Q�T := E0
�

0(Z)I fZ 2 S�g [M�T rF0(Z)]

2� = kM�T rF0k
2
L2(Z) ; where M�T rF0 :=h

1� AF0
�
�T + A�F0AF0

��1
A�F0

i
rF0 is the residual in the theoretical Tikhonov regression of Y

onX with instrument Z. Indeed,M�T rF0 = rF0�AF0'�T , where '�T =
�
�T + A�F0AF0

��1
A�F0rF0

is the TiR solution, namely the population counterpart of the TiR estimator '̂ for given reg-

ularization parameter �T and the minimizer of the penalized criterion krF0 � AF0'k
2
L2(Z) +

�T k'k2H . The interpretation of QT ('̂) as an empirical analog of the �weighted variance of

residuals�Q�T applies under both H0 and H1; and remains valid no matter the function

space on which AF operates. Under H0 the TiR solution '�T converges to '0 as T goes to

in�nity. Under H1 it may converge to a pseudo-true value, but it may also not converge (see

Section 3.3 and CFR, Section 3.1, for a discussion).

The test statistic is built from QT ('̂) after appropriate rede�nition of the smooth-

ing, recentering and scaling. Speci�cally, we �rst replace the integrals w.r.t. kernel den-

sity estimator f̂ with kernel regression estimators which are easier to compute. Namely,

we use the asymptotic equivalence (see Appendix 2.1) between QT ('̂) and the statistic
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�T =
1

T

TX
t=1

 
TX
s=1

 ts

!2
;with

 ts =


0(Zt)
1=2 (Ys � '̂(Xs))K

�
Zs � Zt
hT

�
I fZt 2 S�g

TX
j=1

K

�
Zj � Zt
hT

� ; (8)

where K is a kernel and hT is a bandwidth. Then, as in TK we recenter the statistic �T by

subtracting the diverging term �2;T =
1

T

TX
t=1

TX
s=1;s 6=t

 2ts to allow for a well-de�ned asymptotic

distribution under the null hypothesis. After recentering we can exploit the Central Limit

Theorem (CLT) for generalized quadratic forms in de Jong (1987), which is a generalization

of the CLT for degenerate U -statistics in Hall (1984). The test statistic is

�T := Th
1=2
T

�T � �2;T
�

;

where �2 = 2K��vol(S�), vol(S�) :=
Z
S�

dz, K�� :=

Z
(K �K) (x)2dx, and (K �K) (x) =Z

K(y)K(x� y)dy:

Finally, note that the trimming is based on a �xed support S�. This is standard in

nonparametric speci�cation testing for technical and practical reasons. As in TK, the use

of a �xed support implies that the test is consistent only against alternatives for which (1)

is violated on S�: To get a coherent and simpli�ed exposition, we have introduced the same

�xed trimming in the de�nition of the norm L2(Z) and of the estimator '̂, although this is

not required by fundamental reasons.
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3.2 The asymptotic distribution under the null hypothesis

Let us assume that the null hypothesis H0 of correct speci�cation holds and F0 is in a

regularity space introduced in Section 2.3: F0 2 M� for a given 0 � � � 1. The restriction

� � 1 comes from a saturation e¤ect: stronger regularity with � > 1 cannot be exploited

to reduce the bias contribution in a Tikhonov regularization setting (see CFR, Section 3.3).

Suppose that the bandwidth hT and the regularization parameter �T converge to zero as

T !1 with rates described next.

Assumption 3: hT = �cT��� with: (i) 2=9 < ��; (ii) �� < min f1� 4=m; 1=3g, where m > 4

is de�ned in Assumption A.2 :

Assumption 4: �T = cT�
 with: (i)
1� ��=2
1 + �

< 
; (ii) 
 < min f4��; 1g :

Proposition 1: Under the null hypothesis H0 for F0 2 M� with 0 � � � 1, Assumptions

1-4 and A.1-A.8, we have �T
d�! N(0; 1).

Proof: See Appendix 2.

The proof of Proposition 1 builds on TK, and consists in �rst isolating the impact of the

estimation of '0 on the test statistic, and then applying the CLT for generalized quadratic

forms in de Jong (1987) to the test statistic based on QT ('0): Under Assumptions 3 and 4

on the interplay between the bandwidth and the regularization parameter the asymptotic

distribution under H0 is una¤ected by the use of estimate '̂ instead of the true function

'0 in the criterion QT ('). This explains why the asymptotic distribution of �T under H0

is N(0; 1) as for the speci�cation test of parametric conditional moment restrictions in TK.
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Assumption 3(ii) on the bandwidth corresponds to the condition in Theorem 4.1 of TK for a

linear-in-parameter moment condition. 2 In our ill-posed inverse problem setting, however,

the control of the impact of estimation of '0 on the test statistic is more complicated, because

of the regularization bias and the lower rate of convergence of the estimator '̂ (see GS for such

a rate). More speci�cally, the regularization bias BT =
h�
�T + A�F0AF0

��1
A�F0AF0 � 1

i
'0 =

'�T � '0 of the estimator '̂ contributes the term

Th
1=2
T E0

�

0(Z)I fZ 2 S�g [AF0BT (Z)]

2� = Th
1=2
T Q�T ; (9)

to the mean of the test statistic. This term is of order Th1=2T �1+�T under F0 2M�, 0 � � � 1,

and vanishes asymptotically under Assumption 4(i) (see Appendix 2.3). Assumption 4(ii) is

used to prove the asymptotic negligibility of terms induced by the estimation error '̂�'�T .

Finally, in Appendix 2 we show that, under our list of regularity conditions and the null

hypothesis, the test statistic �T is asymptotically equivalent to Th
1=2
T �5;T=� with �5;T :=

1

T

TX
t=1

TX
s=1;s 6=t

TX
u=1;u 6=t;u6=s

 ts tu.

3.3 Consistency under global alternatives

Let us now assume that the alternative hypothesis H1 holds.

Proposition 2: Under the alternative hypothesis H1, Assumptions 1-3, 4(ii) and A.1-A.8,

if �T := Th
1=2
T Q�T !1 as T !1, we have ��T = �T + zT + Th

1=2
T ��;E5;T + op(�T ) +Op(1);

where zT
d! N (0; ��2) with ��2 de�ned in (18), and ��;E5;T is the contribution of the estimation

2 To see this, set � =1 in Assumption 3.6 of TK. Our Assumption 3(i) is used to prove the asymptotic
equivalence of QT ('̂) and �T in Section A.2.1.
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error '̂� '�T de�ned in (17).

Proof: See Appendix 3.

Proposition 2 shows that the asymptotics of the statistic �T depend on the relative

orders of magnitude of �T and Th
1=2
T ��;E5;T . The non-centrality parameter �T reduces to the

bias contribution in (9) under the null hypothesis. In general it is di¢ cult to explicitly

characterize the behaviour of the estimation error term Th
1=2
T ��;E5;T under H1. For example,

as already noticed in Section 3.1, '�T may or may not converge under H1. We focus on

the case where estimation error is negligible compared to the non-centrality parameter, and

we consider the next high-level assumption. This parallels the analysis under H0, where we

show that the estimation error term is asymptotically negligible.

