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Spread Term Structure and Default Correlation

Abstract

The aim of this paper is to analyse default correlation and its implications
for the term structures of corporate bonds and credit derivatives, extending in
particular the results of Jarrow, Yu (2001) and the related literature. We first
consider different characterisations of spread term structures, when the available
information corresponds to the default histories of the firms. The approach is
then extended to factor models, both in a static and in a dynamic framework.
We discuss in details the links between default correlation and jumps in short
term spreads, and how these phenomenons depend on the available information.
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tensities, Copula, Credit Derivatives
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Structure par terme et corrélation de défaut

Résumé

Le but de cet article est d’analyser la corrélation de défaut et ses implica-
tions pour les structures par terme des obligations d’entreprises et des dérivés
de crédit, en étendant en particulier les résultats obtenus par Jarrow, Yu (2001).
Nous commençons par donner diverses caractérisations des structures par terme
de différentiels de taux, lorsque l’information disponible correspond aux his-
toriques de défaillance. L’approche est ensuite étendue à des modèles de dé-
faillances à facteurs, ceux-ci pouvant ou non varier dans le temps. Nous dis-
cutons particulièrment les liens entre la corrélation de défaut et les sauts dans
l’évolution des différentiels de taux à court terme, et comment ces phénomènes
dependent de l’information disponible.

Mots clefs: Obligations d’entreprises, risque de crédit, corrélation de défaut,
saut des intensités, copule, dérivés de crédit
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1 Introduction
Traditionally the analysis of credit risk has focused on the valuation of de-
faultable bonds and, more recently, of more complex and more exotic credit
derivatives. These applications require the specification of the joint distribution
of corporate times to default. In order to illustrate the main features involved
in these problems, let us first consider a portfolio of corporate bonds. This
portfolio includes fixed income bonds corresponding to N firms i = 1, ..., N . For
firm i the contractual pattern of payoffs at date t is:

Fi,t+h, h = 1, ...,H,

where Fi,t+h has to be paid at t+ h by firm i. However these payments are not
certain since firm i can default before. If we assume for instance a zero-recovery
rate the cash-flows which will be actually received are:

Fi,t+hIYi>t+h,

where Yi denotes the time to default for firm i and I the indicator function.
Therefore they are stochastic at date t. A value at t of the whole portfolio can
be derived by discounting and by predicting default. More precisely a value of
the credit portfolio at date t is:

Wt =
NX
i=1

HX
h=1

Fi,t+hB (t, h)Pt (Yi > t+ h) , (1)

where B (t, h) denotes the price at t of the riskfree zero-coupon bond with resid-
ual maturity h, and Pt a risk neutral distribution conditionally to the informa-
tion available at date t.
The value at a future date t+ k < t+ 1, say1, is:

Wt+k =
X

i∈Jt+k

HX
h=1

Fi,t+hB (t+ k, h− k)Pt+k (Yi > t+ h) ,

where Jt+k denotes the set of firms which are still alive at t+ k. The portfolio
value is modified for three reasons:

i) the riskfree term structure varies in time;

ii) the structure of the population of firms included in the portfolio can change
with observed default;

iii) the information is modified.

1 t+k is assumed smaller than t+1 to avoid the possibility of intermediate payment between
t and t+ k, and the choice of a strategy to reinvest this payment.
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Clearly the determination of the current portfolio value, or of the distribu-
tion of a future portfolio value, requires some knowledge about the distribution
of times to default of the different firms. This knowledge concerns not only
the marginal distribution of times to default, but also their dependence, called
default correlation in the literature [see e.g. Duffie, Singleton (1998), Li (2000),
Gouriéroux, Monfort (2002)]. Indeed defaults can arise by cluster, which in-
duces very special dynamics of the remaining population Jt+k. Moreover the
default of some firms can modify our beliefs on default of the other firms [an
effect of the information set on the conditional probability Pt+k (Yi > t+ h)].
The need for a joint analysis of default is even increased when the portfolio

includes also credit derivatives written on several default times, such as first-
to-default baskets. In particular, default correlation has an effect on the term
structures of prices of such credit derivatives.
The aim of this paper is to analyse the joint distribution of corporate times to

default, focusing in particular on default correlation and on its implications for
the term structure of corporate bonds and credit derivatives. It is an extension of
the analysis performed by Jarrow, Yu (2001), and Schonbucher, Schubert (2001)
2. Section 2 is concerned with the patterns of the term structures of corporate
bonds according to the firms, which are still alive. The term structures can be
written in terms of the joint survivor function of times to default, or in terms
of default intensities. It is proved that they are sufficient to recover the price
of any credit derivative, even with a payoff written jointly on several times to
default. Moreover it is proved that the term structure of corporate interest rate
will feature jumps whenever default correlation exists. Section 3 is concerned
with factor models. We first consider models with a single time invariant factor.
This factor represents unobserved individual heterogeneity and creates a default
correlation characterized by an Archimedean copula. In this framework the
corporate bond prices, the spreads of interest rates and the jump in intensities
can be interpreted from the heterogeneity (factor) distribution. The analysis is
successively extended to dynamic factor models. We discuss especially the role
of the information set, and explain how intensities, jumps in the intensity, and
default correlation depend on the selected information set. Section 4 concludes.

2 Characterisations of the spread term struc-
tures.

Let us consider two firms, with times to default Y1 and Y2, respectively. The
joint survivor function of durations Y1, Y2 under the risk neutral distribution is
denoted by:

S (y1, y2) = P [Y1 ≥ y1, Y2 ≥ y2] .

2 See also Yu (2003), who provides an algorithm for simulating correlated defaults with
general dependence structure.
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If default is independent of the riskfree term structure under the risk neutral
probability, the price at t of a zero-coupon bond with residual maturity h asso-
ciated with firm 1 is:

B1 (t, h) = B (t, h)P (Y1 > t+ h | It) , (2)

where B (t, h) is the price of the riskfree zero-coupon bond and It denotes the
information available at t. Formula (2) allows for a separate analysis of default
and riskfree term structure [see e.g. Fons (1994)]. It is important to keep in
mind that the conditional default probability P (Y1 > t+ h | It) can be generally
interpreted as a ratio of two prices of zero-coupon bonds. Similarly:

− 1
h
log

B1 (t, h)

B (t, h)
= − 1

h
logP (Y1 > t+ h | It)

is the spread of interest rates at term h. Without loss of generality, we assume a
zero riskfree rate: B (t, h) = 1,∀t, h, and thus systematically interpret B1 (t, h)
as a spread of prices.

2.1 The term structures of corporate bonds.

In this section we make the following assumption on the information set It.

Assumption A.1: The information It available to price future default includes
the default history of the firms only.