Assumption 5: Under the alternative hypothesis H1: Th
1=2
T ��;E5;T = op(�T ):

Assumption 5 implies that j�T j � C�T for a constant C > 0:

To characterize the asymptotic behaviour of �T under the alternative hypothesis, we can

decompose rF0 = PrF0+P?rF0, where P and P? denote the orthogonal projection operators

on ker
�
A�F0
�
and on ker

�
A�F0
�?
, respectively. Then Q�T =



M�TP?rF0


2
L2(Z)+kPrF0k

2
L2(Z) ;

using M�TP = P and PM�TP? = 0. Since  j is an orthonormal basis of ker
�
A�F0
�?
, we

have P?rF0 =
1X
j=1



rF0 ;  j

�
L2(Z)  j and we get:

�T = Th
1=2
T

1X
j=1

�2T
(�T + �j)

2



rF0 ;  j

�2
L2(Z) + Th

1=2
T kPrF0k

2
L2(Z) . (10)

We distinguish between close and separated misspeci�cations. Let us �rst consider close

alternatives, and assume that F0 is in a regularity space introduced in Section 2.3: F0 2 �Mc;��
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for �1 < �� � 0. Then PrF0 = 0; 3 and the behaviour of the series in (10) is driven by the

decay of the coe¢ cients


rF0 ;  j

�
L2(Z). We show in Appendix 4 that �T � CTh

1=2
T ��+

��
T , for

a constant C > 0 and any � > 1: Thus �T diverges under the next Assumption 4(iii) on the

regularization parameter, which implies Assumption 4(ii).

Assumption 4: �T = cT�
 with: (iii) 
 < min
�
4��;

1� ��=2
1 + ��

; 1

�
:

We deduce the following bound on the divergence rate of �T :

Proposition 3: Under the alternative hypothesis H1 for F0 2 �Mc;�� with �1 < �� � 0,

Assumptions 1-3, 4(iii), 5 and A.1-A.8, we have Th1=2T ��+
��

T =�T = op(1) for any � > 1.

Proof: See Appendix 4.

Let us now consider separated alternatives: F0 2 �Ms. Then PrF0 6= 0 and it follows

from (10) that �T � kPrF0k
2
L2(Z) Th

1=2
T : Thus, �T diverges under Assumption 3. We deduce:

Proposition 4: Under the alternative hypothesis H1 for F0 2 �Ms, Assumptions 1-3, 4(ii),

5 and A.1-A.8, we have Th1=2T =�T = Op(1).

The above results reveal that the bound on the divergence rate of the test statistic is larger

under separated misspeci�cation than under close misspeci�cation. Under F0 2 �Ms, the

bound corresponds to the divergence rate for the speci�cation test of a parametric conditional

moment restriction in TK, namely of the order Th1=2T . Under F0 2 �Mc;��, the bound is close

to the divergence rate in TK for the strongest departures from correct speci�cation: when

�� is near -1, we get the order T 1��h1=2T , � > 0.

We can combine Propositions 1-4 to introduce speci�cation tests that have given as-

3 Under H0, we also have PrF0 = 0 since rF0 2 ker
�
A�F0

�?
.
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ymptotic size under the null hypothesis, and are consistent against alternatives in suitable

regularity spaces.

A. For a given �1 < ��
�
< 0 let the alternative hypothesis H1(��

�
) be de�ned by F0 2

�Mc;��
� [ �Ms. Let us consider the statistic �T with bandwidth hT and regularization

parameter �T satisfying Assumptions 3, 4(i) with � = 0, and 4(iii) with �� = ��
�.

Then, P
�
j�T j > z1��=2

�
! � under H0 and P

�
j�T j > z1��=2

�
! 1 under H1(��

�
) as

T !1, where z1��=2 is the (1��=2)-quantile of the N(0; 1) distribution for � 2 (0; 1).

Thus, statistic �T yields a consistent test of H0 against the alternative H1(��
�
). A test

based on statistic �T with given asymptotic size � under the null hypothesis H0 has

no asymptotic power against the alternative hypothesis F0 2 �Mc n

0@ [
�1<��<0

�Mc;��

1A.
Indeed, if we set ��� = 0, we face an incompatibility between the conditions on �T

to have a vanishing regularization bias under the null hypothesis, and a diverging

noncentrality parameter under the alternative hypothesis. Intuitively, it is di¢ cult to

distinguish the close misspeci�cation �Mc n

0@ [
�1<��<0

�Mc;��

1A from a correctly speci�ed

model with minimal smoothness, i.e., '0 2 �0 under the null hypothesis.

B. For a given 0 < �� � 1 let the null hypothesis H0(�
�) be de�ned by F0 2M��. Let us

consider the statistic �T with bandwidth hT and regularization parameter �T satisfying

Assumptions 3, 4(i) with � = ��, and 4(ii) with �� = 0. Then, P
�
j�T j > z1��=2

�
! �

under H0(�
�) and P

�
j�T j > z1��=2

�
! 1 under H1 as T ! 1. Thus, statistic �T

yields a consistent test of H0(�
�) against the full set H1 of alternatives.
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3.4 Extension to an estimated weighting function

In the previous sections, results have been presented for a known weighting matrix to ease

reading and derivation. Let us now replace 
0(z) by an estimate 
̂(z) = V̂ (z)�1 in (7) based

on a kernel regression estimator of the conditional variance V0(z) and a pilot estimator �'

of '0. Under H0 the analysis remains virtually unchanged, and Proposition 1 holds under

the supplementary assumptions A.9-A.10 on V0(z) and �' in Appendix A.5.1. The analysis

complicates under global alternatives. The estimation of the weighting function plays a

nontrivial role as opposed to the standard GMM setting. The di¢ culty comes from the

population counterpart �'�T of the �rst-step estimator �' that may not converge under H1.

Then, the estimated weighting function 
̂(z) used to compute the test statistic may not

converge. This a¤ects the de�nition of the population analogue '�T of the estimator '̂,

since the limit of Â� might di¤er from A�F0 whose de�nition is based on 
0(z). We overcome

this di¢ culty by introducing a norm based on the population analogue 
�T (z) of 
̂(z)

(see Appendix A.5.2). Then, the results in Propositions 3 and 4 can be derived under the

supplementary assumptions A.11-A.13, that control for the behavior of the norm induced

by 
�T (z) and for the uniform convergence of 
̂(z)�
�T (z) to 0. We summarize the results

as follows.

Proposition 5: Under Assumptions 1-5 and A.1-A.13, the results in Proposition 1 for

F0 2 M�, 0 � � � 1, Proposition 3 for F0 2 �Mc;��, �1 < �� � 0; and Proposition 4 for

F0 2 �Ms; hold.

Proof: See Appendix 5.
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3.5 Bootstrap computation of the critical values

In a GMM framework, asymptotic approximation can be bad, and bootstrapping provides

one approach to improved inference (Hall and Horowitz (1996)). However, the usual boot-

strap of testing procedures based on degenerate U -statistics is known to fail. To get bootstrap

consistency, an appropriate recentering is required (Arcones and Gine (1992)). Here we par-

allel the bootstrap construction of Horowitz (2006). 4 His technique relies on sampling

from a pseudo-true model which coincides with the original model if the null hypothesis is

true, and satis�es a version of the conditional moment restriction if the null hypothesis is

false. The idea is to get a bootstrap which imposes the conditional moment restriction on

the resampled data regardless of whether the null hypothesis holds for the original model.

For a bootstrap test based on �T the steps are as follows.

Bootstrap test algorithm

1. Compute �Ut := Yt � '̂(Xt)�
�
r̂(Zt)� Â'̂(Zt)

�
, t = 1; :::; T .

2. Make T independent draws ( ~Xt;b; ~Zt;b; ~Ut;b) with replacement from�
(Xt; Zt; �Ut); 1 � t � T

	
, and take ~Yt;b := '̂( ~Xt;b) + ~Ut;b to get the bootstrap sam-

ple ( ~Xt;b; ~Yt;b; ~Zt;b), t = 1; :::; T .

3. Compute the bootstrap statistic ~�T;b based on the bootstrap sample.

4 Other resampling techniques such as empirical likelihood bootstrap (Brown and Newey (2002)), m-out-
of-n (moon) bootstrap (Bickel, Gotze and van Zwet (1997)), and subsampling (Politis, Romano and Wolf
(1999)) provide other approaches to improved inference in our setting. They are however less simple to
implement. The wild bootstrap (Haerdle and Mammen (1993)) and the simulation-based multiplier method
(Hansen (1996)) cannot be used.
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4. Repeat steps 2 and 3 B times, where B is an integer.

5. Reject the null hypothesis at signi�cance level � if pB < �; where the bootstrap p-value

is pB :=
1

B

BX
b=1

Ifj~�T;bj > j�T jg.

Step 2 implements the constraintsE[ ~Y�'�T ( ~X)j ~Z = z] = 0 andE
��
~Y � '�T (

~X)
�2
j ~Z = z

�
=


�T (z)
�1 on the bootstrap sample whether H0 holds or not. A test based on the de-

cision rule in Step 5 is consistent: it satis�es lim
T!1

P [rejectH0] = � if H0 is true, and

lim
T!1

P [rejectH0] = 1 if H0 is false. This can be justi�ed by showing that the limit distri-

bution of ~�T;b is an independent copy of the limit distribution of �T . The proof follows the

same arguments as in the proofs of Propositions 1-5 but applied to the bootstrap sample

instead of the original sample. Therefore we omit these developments. In our Monte Carlo

results the bootstrap reduces signi�cantly the �nite sample size distortions that occur when

asymptotic critical values are used. Similar steps and comments hold for a bootstrap test

based on the other asymptotic equivalent test statistics mentioned in Sections 3.2 and 4.2.

4 A Monte-Carlo study

4.1 Data generating process under the null hypothesis

Following GS (see also Newey and Powell (2003)) we draw the errors U and V and the

instrument Z as0BBBBBB@
U

V

Z

1CCCCCCA � N

0BBBBBB@

0BBBBBB@
0

0

0

1CCCCCCA ;

0BBBBBB@
1 �UV 0

�UV 1 0

0 0 1

1CCCCCCA

1CCCCCCA ; �UV = :5;
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and buildX� = Z+V . Then we mapX� into a variableX = �(X�), which lives in [0; 1]. The

function � denotes the cdf of a standard Gaussian variable, and is assumed to be known.

We generate Y according to Y = sin (�X) + U . Since the correlation �UV 6= 0 there is

endogeneity, and an instrumental variable estimation is required. The moment condition is

E0 [Y � '0 (X) j Z] = 0; where the functional parameter is '0(x) = sin (�x), x 2 [0; 1]: The

chosen function resembles the shape of the Engel curve found in the empirical illustration.

4.2 Computation of the test statistic

The estimation of '0 follows GS. To compute numerically the estimator '̂ we use a se-

ries approximation '(x) ' �0P (x) based on standardized shifted Chebyshev polynomials

of the �rst kind (see Section 22 of Abramowitz and Stegun (1970) for their mathematical

properties). These orthogonal polynomials are best suited for an unknown function '0 on

[0; 1]. We take orders 0 to 5 which yields six coe¢ cients to be estimated in the approxi-

mation '(x) '
5X
j=0

�jPj(x); where P0(x) = T0(x)=
p
�, Pj(x) = Tj(x)=

p
�=2, j 6= 0. The

shifted Chebyshev polynomials of the �rst kind are T0(x) = 1; T1(x) = �1+2x; T2(x) =

1� 8x+ 8x2; T3(x) = �1 + 18x� 48x2 + 32x3; T4(x) = 1� 32x+ 160x2 � 256x3 + 128x4;

T5(x) = �1+50x� 400x2+1120x3� 1280x4+512x5. The squared Sobolev norm is approx-

imated by k'k2H =
Z 1

0

'2 +

Z 1

0

(r')2 '
5X
i=0

5X
j=0

�i�j

Z 1

0

(PiPj +rPirPj) : The coe¢ cients
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in the quadratic form �0D� are explicitly computed with a symbolic calculus package:

D =

0BBBBBBBBBBBBBBBBBB@

1
�

0 �
p
2

3�
0 �

p
2

15�
0

... 26
3�

0 38
5�

0 166
21�

218
5�

0 1182
35�

0

3898
35�

0 5090
63�

... 67894
315�

0

: : : : : : 82802
231�

1CCCCCCCCCCCCCCCCCCA

:

Such a simple and exact form eases implementation 5 , and improves on speed.

The kernel estimator of the conditional moment r̂(z)� Â'(z) is approximated through

r̂(z) � �0P̂ (z) where P̂ (z) =
TX
t=1

P (Xt)K

�
Zt � z

hT

�
=

TX
t=1

K

�
Zt � z

hT

�
; r̂(z) =

TX
t=1

YtK

�
Zt � z

hT

�
=

TX
t=1

K

�
Zt � z

hT

�
; and K is the Gaussian kernel. The explicit form of

the resulting ridge-type estimator �̂ is given in GS. The bandwidth is selected via the stan-

dard rule of thumb h = 1:06�̂ZT�1=5 (Silverman (1986)), where �̂Z is the empirical standard

deviation of observed Zt. 6 Here weighting function 
0(z) is equal to unity, and assumed

to be known.

For programming purpose, this test statistic can be expressed in a matrix format:

�T = h
1=2
T [�0	0	�� �0(	�	)�+ trace(	�	)] =�;

where 	 is the T�T matrix with elements  ts in (8), � is a T�1 vector of ones, and� denotes

5 The Gauss programs developed for this section and the empirical illustration are available on request
from the authors.