This assumption has been adopted in several studies in the literature [see e.g.
Bremaud (1981), Duffie, Singleton (1998), Jarrow, Yu (2001), Yu (2003)]. It is
implicitly assumed that additional macrofactors, such as the short term riskfree
interest rate or the market return, have no influence on default prices. This
assumption will be relaxed in Section 3 concerning factor models.
To derive the prices of zero-coupon bonds issued by the two firms, we dis-

tinguish two cases according to the available information It. Indeed at date t
both firms can be still alive, or one firm can have defaulted earlier.

i) Both firms are still alive

Let us consider the zero-coupon bonds issued by firm 1. At time t the price of
this bond with residual maturity h when both firms are still alive is given by:

B1 (t, h) = P [Y1 > t+ h | Y1 > t, Y2 > t] =
S (t+ h, t)

S (t, t)
, ∀t, h. (3)

ii) One firm defaulted earlier

If firm 2 defaulted at a previous date, t− k, say, the price at time t of the same
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bond is given by [see Appendix 1]:

B1 (t, h, k) = P [Y1 > t+ h | Y1 > t, Y2 = t− k] =

∂S
∂y2

(t+ h, t− k)
∂S
∂y2

(t, t− k)
, ∀t, h, k ≤ t.

(4)

Similarly, the prices of zero coupon bonds issued by firm 2 are given by:

B2 (t, h) =
S (t, t+ h)

S (t, t)
, (5)

if firm 1 is still alive at t,

B2 (t, h, k) =

∂S
∂y1

(t− k, t+ h)
∂S
∂y1

(t− k, t)
, (6)

if firm 1 defaulted at time t− k.

Thus at time t the term structure associated with firm 1 depends on the situation
of the second firm. If firm 2 is still alive it is given by h → B1 (t, h). If firm
2 defaulted at t − k, it is given by: h → B1 (t, h, k) . Generally there exists
a discontinuity of the term structure of interest rate spread according to the
situation of firm 2, since:

lim
k→0

r1 (t, h, k) = r1
¡
t, h, 0+

¢ 6= r1 (t, h) ,

where:

r1 (t, h) = − 1
h
logB1 (t, h) , r1 (t, h, k) = − 1

h
logB1 (t, h, k) ,

denote the geometric interest rate spreads. This discontinuity originates from
the effect of default of firm 2 on the information set which is relevant for predict-
ing default of firm 1. Under default independence the term structures feature
no discontinuity.
When the two curves h→ r1 (t, h, 0

+) , r1 (t, h) are different, they can differ
for all terms [see Figure 1, Panel A], or simply for some terms. For instance they
can differ in the long term, but coincide in the short term: r1 (t, 0, 0+) = r1 (t, 0);
in this case default of the second firm as no immediate effect on default intensity
of firm 1 [see Figure 1, Panel B]. Alternatively, the two curves can differ in the
short term, but can coincide in the long term: r1 (t,∞, 0+) = r1 (t,∞); it will
arise if the effect of default of firm 2 vanishes asymptotically [see Figure 1, Panel
C].

Insert Figure 1A: Discontinuity of term structures

Insert Figure 1B: Continuity in the short term

Insert Figure 1C: Continuity in the long term

Finally the term structures coincide everywhere if and only if:
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S (t+ h, t)

S (t, t)
=

∂S
∂y2

(t+ h, t)
∂S
∂y2

(t, t)
, ∀t, h ≥ 0,

⇐⇒ ∂ logS

∂y2
(t+ h, t) =

∂ logS

∂y2
(t, t) , ∀t, h ≥ 0,

⇐⇒ ∂ logS

∂y2
(y1, y2) is independent of y1, when y1 ≥ y2,

⇐⇒ the joint survivor function can be decomposed as a product:

S(y1, y2) = a(y1)b(y2), say, for y1 ≥ y2. (7)

This condition can be seen as a type of independence condition on the cone
{y1 ≥ y2} 3 .
It is interesting to compare the term structures when condition (7) is satisfied

[see Gouriéroux, Monfort (2003)]. We get:

B1(t, h, k) =

∂S
∂y2

(t+ h, t− k)
∂S
∂y2

(t, t− k)
=

a(t+ h)

a(t)
= B1(t, h) ∀t, h, k,

and deduce the proposition below.

Proposition 1 The term structure of firm 1 is continuous when firm 2 defaults
if and only if it is independent of the situation of firm 2:

B1(t, h, 0
+) = B1(t, h), ∀t, h ,

⇐⇒ B1(t, h, k) = B1(t, h), ∀t, h, k.

In fact condition (7) can be seen as a noncausality condition from Y2 to
Y1 [see Florens, Fougere (1996) for causality analysis of point processes], which
explains the result of Proposition 1.

2.2 Equivalence between the marginal term structures and
the joint distribution of default.

Equations (3)-(6) explain how to derive the marginal term structures from the
joint survivor function of default. In this section we show that the marginal
term structures actually provide an information equivalent to the joint survivor
function. Note that generally it is not possible to deduce the price of a derivative
with payoff written on two assets Y1, Y2, from the price of derivatives written
on Y1 only and of derivatives written on Y2 only. In the case of default risk the
situation can be different since the default of a firm can imply a jump in the
derivative prices written on default of the other firm (due to the jump in the
information set), revealing the dependence structure.

3More precisely the times to default are independent conditionally to Y1 > y1, Y2 < y2, for
any y1, y2 with y1 > y2.
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We can deduce from the term structure of firm 1 the following default in-
tensities [see Cox, Oakes (1984) chap. 10] 4:

λ1 (t) ≡ lim
dt→0

1

dt
P [Y1 < t+ dt | Y1 > t, Y2 > t]

= lim
dt→0

1−B1 (t, dt)

dt
= −∂ logS

∂y1
(t, t), (8)

γ1 (t, t− k) ≡ lim
dt→0

1

dt
P [Y1 < t+ dt | Y1 > t, Y2 = t− k]

= lim
dt→0

1−B1 (t, dt, k)

dt
= − ∂

∂y1
log

·
− ∂S

∂y2
(t, t− k)

¸
. (9)

Function λ1 is the default intensity for firm 1 at time t when both firms are still
alive, and function t → γ1 (t, t− k) when firm 2 has defaulted at the previous
date t−k. Function λ1 corresponds to the short term spread at time t associated
to firm 1 when both firms are still alive, since this short term spread is:

lim
dt→0

− 1
dt
log [B1(t, dt)/B (t, dt)] = lim

dt→0
− 1
dt
logB1(t, dt)

= lim
dt→0

1−B1(t, dt)

dt
.

Similarly γ1 (t, t− k) is the short term spread of firm 1 when the second firm
defaulted earlier.
The intensity can feature a jump when one firm defaults. Let us assume that

the joint survivor function admits a cross second order derivative on the diago-
nal. The sign and size of the jump are obtained by considering the difference:

γ1
¡
t, t−

¢− λ1 (t) =
∂ logS

∂y1
(t, t)− ∂

∂y1
log

·
− ∂S

∂y2
(t, t)

¸
= − ∂

∂y1
log

·
−∂ logS

∂y2
(t, t)

¸
.