6 This choice is motivated by ease of implementation. Moderate deviations from this simple rule do not
seem to a¤ect estimation results signi�cantly.
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the Hadamard (or element-by-element) product. We also consider an asymptotically equiv-

alent statistic based on the penalized value of the criterion, namely �T +Th
1=2
T �T k'̂k2H =�. 7

Other possibilities include statistics such as:

Th
1=2
T �5;T=� = h

1=2
T [�0	0	�� 2diag(	)0	�� �0(	�	)�+ 2trace(	�	)] =�;

where diag (	) is the T �1 vector of the diagonal elements of 	, or its penalized counterpart

Th
1=2
T (�5;T+�T k'̂k

2
H)=�. In unreported Monte-Carlo results, we have checked that the �nite-

sample behaviours of the latter two test statistics are qualitatively similar to those of the

corresponding tests based on �T .

4.3 Simulation results

The sample size is �xed at T = 1000. Size and power are computed with 1000 repetitions. We

use a �xed trimming at 5% in the upper and lower tails, i.e., S� = [�1:645; 1:645]. We look at

a grid of values for the regularization parameter � 2 f:00001; :0007; :0009; :0012; :0015; :005g.

The values :0009 and :0007 are the values of � minimizing the asymptotic MISE of the

estimator, and minimizing the �nite sample MISE, respectively (see GS for details on these

computations). The data-driven procedure introduced in GS selects � close to these optimal

values with slight overpenalization. Therefore we also consider the values :0012 and :0015:

The values :00001 and :005 are far away from the optimal ones, and far beyond the quartiles

of the distribution of the regularization parameters that are selected by the data-driven

procedure.

7 Statistic �T +Th
1=2
T �T k'̂k2H =� is asymptotically equivalent to �T under H0 if estimator '̂ is such that

k'̂kH = Op(1); and 
 > 1� ��=2 in Assumption 4(i).
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Unreported simulation results show that the asymptotic approximation of Proposition

1 is poor for sample size T = 1000: test statistic distributions are asymmetric and size

distortions are large. We often end up with no rejection at all of the null hypothesis at

the 1% con�dence level. In light of this, we advocate to use the bootstrap procedure of

Section 3.5 for small to moderate sample sizes. The number of bootstrap samples is �xed

at B = 500. In Table I, for each value of � we report the rejection rates of statistic �T

(left column) and those of statistic �T + Th
1=2
T �T k'̂k2H =� (right column), at nominal size

� = :01; :05; :10. For � = :0007; :0009, statistic �T provides undersized tests, while for

� = :0012; :0015, the rejection rates are close to the nominal ones. For � = :0007; :0009,

statistic �T + Th
1=2
T �T k'̂k2H =� features good �nite sample properties and yields tests which

are only slightly undersized. For � = :0012; :0015, statistic �T + Th
1=2
T �T k'̂k2H =� provides

oversized tests at � = :10. Selecting the very small regularization parameter � = :00001

results in undersized tests, both for �T and �T + Th
1=2
T �T k'̂k2H =�. For the very large value

� = :005, the test becomes oversized because of regularization bias.

Rejection rates with 1000 repetitions for �T and �T + Th
1=2
T �T k'̂k2H =�

� = :00001 � = :0007 � = :0009 � = :0012 � = :0015 � = :005

� = :01 :002 :000 :005 :010 :008 :010 :013 :002 :013 :005 :087 :198

� = :05 :016 :004 :013 :025 :033 :039 :046 :046 :073 :073 :271 :533

� = :10 :048 :063 :036 :072 :049 :092 :102 :141 :107 :195 :431 :737

TABLE I: Size of bootstrap test: T = 1000, B = 500
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In Table II, we study the power of the bootstrap testing procedure based on �T (left

column) and �T +Th
1=2
T �T k'̂k2H =� (right column). We generate Y as Y = sin (�X)+U +�.

In design 1 we take � = :20IfZ � 0g � :20IfZ > 0g. This yields E0[Y � sin (�X) jZ = z] =

:20Ifz � 0g � :20Ifz > 0g, and the model speci�cation is incorrect (discontinuity at point

z = 0; cf. discussion in Section 2). In design 2 we take � = 0:80(jZj�
p
2=�) yielding another

misspeci�cation (non-di¤erentiability at point z = 0). In both designs U + � is maintained

centered. The two cases mimick possible measurement errors in data such as the ones of the

empirical section. In the �rst one, reported Yt are larger in average when reported Zt are

known to be small, and vice-versa. In the second one, reported Yt are larger in average when

reported Zt are known to be large in absolute value compared to their average value.

We �nd a satisfactory power for � = :0007; :0009; :0012; :0015, under both designs. The

statistic �T gives better power properties in design 1, while the statistic �T+Th
1=2
T �T k'̂k2H =�

gives better power properties in design 2. For value � = :00001, i.e., for a very light

penalization, the power is minimal under both designs. In our simulation experiments,

choosing a regularization parameter value around the values minimizing the asymptotic or

�nite sample MISE delivers good performance. Of course there is no reason why an optimal

choice for estimation should be optimal for testing. The design of an adaptive rate-optimal

test is a challenging task even in the parametric case (Horowitz and Spokoiny (2001)), and

we leave this interesting research topic to future work.
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Rejection rates with 1000 repetitions for �T and �T + Th
1=2
T �T k'̂k2H =�

Design 1 � = :00001 � = :0007 � = :0009 � = :0012 � = :0015 � = :005

� = :01 :006 :002 :648 :074 :742 :084 :812 :141 :842 :155 :896 :499

� = :05 :029 :012 :829 :290 :876 :337 :932 :419 :942 :444 :966 :811

� = :10 :073 :049 :859 :473 :902 :538 :948 :576 :952 :647 :976 :916

Design 2 � = :00001 � = :0007 � = :0009 � = :0012 � = :0015 � = :005

� = :01 :005 :002 :056 :078 :082 :142 :120 :338 :189 :566 :963 1:000

� = :05 :013 :009 :201 :310 :251 :473 :326 :759 :438 :920 :995 1:000

� = :10 :043 :044 :289 :513 :361 :736 :471 :930 :579 :991 :998 1:000

TABLE II: Power of bootstrap test: T = 1000, B = 500

5 An empirical illustration

This section presents an empirical example with the data in Horowitz (2006) and GS. 8

We aim at testing the speci�cation of an Engel curve based on the moment condition

E0 [Y � '0 (X) j Z] = 0, with X = �(X�). Variable Y denotes the food expenditure share,

X� denotes the standardized logarithm of total expenditures, and Z denotes the standardized

logarithm of annual income from wages and salaries. We have 785 household-level obser-

vations from the 1996 US Consumer Expenditure Survey. The estimation procedure is the

same as in GS (see also the previous section). It relies on a kernel estimate of the conditional

variance to get the weighting function and on a spectral approach to get a data-driven reg-

8 We would like to thank Joel Horowitz for kindly providing the dataset.

27



ularization parameter. The selected value is �̂ = :01113. In GS the plotted estimated shape

corroborates the �ndings of Horowitz (2006), who rejects a linear curve but not a quadratic

curve at the 5% signi�cance level to explain log Y . Banks, Blundell and Lewbel (1997)

consider demand systems that accommodate such empirical Engel curves. A speci�cation

test based on 1000 bootstrap samples yields bootstrap p-values of :426 and :671 for the test

statistic values �T = �:9826 and �T + Th
1=2
T �T k'̂k2H =� = �:3017, respectively. Hence we

do not reject the null hypothesis of a correct speci�cation of the Engel curve modeling.
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Appendices

In Appendix 1 we list the regularity conditions and provide their detailed discussion. In

Appendix 2 we show Proposition 1 on asymptotic normality of our test statistic under the

null hypothesis. In Appendix 3 and 4 we show Propositions 2 and 3 on the behavior of the

test statistic under global alternatives. In Appendix 5 we provide the details for extending

the proofs to the setting with an estimated weighting function.

Appendix 1: List of regularity conditions

A.1: f(Yt; Xt; Zt) : t = 1; :::; Tg is an i.i.d. sample from a distribution admitting a pdf fY XZ

with support S = Y � X � Z � R3; X = [0; 1], such that: (i) sup
X ,Z

fXjZ < 1; (ii) fZ is in

class C2 (R).

A.2: For m > 4: (i) E0 [jY � '0(X)j
m] < 1 under H0; and (ii) E0

���Y � '�T (X)
��m� =

O(1) and E0 [jY � E0[Y jZ]jm] <1 under H1.

A.3: Set S� � Z is compact, contained in the interior of Z such that inf
S�
fZ > 0.

A.4: The kernel K is (i) a pdf with support in [�1; 1] ; (ii) symmetric, (iii) continuously

di¤erentiable, and (iv) bounded away from 0 on [�a; a], for a 2 (0; 1):

A.5: Estimator '̂ is such that: (i)
1

T

X
t

��'̂(Xt)� '�T (Xt)
��2 = Op(T

�1=3); (ii) sup
X

��r2'̂
�� =

Op(1).

A.6: Under H0: (i) sup
z2S�

 
1

ThT

X
s

K

�
Zs � z

hT

�
RT (Xs)

!2
= op

 
1

Th
1=2
T

!
, where RT :=
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'̂�'�T�
�
�T + A�F0AF0

��1
A�F0 ̂�

�
�T + A�F0AF0

��1 �
Â�Â� A�F0AF0

�
BT and  ̂(z) :=

Z
(y�

'0(x))
f̂(w; z)

f(z)
dw; (ii) sup

z2S�

 
1

ThT

X
s

K

�
Zs � z

hT

�
RT (Xs)

2

!
= op

�
1

T

�
.

A.7: (i) The eigenvalues �j of operator A�F0AF0 are such that C1e
��j � �j � C2e

��j, j 2 N,

for some constants � > 0, C1 � C2; (ii) The orthonormal eigenfunctions �j, j 2 N, of

operator A�F0AF0 are such that sup
j2N

sup
juj�1

E0
�
r2
�
AF0�j

�
(Z + hTu)

2� = O(1), as hT ! 0, and

(iii) sup
j2N

sup
z2S�

E0
�
�j(X)

2jZ = z
�
<1.

A.8: The function '0 2 H2[0; 1] is in class C2 (0; 1) with sup
X

��r2'0
�� <1 under H0.

Assumptions A.1, A.2 (i), A.3, A.4 yield the assumptions used in TK for testing para-

metric conditional moment restrictions in the special case of a linear-in-parameter moment

function and known weighting function. In our functional setting, compacity of X in As-

sumption A.1 eases the de�nition of the parameter space, which is a subset of the Sobolev

space H2[0; 1]. We take univariate variables to avoid matrix notation and facilitate the writ-

ing and reading of the results and proofs. All our results can be extended to dimX > 1

and dimZ > 1. Assumption A.1 (i) on the conditional density fXjZ implies that operator

AF0 : L
2[0; 1] ! L2 (Z) is compact, and this yields compacity of AF0 de�ned on H2[0; 1].

Assumption A.1 (ii) on the conditional density fZ , together with Assumption A.4 on the

kernel, allows to exploit the results on uniform convergence of kernel estimators in Newey

(1994) and a result of Devroye and Wagner (1980). Assumption A.2 is a condition ensuring

�nite higher moments of the innovation under H0, and similar conditions under H1. In par-

ticular, Assumption A.2 (ii) is used in the proofs of Lemmas C.1-C.4. The compact set S� in
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Assumption A.3 solves boundary problems of kernel estimators. Assumption A.5 concerns

properties of the functional estimator '̂ that are used in the proofs of technical lemmas.

Speci�cally, Assumption A.5 (i) is used in the proof of Lemmas B.1-B.2 and C.1-C.2 to

prove asymptotic negligibility of two components of the test statistic. Assumption A.5 (ii)

is used to prove the asymptotic equivalence of QT and �T in Section A.2.1. Function RT in

Assumption A.6 is the reminder term in the linearization of the estimation error '̂�'�T per-

formed in Section A.2.4. The linearization includes a term induced by estimation of A�F0rF0

and a term induced by estimation of A�F0AF0. The reminder term RT is of second-order

w.r.t  ̂ and Â�Â � A�F0AF0. Assumption A.6 is satis�ed e.g. when RT is Op(1=
p
T ); and

allows us to control the reminder contribution coming from the estimation error in Lemmas

B.7-B.8. Assumption A.7 concerns the spectral decomposition of compact operator A�F0AF0

(see Kress (1999), Chapter 14). In Assumption A.7 (i) the spectrum of A�F0AF0 is supposed

to feature geometric decay, which corresponds to settings with severe ill-posedness. This as-

sumption simpli�es the control of series involving eigenvalues �j of operator A�F0AF0 such as
1X
j=1

�j
�T + �j

in the proofs of Lemmas B.5 and B.6. In GS we verify that Assumption A.7 (i)

is satis�ed in the Monte-Carlo setting of Section 4. Our results extend to the case of hyper-

bolic decay (mild ill-posedness). Regularity Assumptions A.7 (ii)-(iii) on the eigenfunctions

�j are used in the proof of technical Lemmas B.5 and B.6. Assumption A.8 concerns the

smoothness of function '0 under H0. Second-order di¤erentiability of '0 is used to control

the estimation bias term in  ̂ induced by kernel density estimator f̂(yjz) (see the proof of

Lemma B.5). We could dispense of this assumption by adopting a di¤erent estimator of
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function A�F0rF0 to de�ne estimator '̂ (see GS, footnote 8, and Hall and Horowitz (2005)),

at the cost however of an increase in the technical complexity. Since estimator '̂ is not

the focus of this paper, we do not detail modi�cations induced by alternative estimation

approaches.