In particular the jump is always positive if and only if:

− ∂

∂y1
log

·
−∂ logS

∂y2
(t, t)

¸
≥ 0, ∀t.

4 Intensities λ2 (t) and γ2 (t, t− k) for firm 2 are defined similarly:

λ2 (t) ≡ lim
dt→0

1

dt
P [Y2 < t+ dt | Y1 > t, Y2 > t]

= lim
dt→0

1−B2 (t, dt)

dt
= −∂ logS

∂y2
(t, t),

γ2 (t, t− k) ≡ lim
dt→0

1

dt
P [Y2 < t+ dt | Y2 > t, Y1 = t− k]

= lim
dt→0

1−B2 (t, dt, k)

dt
= − ∂

∂y2
log

·
− ∂S

∂y1
(t− k, t)

¸
.
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This condition is equivalent to:

∂2 logS

∂y1∂y2
(t, t) ≥ 0, ∀t,

or to:

1

S (t, t)

∂2S

∂y1∂y2
(t, t)− 1

S (t, t)
2

∂S

∂y1
(t, t)

∂S

∂y2
(t, t)

= lim
dt→0

1

dt2
Cov (It<Y1<t+dt, It<Y2<t+dt | Y1 > t, Y2 > t) ≥ 0, ∀t. (10)

Proposition 2 If S is twice differentiable on the diagonal, the intensity jump
is always nonnegative if and only if the infinitesimal default occurrences are
positively correlated.

Thus jumps in the term structure of credit spreads could be explained by
default correlation5.
The existence of the cross derivative of the joint survivor function implies

restrictions on the intensity functions. More precisely it is easily checked that the
cross derivative ∂2S (t, t) /∂y1∂y2 exists if and only if λ1(t)/γ1(t, t) = λ2(t)/γ2(t, t).
Thus under this condition the jumps in intensity have the same relative sizes
for both firms. When the cross order derivative does not exist, it is necessary
to introduce two definitions of infinitesimal default covariance [see Appendix 2
i)]:

lim
dt→0

1

dt2
Cov (It<Y1<t+dt, It−dt<Y2<t | Y1 > t, Y2 > t− dt) , (11)

lim
dt→0

1

dt2
Cov (It−dt<Y1<t, It<Y2<t+dt | Y1 > t− dt, Y2 > t) , (12)

to point out the asymmetric reaction of default intensity of firm 1 to default of
firm 2, and of default of firm 2 to default of firm 1, respectively. In this case
the intensity jump of firm 1 [of firm 2, respectively] is always positive if and
only if the instantaneous default correlation in expression (11) [expression (12),
respectively] is positive.

The next proposition6 is proved in Section 2.5.2, where its pricing interpre-
tation is also discussed.

Proposition 3 The knowledge of the intensities λ1, γ1, λ2, γ2 is equivalent to

5 See Zhou (2001) for term structure models with jumps, and Schonbucher, Schubert (2001)
for an analysis of intensity jumps in a specific model of correlated defaults.

6 See also Cox (1972), Cox, Lewis (1972), Griffiths, Milne (1978), Cox, Oakes (1984) chap.
10 for general presentations of bivariate duration models.
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the knowledge of the joint survivor function. More precisely we have:

S (y1, y2) = exp [−Λ1 (y1)− Λ2 (y1)] +
Z y1

y2

λ2 (y) e
−Λ1(y)−Λ2(y)e−Γ1(y1,y)dy,

if y1 ≥ y2, and

S (y1, y2) = exp [−Λ1 (y2)− Λ2 (y2)] +
Z y2

y1

λ1 (y) e
−Λ1(y)−Λ2(y)e−Γ2(y2,y)dy,

if y1 < y2,

where Λ1,Λ2,Γ1,Γ2 denote the integrated intensities:

Λi(y) =

Z y

0

λi(s)ds, Γi (z, y) =

Z z

y

γi (s, y) ds, i = 1, 2.

Therefore the knowledge of the marginal term structures is equivalent to the
knowledge of the joint survivor function S. This implies that the marginal term
structures provide full information not only on the marginal distribution of the
times to default Y1, Y2, but also on their dependence structure, that is default
correlation. In particular we deduce the following corollary.

Corollary 4 Under default correlation, there is a one-to-one relationship be-
tween the term structures of zero-coupon bonds, the short term spreads, and the
joint survivor function.

In fact it is possible to improve the equivalence given in Corollary 4. In-
deed from equation (8), we can derive default intensities λ1, λ2 from the term
structures B1(t, h), B2(t, h), ∀t, h. Moreover we have:

λ1(t) + λ2(t) = −∂ logS
∂y1

(t, t)− ∂ logS

∂y2
(t, t)

= − d

dt
logS(t, t),

and by integration:
S(t, t) = exp [−Λ1(t)− Λ2(t)] . (13)

Thus S(t, t) can be computed from B1(t, h), B2(t, h), and also S(t + h, t) =
B1(t, h)S(t, t) and S(t, t+ h) = B2(t, h)S(t, t) can be:

S(t+ h, t) = B1(t, h) exp [−Λ1(t)− Λ2(t)] , (14)

S(t, t+ h) = B2(t, h) exp [−Λ1(t)− Λ2(t)] . (15)

We deduce the following Corollary.

Corollary 5 Under default correlation, there is a one-to-one relationship be-
tween the term structures of zero-coupon bonds computed when both firms are
still alive, the short term spreads, and the joint survivor function.
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Finally from Proposition 3 and equations (3)-(6) we deduce the prices of
bonds in terms of the intensities.

Corollary 6 The prices of bonds issued by firm 1 are given by:

B1(t, h) = e−[Λ1(t+h)−Λ1(t)]−[Λ2(t+h)−Λ2(t)]

+

Z t+h

t

λ2 (y) e
−[Λ1(y)−Λ1(t)]−[Λ2(y)−Λ2(t)]−Γ1(t+h−y,y)dy,

B1(t, h, k) = exp

"
−
Z t+h

t

γ1(s, t− k)ds

#
.

When both firms are still alive, the price of the bond admits an exponential
expression:

B1(t, h) = exp−
Z t+h

t

µ(s, t)ds,

where: µ(s, t) = limdt→0 P [Y1 > t+ s+ dt | Y1 > t+ s, Y2 > t] /dt depends gen-
erally on t, and in particular does not coincide with λ1(s).