Appendix 2: Proof of Proposition 1

In A.2.1 we show the equivalence between QT ('̂) and �T . In A.2.2 we establish the asymp-

totic normality of the leading term before showing in A.2.3 and A.2.4 that the other terms

are negligible. We gather in A.2.5 the technical lemmas and discuss their main di¤erences

w.r.t. TK. In this appendix and hereafter we omit subscripts in densities, expectations and

operators. Furthermore, let T� = f1 � t � T : Zt 2 S�g, Kst = K

�
Zs � Zt
hT

�
, 
t = 
0(Zt),

Ut = Yt�'0(Xt), g'0(w) = y�'0(x), �' = '�'0, It = I fZt 2 S�g, I = fZt : 1 � t � Tg,

H0(z) = V0(z)f (z)
2, wst = Kst=

P
jKjt, KT (V;W ) =

1

T

X
t


tIt�P
jKjt

�2X
s 6=t

X
u 6=t;s

KstKutVsWu:

A.2.1 Asymptotically equivalent statistics

Let us consider �T :=
1

T

TX
t=1

 
TX
s=1

 ts

!2
; where  ts = 


1=2
t It (Ys � '̂(Xs))Kst

. TX
j=1

Kjt:

Statistic �T corresponds to statistic T̂ at p. 2064 in TK, but with a functional estimator '̂

of parameter '0. Using Assumption A.5 (ii) to get the asymptotic equivalence

Z
(y � '̂(x)) f̂(wjz)dw =

TX
s=1

(Ys � '̂(Xs))K

�
Zs � z

hT

�
TX
s=1

K

�
Zs � z

hT

� +Op(h
2
T );
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uniformly in z 2 S�, and Cauchy-Schwarz inequality, we get QT ('̂) = �T + Op(�
1=2
T h2T ) +

Op(h
4
T ): Using hT = �cT

��� with �� > 2=9, we get QT ('̂) = �T +op((Th
1=2
T )�1). Thus, statistics

QT ('̂) and �T are asymptotically equivalent to de�ne the test.

We use the decomposition �T = �1;T + �2;T + �3;T + �4;T + �5;T as in TK, where

�1;T =
1

T

TX
t=1

 2tt; �2;T =
1

T

TX
t=1

TX
s=1;s 6=t

 2ts;

�3;T =
1

T

TX
t=1

TX
s=1;s 6=t

 ts tt = �4;T

�5;T =
1

T

TX
t=1

TX
s=1;s 6=t

TX
u=1;u 6=t;u 6=s

 ts tu:

Terms �1;T ; �3;T and �4;T are op((Th
1=2
T )�1) (see Lemmas B.1 and B.2 in Section A.2.5), while

term �5;T after appropriate rescaling is asymptotically normal (see Section A.2.2). Thus, the

test statistic is based on the di¤erence �T � �2;T satisfying

�T � �2;T = �5;T + op((Th
1=2
T )�1): (11)

Let us rewrite statistic �5;T in order to identify the di¤erent contributions. We use the

following decomposition:

Y � '̂ (X) = U � BT (X)� ET (X): (12)

The innovation U := Y � '0(X) is such that E [U jZ] = 0. The bias BT (X) is such that

E [BT (X)jZ] = �M�T rF0(Z), that is, minus the Tikhonov residual. Finally, ET (X) :=

'̂(X)� '�T (X) is the estimation error. We get the decomposition �5;T =
��5;T + �

B
5;T + �

E
5;T ;

where the leading contribution is ��5;T = KT (U;U), the contribution induced by regulariza-
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tion bias is given by �B5;T = KT (BT (X);BT (X)) � 2KT (U;BT (X)) ; and the contribution

accounting for estimation error is �E5;T = KT (ET (X); ET (X))� 2KT (U � BT (X); ET (X)) :

A.2.2 Asymptotic normality of the test statistic

Statistic ��5;T corresponds to statistic T̂
(1)
5 of TK, p. 2083 (multiplied by T�1). Along the

lines of the proofs of Lemmas A.6 and A.7 in TK, ��5;T =
1

T 3h2T

X
t

H0(Zt)
�1ItX

s 6=t

X
u 6=t;s

KstKutUsUu + Op

�
log T

ThT
sup
z2S�

���f̂(z)�1 � f(z)�1
����. Using sup

z2S�

���f̂(z)�1 � f(z)�1
��� =

Op

 r
log T

ThT
+ h2T

!
from Assumptions A.1, A.3 and A.4, the CLT for generalized quadratic

forms of de Jong (1987) along the lines of Lemma A.6 in TK, and hT = �cT��� with

2=9 < �� < min f1� 4=m; 1=3g, we get Th1=2T ��5;T
d�! N(0; 2K��vol(S�)). Then, Proposi-

tion 1 follows using that �B5;T ; �
E
5;T = op((Th

1=2
T )�1) as shown below.

A.2.3 Control of the regularization bias contribution

It follows from Lemmas B.3 and B.4 in Section A.2.5 that

�B5;T = Q�T (1 + op(1)) +Op

�
1p
T
Q
1=2
�T

�
+ op((Th

1=2
T )�1):

Rewriting BT = ��T (�T + A�A)�1 '0 and developing '0 w.r.t. the basis of eigenfunctions

�j of A
�A, we have for 0 � � � 1

Q�T = kABTk2L2(Z) = �2T

1X
j=1

�j


'0; �j

�2
H

(�T + �j)
2 = �1+�T

1X
j=1

�1��T �1+�j

(�T + �j)
2



'0; �j

�2
H

��j

� �1+�T

1X
j=1



'0; �j

�2
H

��j
� C�1+�T ; (13)
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from the source condition '0 2 �� (see also CFR, proof of Proposition 3.11). Using As-

sumption 4(i), we get �B5;T = op((Th
1=2
T )�1).