2.3 Comparison with the approach by Jarrow, Yu (2001).

In Section 2.2 the bivariate duration model has been defined by means of the
intensities λ1, λ2, γ1, γ2. Jarrow, Yu (2001), Section I, proposed to define the
distribution by means of conditional intensities. Typically they consider the
conditional distribution of Y1 given Y2 (resp. Y2 given Y1) and the associated
hazard functions λ (y1 | y2) [resp. λ (y2 | y1)]:

λ (y1 | y2) = lim
dt→0

1

dt
P [Y1 < y1 + dt | Y1 > y1, Y2 = y2] .

These intensities differ from λ1 or γ1 by the information set. Note in particular
that y2 can be larger than y1.
Of course the conditional distribution can be derived from the conditional

intensity:

P [Y1 > y1 | Y2 = y2] = S (y1 | y2) = exp−Λ (y1 | y2) ,
where the cumulated conditional hazard is Λ (y1 | y2) =

R y1
0

λ (y | y2) dy. More-
over the knowledge of both conditional survivor functions S (y1 | y2) and S (y2 | y1)
define unambiguously the joint distribution of (Y1, Y2) [see Gouriéroux, Mon-
fort (1979)]. However it is also known that both conditional distributions cannot
be chosen arbitrarily. They have to satisfy some compatibility restrictions [see
Gouriéroux, Monfort (1979)]. More precisely the joint pdf can be compute from
the conditional pdf by:

f (y1, y2) =
f (y2 | y1)R f(y2|y1)
f(y1|y2)dy2

=
f (y1 | y2)R f(y1|y2)
f(y2|y1)dy1

. (16)

9



The second equality, which has to be satisfied for any y1, y2, defines the compat-
ibility restrictions. Therefore the conditional intensities are compatible if and
only if:

λ (y2 | y1) exp−Λ (y2 | y1)R λ(y2|y1) exp−Λ(y2|y1)
λ(y1|y2) exp−Λ(y1|y2)dy2

(17)

= λ (y1 | y2) exp−Λ (y1 | y2)R λ(y1|y2) exp−Λ(y1|y2)
λ(y2|y1) exp−Λ(y2|y1)dy1

, ∀y1, y2.

Jarrow, Yu (2001) proposed a specification of the type (p 1772):

λ (y1 | y2) = a1 + a2Iy1>y2 ,
λ (y2 | y1) = b1 + b2Iy2>y1 . (18)

Their justification is ”when firm 2 defaults, firm 1’s default probability will
jump and vice-versa”. In fact this idea has to be written on λ1, γ1 as described
in previous sections, not on the conditional intensities. As a consequence the
parameters in (18) cannot be chosen arbitrarily. It is easy (but cumbersome) to
check that the compatibility restriction implies:

a2 = 0 or b2 = 0,

that is a recursive specification. In fact this is essentially the case completely
studied by Jarrow, Yu (2001). Finally note that, under the compatibility re-
striction, the joint distribution is easily derived from (16), (17).

2.4 Examples

In order to illustrate the results above, let us discuss several examples.

Example 1: Constant intensities.

Let us assume constant intensities given by:

λ1(t) = r1, γ1(t, t− k) = r∗1 , λ2(t) = r2, γ2(t, t− k) = r∗2 .

The joint survivor function becomes:

S (y1, y2) = exp [− (r1 + r2) y1] + r2e
−r∗1y1

Z y1

y2

e−[r1+r2−r
∗
1 ]ydy, if y1 > y2.

i) If r∗1 6= r1 + r2, we get:

S (y1, y2) =
r1 − r∗1

r1 + r2 − r∗1
e−(r1+r2)y1+

r2
r1 + r2 − r∗1

e−r
∗
1y1e−(r1+r2−r

∗
1 )y2 , for y1 > y2.
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The prices of bonds issued by firm 1 are given by:

B1 (t, h) =
r1 − r∗1

r1 + r2 − r∗1
e−(r1+r2)h +

r2
r1 + r2 − r∗1

e−r
∗
1h, if firm 2 is still alive at t,

B1 (t, h, k) = e−r
∗
1h, if firm 2 defaulted at t− k.

This term structure is meaningful only when firm 1 is still alive at date t. This
explains why the zero-coupon prices are independent of r∗2 . Moreover the long
term spread is given by min{r1 + r2, r

∗
1}.

We provide in Figure 2, Panel A, the term structure associated with firm 1
when both firms are still alive, for parameters r1 = 0.01, r2 = 0.02, and different
values of r∗1 .

Insert Figure 2A: constant intensities: term structure when both firms are still alive

This term structure is constant in time. Moreover it is increasing (decreasing)
in the maturity when r∗1 > r1 [r∗1 < r1], that is when the occurrence of default
of the second firm increases (decreases, respectively) the default intensity of
the first firm. When r∗1 = r1, default intensity of firm 1 is independent of the
situation of firm 2, and the term structure is flat. In Panel B we provide the
term structure of firm 1 when the second firm defaulted earlier.

Insert Figure 2B: constant intensities: term structure when firm 2 defaulted earlier

This term structure is flat at level r∗1 = 0.05, and constant in time. The short
term spreads for firm 1 are reported in Panels C and D.

Insert Figure 2C: constant intensities: short term spread when Y2 > Y1

Insert Figure 2D: constant intensities: short term spread when Y2 < Y1

In Panel C the second firm defaults after firm 1 [Y2 > Y1 = 7], and the short
term spread is constant at r1. In Panel D, the default of firm 2 occurs before,
Y2 = 4, and at that date the short term spread of firm 1 jumps at r∗1 = 0.05.
Finally, the interest rate spreads for a zero-coupon bond issued by firm 1 and
with given maturity t = H = 10 are reported in Figure 3, Panels A and B, in the
case where firm 2 defaults after maturity H [respectively, before with Y2 = 7].

Insert Figure 3A: constant intensities: spread for a fixed maturity H when Y2 > H

Insert Figure 3B: constant intensities: spread for a fixed maturity H when Y2 < H

In the first case the spread is decreasing in time, and takes the value r1 = 0.01
at maturity; in the second case it features a jump at time to default of firm 2,
and is constant at r∗1 = 0.05 afterwards.

ii) If r∗1 = r1+ r2, the two possible values of the long term spread coincide. The
joint survivor function becomes:

S (y1, y2) = [1 + r2 (y1 − y2)] e
−(r1+r2)y1 , for y1 > y2,

11



and the prices of bonds issued by firm 1 are given by:

B1 (t, h) = [1 + r2h] e
−(r1+r2)h, if firm 2 is still alive at t,

B1 (t, h, k) = e−r
∗
1h, if firm 2 defaulted at t− k.

The marginal survivor function of y1 becomes:

S1(y1) =
r1 − r∗1

r1 + r2 − r∗1
e−(r1+r2)y1 +

r2
r1 + r2 − r∗1

e−r
∗
1y1 ,

which is a mixture of two exponential distributions, with parameters r1 + r2
and r∗1 ; they correspond to the intensity of min (Y1, Y2) and to the intensity of
Y1 given Y2 = y, Y1 > y, respectively.
The conditional hazard function of Y1 given Y2 = y2 is given by:

λ1(y1 | y2) = r1
r∗2

r2e
−(r1+r2−r∗2)(y2−y1) + r1r∗2

r1+r2−r∗2 (1− e−(r1+r2−r
∗
2)(y2−y1))

,

if y1 < y2, and:
λ1(y1 | y2) = r∗1 ,

if y1 ≥ y2.
Contrary to a natural belief the conditional hazard function λ1(y1 | y2) is not

a stepwise function: λ1(y1 | y2) = λ1Iy1≤y2+λ∗1Iy1≥y2 , say, when the underlying
intensities are constant. This type of condition has been introduced for instance
in Jarrow, Yu (2001), Section I. The stepwise condition on the conditional haz-
ard function is satisfied if and only if r2 = r∗2 . This condition is a noncausality
condition from Y1 to Y2 [see Florens, Fougere (1996)]. The term structures of
the corporate bonds have been studied analytically by Jarrow, Yu (2001) in this
special case only [see the discussion in Section 2.3; see also Bielecki, Rutkowski
(2002), Chapter 10, and Yu (2003).].

Example 2: Model with proportional hazard

Let us consider the extension of Example 1 characterized by the following in-
tensities:

λ1(t) = r1λ0 (t) , λ2 (t) = r2λ0(t)

γ1(t, t− k) = r∗1λ0 (t) , γ2 (t, t− k) = r∗2λ0(t),

where λ0 is a positive function. Thus all intensities are proportional to a same
baseline hazard function. In particular, the intensities can depend on the default
occurrence of the other firm, but the intensities γ1 and γ2 are independent of the
date of default of the other firm. In fact this model is equivalent to the model
of Example 1 after applying an appropriate time deformation. More precisely it
is easily checked that the transformed variables Λ0 (Y1) , Λ0 (Y2) admit constant

12



intensities. The survivor function is deduced from the survivor function of
Example 1 by replacing yi by Λ0(yi), i = 1, 2. For instance if r∗1 6= r1 + r2, we
get:

S (y1, y2) =
r1 − r∗1

r1 + r2 − r∗1
e−(r1+r2)Λ0(y1)+

r2
r1 + r2 − r∗1

e−r
∗
1Λ0(y1)e−(r1+r2−r

∗
1 )Λ0(y2),

for y1 > y2, and:

B1 (t, h) =
r1 − r∗1

r1 + r2 − r∗1
e−(r1+r2)[Λ0(t+h)−Λ0(t)] +

r2
r1 + r2 − r∗1

e−r
∗
1 [Λ0(t+h)−Λ0(t)],

if firm 2 is still alive at t,

B1 (t, h, k) = e−r
∗
1 [Λ0(t+h)−Λ0(t)], if firm 2 defaulted at t− k.

The price of the zero-coupon bond now depends on both date t and residual ma-
turity h, contrary to the special case described in Example 1. Moreover the price
specification is semi-nonparametric, with functional parameter Λ0 and scalar
parameters r1, r2, r∗1 , r∗2 . In particular, by appropriate choices of the time trans-
formation, we can reproduce the spread patterns observed in practice, which are
typically hump-shaped. We provide in Figure 4, Panel A, the term structure
associated with firm 1 at time t = 1, when both firms are still alive, for the
parameters r1 = 0.01, r2 = 0.02, a baseline hazard λ0 (t) = 1/ (1 + t)

0.3, and
different values of r∗1 .

Insert Figure 4A: proportional hazard: term structure when both firms are still alive

The pattern of the term structure is affected both by the jump in the intensity
according to the situation of firm 2 and by the shape of the baseline hazard λ0.
For our parameter choice the latter is decreasing, and when r∗1 is sufficiently
larger than r1, the term structure is hump-shaped. The hump arises when the
jump of the intensity is sufficiently large compared to the decreasing effect of
the baseline hazard function. Of course there exist other ways for creating such
a hump, for instance by selecting a baseline hazard with hump. In Panel B we
provide the term structure associated with firm 1 at time t = 1 when firm 2
defaulted earlier.

Insert Figure 4B: proportional hazard: term structure when firm 2 defaulted earlier

It is decreasing since the baseline hazard function λ0 is. Finally, the short term
spreads for firm 1 are reported in Panels C and D, when firm 2 defaults after
firm 1 [Y2 > Y1], and when firm 2 defaults before firm 1 [Y1 = 7, Y2 = 4],
respectively.

Insert Figure 4C: proportional hazard: short term spread when Y2 > Y1

Insert Figure 4D: proportional hazard: short term spread when Y2 < Y1

In the second case the short term spread features a jump at the time firm 2
defaults.
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Example 3: Flat term structures

The term structures are flat when both firms are still alive, if:

B1(t, h) = exp [−λ1(t)h] , B2(t, h) = exp [−λ2(t)h] .
The corporate interest rate spreads ri(t, h) = λi (t), i = 1, 2, are independent
of the maturity h, but they can depend on date t. From (14), (15) the joint
survivor function becomes:

S (y1, y2) = exp [−λ1(y2) (y1 − y2)− Λ1 (y2)− Λ2 (y2)] , if y1 ≥ y2,

and:

S (y1, y2) = exp [−λ2(y1) (y2 − y1)− Λ1 (y1)− Λ2 (y1)] , if y1 < y2.

The short term spreads λ1 (t), λ2 (t) cannot be chosen arbitrarily [see Appendix
3]:

Proposition 7 The joint survivor function is well-defined if and only if:

0 ≤ dλ1(t)

dt
≤ λ1(t)λ2(t),

0 ≤ dλ2(t)

dt
≤ λ1(t)λ2(t).

Thus the intensities λ1 and λ2 have to be increasing functions and their rate
of increase cannot be too large. The condition for the joint survivor function
to be well-defined is essentially:

∆ = S (y1 + dy1, y2 + dy2)− S (y1, y2 + dy2)− S (y1 + dy1, y2) + S (y1, y2) ≥ 0,
∀y1, y2, dy1, dy2.