A.2.4 Control of the estimation error contribution

We use r = A'0 under H0 and r̂ =  ̂ + bA'0 + q̂, where  ̂(z) :=
Z
(y � '0(x))

f̂(w; z)

f(z)
dw

and q̂(z) =
Z
(y�'0(x))

"
f̂(wjz)� f̂(w; z)

f(z)

#
dw = � ̂(z) f̂(z)� f(z)

f̂(z)
: Then, the estimation

error '̂� '�T is decomposed as:

'̂� '�T =
�
�T + Â�Â

��1
A� ̂ �

�
�T + Â�Â

��1 �
Â�Â� A�A

�
BT

+
�
�T + Â�Â

��1
A�q̂ +

�
�T + Â�Â

��1
(Â� � A�)

�
q̂ +  ̂

�
: (14)

The �rst two terms in the RHS are of �rst-order, the corresponding quantities converging

to zero are  ̂ and
�
Â�Â� A�A

�
BT , respectively. The third and fourth terms are at least

of second-order. To eliminate the estimate Â�Â in the inverse
�
�T + Â�Â

��1
, we can use

iteratively:

�
�T + Â�Â

��1
= (�T + A�A)�1 �

�
�T + Â�Â

��1 �
Â�Â� A�A

�
(�T + A�A)�1 :

Then Equation (14) is transformed into a development of '̂ � '�T in a series of terms of

di¤erent orders:

'̂� '�T = ET;1+ET;2+RT ;

where ET;1 = (�T + A�A)�1A� ̂ and ET;2 = (�T + A�A)�1
�
Â�Â� A�A

�
BT

are the �rst-order terms, and RT contains second-, third-, etc-order terms. Thus, the esti-
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mation error contribution can be decomposed as:

�E5;T = KT (ET;1(X); ET;1(X)) +KT (ET;2(X); ET;2(X)) + 2KT (ET;2(X); ET;1(X))

�2KT (U � BT (X); ET;1(X))� 2KT (U � BT (X); ET;2(X))

+KT (RT (X);RT (X))� 2KT (RT (X); U � BT (X)� ET;1(X)� ET;2(X)) :

It follows from Lemmas B.5-B.8 and (13) that �E5;T = op((Th
1=2
T )�1):

A.2.5 Technical Lemmas

Lemmas B.1 and B.2 are akin to Lemmas A.2 and A.4 in TK. The major technical novel-

ties are in proving Lemmas B.3-B.8 where we use conditions on the decay of the spectrum

(Assumption A.7) and on the regularization parameter (Assumption 4). To minimize the

complexity of the presentation we assume V0(z) = 
0(z) = 1 in some steps in the proofs of

Lemmas B.5-B.6. All proofs are given under Assumptions A.1-A.8 and H0.

Lemma B.1: �1;T = Op((ThT )
�2).

Lemma B.2: �3;T = op((Th
1=2
T )�1).

Lemma B.3: KT (BT (X);BT (X)) = Q�T (1 + op(1)) + op((Th
1=2
T )�1):

Lemma B.4: KT (U;BT (X)) = Op

�
1p
T
Q
1=2
�T

�
+ op((Th

1=2
T )�1):

Lemma B.5: KT (ET;k(X); ET;l(X)) = op((Th
1=2
T )�1), k; l = 1; 2:

Lemma B.6: KT (U � BT (X); ET;k(X)) = op

0@ 1q
Th

1=2
T

Q
1=2
�T

1A+ op((Th
1=2
T )�1), k = 1; 2:
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Lemma B.7: KT (RT (X);RT (X)) = op((Th
1=2
T )�1):

Lemma B.8: KT (RT (X); U � BT (X)� ET;1(X)� ET;2(X)) = op((Th
1=2
T )�1):

Appendix 3: Proof of Proposition 2

In A.3.1 we show that a decomposition similar to (11) holds under H1: some di¤erences

appear in the order of the negligible terms. In A.3.2 we separate the leading term into an

asymptotically distributed term and a diverging term under H1. We gather the technical

lemmas in A.3.3 and discuss di¤erences w.r.t. those used in the proof of Proposition 1.

A.3.1 Asymptotically equivalent statistics

From the arguments in A.2.1, statistics QT ('̂) and �T are asymptotically equivalent. Let us

study the behaviour of �i;T , i = 1; :::; 5, under H1, and split as in (12)

Y � '̂(X) = U� � � � ET (X): (15)

The innovation U� := Y �r(Z) satis�es E[U�jZ] = 0. The error � := '�T (X)�r(Z) satis�es

E[�jZ] = �M�T r(Z), that is minus the Tikhonov residual. We get �1;T is Op((ThT )
�2) from

Lemma C.1, while �3;T and �4;T are Op(T
�2h

�3=2
T �T )+Op((Th

1=2
T )�1) from Lemma C.2, which

yields that under H1 and �T !1

�T � �2;T = �5;T + op((Th
1=2
T )�1�T ): (16)
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Let us investigate the behavior of �5;T by introducing a decomposition based on (15): �5;T =

��
�
5;T +

��
�;�
5;T + ��;E5;T , where ��

�
5;T = KT (U�; U�) ; ��

�;v
5;T = KT (�; �)� 2KT (U�; �), and

��;E5;T = KT (ET (X); ET (X))� 2KT (U� � �; ET (X)) : (17)

A.3.2 Divergence of the test statistic

Following the same arguments as in Section A.2.2, we get Th1=2T ��
�
5;T

d�! N(0; ��2), where

��2 = 2K��

Z
S�
f
0(z)V0(z)g2 dz: (18)

Then Proposition 2 follows using that Th1=2T ��
�;�
5;T = �T + op(�T ) + Op(1) from Lemmas C.3

and C.4.

A.3.3 Technical Lemmas

Lemma C.1 is the analogue of Lemma B.1. Lemma C.2 di¤ers from Lemma B.2 by the orders

in the bound. Lemmas C.3 and C.4 concern the diverging contribution due to the noncen-

trality parameter Th1=2T Q�T , and are the analogues of Lemmas B.3 and B.4. The remainder

terms are Op((Th
1=2
T )�1), since E [�2] = O(1) under H1 in contrast to E [BT (X)2] = o(1)

under H0. All proofs are given under Assumptions A.1-A.8 and H1.

Lemma C.1: �1;T = Op((ThT )
�2).

Lemma C.2: �3;T = Op ((ThT )
�1Q�T ) +Op((Th

1=2
T )�1).

Lemma C.3: KT (�; �) = Q�T (1 + op(1)) +Op((Th
1=2
T )�1).

Lemma C.4: KT (U�; �) = Op

�
1p
T
Q
1=2
�T

�
+Op((Th

1=2
T )�1).
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Appendix 4: Proof of Proposition 3

From (10) and PrF0 = 0, we have:

�T = Th
1=2
T

1X
j=1

�2T
(�T + �j)

2�
2
j ; (19)

where �j =


rF0 ;  j

�
L2(Z). Let � > 1. Then we have �

2
j=�

�+��
j ! 1 as j ! 1. Indeed, by

contradiction, if sequence �2j=�
�+��
j were bounded, we would have

1X
j=1

�2j

�1+
��

j

=
1X
j=1

���1j

�2j

��+
��

j

�

C
1X
j=1

���1j <1, which is impossible because of F0 2 �Mc;��. Now,

1X
j=1

�2T
(�T + �j)

2�
2
j = ��+

��
T

1X
j=1

�2���
��

T ��+
��

j

(�T + �j)
2

�2j

��+
��

j

� ��+
��

T

�2���
��

T ��+
��

N(�T )�
�T + �N(�T )

�2 �2N(�T )
��+

��
N(�T )

& ��+
��

T

�2N(�T )

��+
��

N(�T )

� C��+
��

T ;

for any constant C and large T , where N (�) � 1

�
log

 
~C

�

!
is such that �N(�) � �. From

(19) we conclude that �T � CTh
1=2
T ��+

��
T , and this yields the statement of Proposition 3

because of Assumption 4(iii).