Since ∆ is the price of a credit derivative paying 1, if y1 < Y1 < y1 + dy1 and
y2 < Y2 < y2+dy2 (when the interest rate is zero), this condition is necessary for
the absence of arbitrage opportunity among credit derivatives. This condition
can be compared to the necessary condition on the long run riskfree interest rate
implied by no arbitrage [El Karoui, Frachot, Geman (1998)]. Indeed the long
run riskfree interest rate has to be an increasing function of time. Since λi(t)
is in particular the corporate long run interest rate, when the term structure is
flat, it is not surprising to get the same type of conditions [dλi/dt > 0], even
for credit risky interest rates.
The intensity restrictions given in Proposition 7 are rather strong. Let us

assume for instance that firm 1 is AAA with a constant intensity λ1(t) = λ1,
close to zero. The set of restrictions reduces to 0 ≤ d log λ2(t)/dt ≤ λ1, ∀t,
which limits the time dependence of λ2.
Let us now derive the intensities when one firm has defaulted. We have [see

Appendix 3]:

− ∂S

∂y2
(y1, y2) = S (y1, y2)

h
λ
0
1(y2) (y1 − y2) + λ2(y2)

i
,
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and thus:

γ1 (t, t− k) = − ∂

∂y1

·
log− ∂S

∂y2

¸
(t, t− k) = λ1 (t− k)− λ

0
1(t− k)

λ
0
1(t− k)k + λ2(t− k)

.

When the time to default t− k of firm 2 is given, the intensity γ1 is an increas-
ing function of k. The intensity takes value λ1 (t− k) just before default of firm
2, value λ1 (t− k) − λ

0
1(t − k)/λ2(t − k) just after default of firm 2, and value

λ1 (t− k) when k is infinite. In particular the conditions of Proposition 7 en-
sure the positivity of intensity γ1, and imply that the intensity jump at default
time is necessarily nonpositive, which correspond to negative default correla-
tion. The term structures when both firms are still alive are flat since the effect
of increasing default intensity and negative default correlation exactly compen-
sate. Finally, the asymptotic behaviour corresponds to an intensity reverting
phenomenon: the shock due to default of firm 2 has no persistent effect.
From Corollary 6 we deduce the term structure of firm 1 when the second

firm has defaulted at time t− k [see Appendix 3]:

B1 (t, h, k) = exp

Ã
−h

"
λ1 (t− k)− 1

h
log

Ã
1 +

λ
0
1(t− k)

λ
0
1(t− k)k + λ2(t− k)

h

!#!
.

As an illustration we provide the term structures and the short term spreads
when the intensities λi are given by λi(t) = ri exp (βit), with r1 = 0.01, r2 =
0.05, β1 = 0.05, β2 = 0.01. In Figure 5, Panel A, we report the term structure
of firm 1 at time t = 4 when both firms are still alive. This term structure is
flat by assumption.

Insert Figure 5A: flat term structures: term structure when both firms are still alive

The term structure of firm 1 at date t = 5 when the second firm has defaulted
at the previous date t− k = 4 is provided in Panel B.

Insert Figure 5B: flat term structures: term structure when firm 2 defaulted earlier

This term structure is increasing, and features a lower level compared to Panel
A. Finally the short term spreads of firm 1 are reported in Panel C and Panel
D, when the second firm defaults after, respectively before, t = 10.

Insert Figure 5C: flat term structures: short term spread when Y2 > 10

Insert Figure 5D: flat term structures: short term spread when Y2 < 10

In the second case, the short term spread of firm 1 features a negative jump
at the date of default of the second firm [Y2 = 4], and increases afterwards,
reaching the pre-jump level asymptotically.
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2.5 Credit derivatives

2.5.1 First-to-default basket

The values of the survivor function S (y1, y2) can be considered as prices of
derivatives jointly written on both times to default. Let us assume y1 ≥ y2;
then the derivative pays 1$ at date y1 if Y1 ≥ y1 and Y2 ≥ y2. In particular
when y1 = y2 we get a first-to-default basket.
Let us first study the first-to-default term structure. The price at time t of

a first-to-default basket with residual maturity h is given by [see (13)]:

C (t, h) = P [Y1 > t+ h, Y2 > t+ h | Y1 > t, Y2 > t]

=
S (t+ h, t+ h)

S(t, t)
= exp−

Z t+h

t

[λ1 (u) + λ2 (u)] du.

From Corollary 5 the first-to-default term structure is implied by the two mar-
ginal term structures of the firms computed when the two firms are alive. In
particular the instantaneous interest rate associated with the first-to-default
basket is:

rc(t) = lim
h→0
− 1
h
logC (t, h) = λ1 (t) + λ2 (t) .

Thus this instantaneous interest rate is the sum of the instantaneous rates cor-
responding to both firms [see also Duffie (1998)]. This result is a consequence of
an instantaneous independence between failures’ occurrences. Indeed between t
and t+ dt, the default probabilities are:

P [Y1 ≤ t+ dt, Y2 ≤ t+ dt | Y1 > t, Y2 > t] = o (dt) ,

P [Y1 > t+ dt, Y2 ≤ t+ dt | Y1 > t, Y2 > t] = λ2(t)dt+ o (dt) ,

P [Y1 ≤ t+ dt, Y2 > t+ dt | Y1 > t, Y2 > t] = λ1(t)dt+ o (dt) ,

P [Y1 > t+ dt, Y2 > t+ dt | Y1 > t, Y2 > t] = 1− λ1(t)dt− λ2(t)dt+ o (dt) .

These conditions are equivalent to:

P [Y1 ≤ t+ dt, Y2 ≤ t+ dt | Y1 > t, Y2 > t] = λ1(t)λ2(t) (dt)
2
+ o (dt) ,

P [Y1 > t+ dt, Y2 ≤ t+ dt | Y1 > t, Y2 > t] = [1− λ1(t)dt]λ2(t)dt+ o (dt) ,

P [Y1 ≤ t+ dt, Y2 > t+ dt | Y1 > t, Y2 > t] = [1− λ2(t)dt]λ1(t)dt+ o (dt) ,

P [Y1 > t+ dt, Y2 > t+ dt | Y1 > t, Y2 > t] = [1− λ1(t)dt] [1− λ2(t)dt] + o (dt) ,

where the first components of the right hand side feature the independence
property7.
As an illustration, we provide below the term structure of the first-to-default

basket for the examples considered in section 2.4.

Example 2 (continued):
7The default occurrences are independent at first order in dt. However dependence at

second order in dt is introduced by default correlation, see equation (10).
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For a model with proportional hazard: S (t, t) = exp [− (r1 + r2)Λ0(t)] , and the
term structure is given by rC(t, h) = (r1 + r2) [Λ0(t+ h)− Λ0(t)] /h, whereas
the first-to-default intensity is rC(t) = (r1 + r2)λ0(t). Therefore this intensity
is also proportional to the baseline intensity.

Example 3 (continued):

For flat term structures we get: S (t, t) = exp [−Λ1(t)− Λ2(t)] ; the term struc-
ture of first-to-default prices is given by: rC(t, h) = [Λ1(t+ h)− Λ1(t)] /h +
[Λ2(t+ h)− Λ2(t)] /h.