Appendix 5: Proof of Proposition 5

In A.5.1 we prove the asymptotic normality of the test statistic under H0. In A.5.2 we

derive the asymptotic behavior under global alternatives. We gather the technical lemmas

in A.5.3, and compare them with the ones of TK and of the previous sections.

39



A.5.1 Asymptotic distribution under the null hypothesis

A.9: The conditional variance function V0(z) := V0 [Y � '0(X)jZ = z] is in class C2 (R) ;

such that inf
S�
V0 > 0 under H0:

A.10: Estimator �' is such that sup
z2S�

1

ThT

X
t

K

�
z � Zt
hT

�
[�'(Xt)� '0(Xt)]

2 = op
�
T�"

�
under H0, for some " >

1

3
+
2

m
:

Assumptions A.9 and A.10 concern the conditional variance V0(z), and the �rst-step

estimator �' in the estimator V̂ (z) of V0(z), respectively. These assumptions are used in

Lemma D.1 to prove the convergence of V̂ (z), its inverse V̂ (z)�1; and Ĥ(z)�1 under H0,

where Ĥ(z) := V̂ (z)f̂(z)2: Then, using
log T

ThT
sup
z2S�

���Ĥ(z)�1 �H0(z)
�1
��� = op

�
1=
�
Th

1=2
T

��
from Lemma D.1 (iii) with " >

1

3
+
2

m
(Assumption A.10) and hT = �cT��� with 2=9 < �� <

min f1� 4=m; 1=3g, the proof of �T
d�! N(0; 1) is unchanged compared to Appendix 2.

A.5.2 Asymptotic behaviour under global alternatives

Let �'�T denote the population counterpart of the pilot estimator �'. Let V�T (z) :=

E
h�
Y � �'�T (X)

�2 jZ = z
i
and 
�T (z) := V�T (z)

�1: Let L2�T (Z) denote the L
2-space as-

sociated with measure �Z;�T (dz) = 
�T (z)I fz 2 S�gFZ(dz), and A��T the corresponding

adjoint of operator A. Denote by
�
��T ;j;  �T ;j; !�T ;j; j = 1; 2; :::

	
the singular value decom-

position of operator A w.r.t. the H2[0; 1] and L2�T (Z) norms.

A.11: There exist constants c1 � c2 such that c1
0(z) � 
�T (z) � c2
0(z), for any z 2 S�

and large T:

A.12: Under H1:
���hr;  �T ;jiL2�T (Z)��� � C

��hr;  jiL2(Z)�� for large j and T , and a constant C.
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A.13: Under H1: sup
z2S�

���V̂ (z)� V�T (z)
��� = Op

 r
log T

ThT
+ h2T

!
+ op

�
T�1=6

�
.

Assumptions A.11 and A.12 concern the L2-norm in L2�T (Z). Speci�cally, Assumption A.11

implies that the L2-norms in L2�T (Z) and L
2(Z) are equivalent. Assumption A.12 requires

that the coe¢ cients of r w.r.t.
�
 �T ;j; j = 1; 2; :::

	
are uniformly bounded from below by

the coe¢ cients w.r.t.
�
 j; j = 1; 2; :::

	
. Finally Assumption A.13 yields the uniform conver-

gence of V̂ (z) to V�T (z) and is the analogue of the property proved in Lemma D.1 (i) under

H0.

The asymptotic behavior of �T is derived along the lines of Section 3.3 using Lem-

mas D.2 and D.3. The population counterpart of the TiR estimator '̂ in (7) is '�T =�
�T + A��TA

��1
A��T r. The population counterpart of the minimized criterion valueQT ('̂) is

Q�T := E0
�

�T (Z)I fZ 2 S�g [M�T r(Z)]

2� = kM�T rk
2
L2�T

(Z), where

M�T r :=
h
1� A

�
�T + A��TA

��1
A��T

i
r, and �T := Th

1=2
T Q�T . From Lemma D.2 and As-

sumption 5, we deduce that j�T j � C�T for some constant C. As in Equation (10):

�T = Th
1=2
T

1X
j=1

�2T
(�T + ��T ;j)

2



r;  �T ;j

�2
L2�T

(Z) + Th
1=2
T kP�T rk

2
L2�T

(Z) , (20)

where P�T denotes the orthogonal projection operator on the linear space ker
�
A��T

�
w.r.t.

the scalar product in L2�T (Z). Let us now characterize the divergence rate of �T .

Consider �rst close misspeci�cations. Then, r 2 ker (A�)? and r 2 ker
�
A��T

�?
from

Lemma D.3. Thus P�T r = 0. Morever, c1A�A � A��TA � c2A
�A from Assumption A.11, and

thus c1�j � ��T ;j � c2�j. Using Assumption A.12, �T � CTh
1=2
T

1X
j=1

�2T
(�T + �j)

2 hr;  ji
2
L2(Z)

from (20). Then, from the arguments in Appendix 4, we get �T � CTh
1=2
T ��+

��
T ; for any
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� > 1:

Consider now separated misspeci�cations. Then, r =2 ker (A�)? = ker
�
A��T

�?
, and

kP�T rkL2�T (Z)
� C from Assumption A.11. Thus we have �T � Th

1=2
T C from (20), and

the conclusion follows.

A.5.3 Technical Lemmas

Lemma D.1 is akin to Lemmas C.2 and C.3 (i) in TK. Lemma D.2 extends Proposition

2 for an estimated weighting function. Since V�T (z) might not converge, we cannot expect

an asymptotically normal distribution for term ��
�
5;T as in A.3.2. However, its contribution

is still Op(1): Lemma D.3 shows that the orthogonal complement of the null space of the

ajoint of A is the same under the two norms L2�T (Z) and L
2(Z).

Lemma D.1: Under H0 and A.1-A.10 ;

(i) sup
z2S�

���V̂ (z)� V0(z)
��� = Op

 r
log T

ThT
+ h2T

!
+ op

�
T�"=2+1=m

�
;

(ii) sup
z2S�

���V̂ (z)�1 � V0(z)
�1
��� = Op

 r
log T

ThT
+ h2T

!
+ op

�
T�"=2+1=m

�
;

(iii) sup
z2S�

���Ĥ(z)�1 �H0(z)
�1
��� = Op

 r
log T

ThT
+ h2T

!
+ op

�
T�"=2+1=m

�
.

Lemma D.2: Under H1, Assumptions 1-3, 4(ii), A.1-A.8 and A.11-A.13, if �T ! 1 as

T !1 we have ��T = Th
1=2
T ��;E5;T +op(�T )+Op(1), where �

�;E
5;T is de�ned as in (17) replacing


t by 
̂ (Zt).

Lemma D.3: We have ker
�
A��T

�?
= ker (A�)?, where the orthogonal complements are

w.r.t. the scalar product in L2�T (Z) in the LHS, and L
2(Z) in the RHS, respectively.
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