2.5.2 Pricing interpretation of the joint survivor function

The interpretation in terms of first-to-default basket can be used to understand
the expression of the survivor function in the general framework given in Propo-
sition 3. Indeed let us assume y1 > y2; then:

IY1>y1,Y2>y2 = IY1>y1,Y2>y1 + IY1>y1Iy2<Y2<y1 . (19)

The first term in the RHS of equation (19) is the payoff of a first-to-default
basket with maturity y1. Its current price is given by exp [−Λ1(y1)− Λ2(y1)].
Therefore the price of the digital option paying 1$ at date y1 if Y1 > y1 and
y2 < Y2 < y1 [the second term in the RHS of equation (19)] must be equal to:

I =

Z y1

y2

λ2 (y) e
−Λ1(y)−Λ2(y)e−Γ1(y1,y)dy

=

Z y1

y2

e−Γ1(y1,y)
λ2 (y)

λ1 (y) + λ2 (y)
[λ1 (y) + λ2 (y)] e

−Λ1(y)−Λ2(y)dy.

This decomposition is easily understood since8:

E [IY1>y1Iy2<Y2<y1 ]
= E

£
E [IY1>y1IY1>Y2 | min (Y1, Y2) = y] Iy2≤min(Y1,Y2)≤y1

¤
= E [P [Y1 > y1 | min (Y1, Y2) = y, Y1 > Y2]

P [Y1 > Y2 | min (Y1, Y2) = y] Iy2≤min(Y1,Y2)≤y1
¤

= E [P [Y1 > y1 | Y2 = y, Y1 > y]P [Y1 > Y2 | min (Y1, Y2) = y]

Iy2≤min(Y1,Y2)≤y1
¤
,

and:

P [Y1 > y1 | Y2 = y, Y1 > y] = exp−Γ1 (y1, y) ,
P [Y1 > Y2 | min (Y1, Y2) = y] =

λ2 (y)

λ1 (y) + λ2 (y)
,

whereas the density of the min (Y1, Y2) is [λ1 (y) + λ2 (y)] e
−Λ1(y)−Λ2(y).

8Note that the interpretation below provides a proof of Proposition 3.
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2.6 Extension to an arbitrary number of firms.

The previous results can be extended to an arbitrary number N of firms. Let
us denote by Y1, Y2, ..., YN the times to default, and by S (y1, ..., yN ) their joint
survivor function. Again we have to condition on past default occurrences of
the firms. For instance, the price at time t of a zero coupon bond of firm 1
with residual maturity h when firms 1 to m are still alive and firms m+1, ..., n
defaulted at t− km+1, ..., t− kn, respectively, is given by:

B1 (t, h, km+1, ..., kn)

= E [IY1>t+h | Y1 > t, ..., Ym > t, Ym+1 = t− km+1, ..., Yn = t− kn]

=

∂(n−m)

∂ym+1...∂yn
S (t+ h, t, ..., t, t− km+1, ..., t− kn)

∂(n−m)

∂ym+1...∂yn
S (t, t, ..., t, t− km+1, ..., t− kn)

. (20)

The corresponding default intensities are given by:

γ1 (t, t− km+1, ..., t− kn)

= lim
dt→0

1

dt
P [Y1 < t+ dt | Y1 > t, ..., Ym > t, Ym+1 = t− km+1, ..., Yn = t− kn]

= lim
dt→0

1−B1 (t, dt, km+1, ..., kn)

dt
. (21)

3 Heterogeneity, jumps in spreads and default
correlation

This section considers corporate bond pricing in factor models. In the first
subsection the underlying factors are time independent. We first consider a
model where the times to default depend on a single static factor, which allows
to study in detail a default correlation represented by an Archimedean copula
[see e.g. Genest, McKay (1986)]. The model is then extended to incorporate
idiosyncratic static factors. We discuss the associated copula which extends the
Archimedean copula and the associated corporate term structures. The second
subsection considers dynamic factor models. We focus on the dependence of
intensities, jumps in intensities and default correlations with respect to the
selected information set.
The factor models are especially useful for homogeneous portfolios. For

this reason we assume in this section the homogeneity condition, that is the
symmetry of the joint distribution of times to default9 .

9Also called equidependence in the literature [see e.g. Frey, Mc Neil (2001), Gouriéroux,
Monfort (2002)].
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3.1 Static factor models.

3.1.1 A model with a common unobservable risk factor

i) Term structures

Let us assume that times to default Y1 and Y2 are independent conditionally to
a positive factor Z, and follow exponential distributions γ (1, Z) with constant
intensity Z. By integrating factor Z, the joint survivor function of durations Y1,
Y2 is given by:

S (y1, y2) = E
h
e−(y1+y2)Z

i
= Ψ(y1 + y2),

where Ψ = exp−ψ denotes the Laplace transform of factor Z 10 and is cross-
differentiable on the diagonal. This specification corresponds to the so-called
Multivariate Mixed Proportional Hazard (MMPH) model [see e.g. Van den
Berg (1997), (2001)], and to an Archimedean copula to characterize nonlinear
dependence11 . The factor Z can be seen as an unobserved heterogeneity factor
with identical effects on corporate default intensities. This factor is independent
of time.
Let us derive the term structure of corporate bonds [see Gouriéroux, Monfort

(2003)]. From equations (3), (4) we get:

B1(t, h) =
Ψ(2t+ h)

Ψ (2t)
, B1(t, h, k) =

Ψ
0
(2t+ h− k)

Ψ0 (2t− k)
. (22)

From (8), (9) the intensities are given by:

λ1(t) = −Ψ
0
(2t)

Ψ (2t)
= ψ

0
(2t), (23)

γ1(t, t− k) = −Ψ
00
(2t− k)

Ψ0 (2t− k)
= ψ

0
(2t− k)− ψ

00
(2t− k)

ψ
0
(2t− k)

. (24)

Note that the intensities are positive, since the Laplace transform of the hetero-
geneity distribution is necessarily decreasing, convex. The formulas above are
easily interpreted. Indeed:

B1(t, h) = E [P (Y1 > t+ h | Y1 > t, Y2 > t,Z) | Y1 > t, Y2 > t]

= E [exp (−hZ) | Y1 > t, Y2 > t] , (25)

10 that is Ψ(y) = E [exp (−yZ)] . Since Z is positive, the Laplace transform is defined for
any nonnegative argument y and characterizes the distribution of Z.
11 Indeed the survivor copula of this distribution [see e.g. Clayton (1978), Oakes

(1982), Genest, McKay (1986), Joe (1997), Gagliardini, Gouriéroux (2002)] is: C(u, v) =

S
h
S−11 (u), S−12 (v)

i
, where S1, S2 are the marginal survivor functions. Thus we get: C(u, v) =

Ψ
£
Ψ−1(u) +Ψ−1(v)

¤
, that is an Archimedean copula.
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due to the lack of memory property of the exponential distribution, and simi-
larly:

B1(t, h, k) = E [exp (−hZ) | Y1 > t, Y2 = t− k] . (26)

Thus the term structure coincides with the Laplace transform of the factor Z
conditionally to the available information It. Similar interpretations can be
derived for default intensities. We get:

λ1(t) = − ∂B1 (t, h)

∂h

¯̄̄̄
h=0

= E [Z | Y1 > t, Y2 > t] , (27)

and similarly:
γ1(t, t− k) = E [Z | Y1 > t, Y2 = t− k] ; (28)

thus the intensity is the expectation of factor Z given the available information
It

12 .
The interpretation of the term structure and intensities as conditional ex-

pectations with respect to the distribution of the factor Z given the available
information It explains the patterns and the time evolution of the term struc-
ture and of the default intensities of a firm. For instance, since the zero-coupon
prices coincide with values of a Laplace transform of a positive variable, the term
structures of zero-coupon prices are decreasing, convex functions of h tending
to zero in the long run. The rate of decay to zero depends on the heterogeneity
distribution. The more concentrated the initial heterogeneity distribution, the
smaller the rate of decay. Moreover, when time increases we get more informa-
tion about default histories of both firms and we update our initial belief about
the heterogeneity factor. As a consequence the distribution of factor Z is more
concentrated, when t increases, at the lower bound of its support. In the long
run the term structures of interest rates become flat, and tends to the lower
bound of the support of the heterogeneity distribution. More precisely, we have
the following Proposition [see Appendix 4].

Proposition 8 Let times to default Y1, Y2 follow a MMPH model with hetero-
geneity factor Z, and let z1 ≥ 0 be the lower bound in the support of Z. Then:

i) the term structures h→ − 1
h logB1(t, h),− 1

h logB1(t, h, k) are decreasing;

ii) the long term spreads are equal to z1, independent of time;

iii) for any term h ≥ 0, the spreads − 1
h logB1(t, h),− 1

h logB1(t, h, k) are de-
creasing functions of time t, and converge to z1 when t→∞.

In particular, as time increases, the discontinuity in the term structure of
firm 1 when firm 2 defaults becomes smaller. Asymptotically the default of firm
2 has no effect on the term structure of firm 1.
12Equations (27) and (28) correspond in this framework to the general formulas for the

transformation of intensities under change of filtration in a point process [see e.g. Bremaud
(1981), chapter II, Theorem 14, page 32].
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In fact it is possible to say more on the term structure of the heterogene-
ity distribution [see Gouriéroux, Monfort (2003), Schonbucher (2003)]. Let us
denote by Ψt (y) [resp. Ψt,k(y)] the Laplace transform of the distribution of Z
given Y1 > t, Y2 > t [resp. Y1 > t, Y2 = t− k]. From (22), (25), (26) we get:

Ψt (h) =
Ψ(2t+ h)

Ψ (2t)
, Ψt,k(h) =

Ψ
0
(2t+ h− k)

Ψ0 (2t− k)
,

Example 4: Discrete heterogeneity distribution

For an heterogeneity factor Z with discrete distribution:

Z =

½
z1, with prob. π,
z2, with prob. 1− π,

where z1 < z2, the Laplace transform is given by:

Ψ (y) = π exp (−z1y) + (1− π) exp (−z2y) ,
and the intensities of firm 1 are:

λ1 (t) = z1
1

1 + 1−π
π e−2t∆z

+ z2

1−π
π e−2t∆z

1 + 1−π
π e−2t∆z

,

when both firms are still alive,

γ1 (t, t− k) = z1
1 + 1−π

π

³
z2
z1

´2
e−(2t−k)∆z

1 + 1−π
π

z2
z1
e−(2t−k)∆z

,

when firm 2 defaulted at t− k,

where ∆z = z2 − z1 > 0. Intensity λ1 is a weighted average of the two ba-
sic intensities z1, z2, with time varying weights. As time t increases and both
firms are still alive, intensity λ1 decreases at a geometric rate and converges
to the smallest value z1 in the heterogeneity distribution. Similarly, intensity
γ1 (t, t− k) is decreasing in time t (for given date of the default of firm 2) to
the same limiting value z1, but at a lower decay rate. The term structures of
firm 1 are given by:

B1(t, h) = e−z1h
1 + 1−π

π e−(2t+h)∆z

1 + 1−π
π e−2t∆z

, when both firms are still alive,

B1(t, h, k) = e−z1h
1 + 1−π

π
z2
z1
e−(2t+h−k)∆z

1 + 1−π
π

z2
z1
e−(2t−k)∆z

, when firm 2 defaulted at t− k.

These term structures are decreasing, with a long term spread equal to z1
and independent of t. Moreover, as time t increases, the short term spreads
λ1(t), γ1 (t, t− k) decrease, and the term structures become flatter, approach-
ing the level z1. These features of the term structures are explained by a greater
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concentration of the conditional heterogeneity distribution at the smallest value
z1 when time increases. For instance we get:

P [Z = z1 | It] =
1

1 + 1−π
π e−2t∆z

, when both firms are still alive at t,

=
1

1 + 1−π
π

z2
z1
e−2t∆z

, when firm 2 defaulted at t− k,

and this probability increases to one with time.

Example 5: Heterogeneity with gamma distribution

When the heterogeneity factor Z follows a gamma distribution with parameter
ν:

Ψ (y) =
1

(1 + y)ν
,

the Archimedean copula characterizing the dependence between times to default
reduces to a Clayton copula [see Clayton (1978), Oakes (1982)]. Note that the
gamma distribution is continuous in (0,∞); in particular the lower bound of its
support is zero. Thus there is a non-zero probability for the firms to be almost
without default. The intensities are given by:

λ1(t) =
ν

1 + 2t
,

γ1(t, t− k) =
ν + 1

1 + 2t− k
,

and the term structures are:

r1(t, h) = − 1
h
logB1(t, h) =

ν

h
log

µ
1 +

h

1 + 2t

¶
,

r1(t, h, k) = − 1
h
logB1(t, h, k) =

ν + 1

h
log

µ
1 +

h

1 + 2t− k

¶
.

These term structures are decreasing, and converge to a zero long term spread.
Moreover, as time t increases, the short term spreads decrease, and the term
structures become flatter, converging to 0.

It is also interesting to discuss the discontinuity of the intensity of firm 1
when the second firm defaults.

Proposition 9 The jump in the intensity is given by:

γ1(t, t
−)− λ1(t) = −ψ

00
(2t)

ψ
0
(2t)

=
V [Z | Y1 > t, Y2 > t]

E [Z | Y1 > t, Y2 > t]
.
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Thus the jump is nonnegative; in particular it is zero if and only if the
factor Z is constant, that is in the homogeneous case. This increase in the
short rate spread of firm 1 when the second firm defaults corresponds to the
positive default correlation induced by the common factor Z. Moreover, the
size of the jump at time t is related to the dispersion of factor Z conditionally
to Y1 > t, Y2 > t 13 14 . Finally note that the knowledge of the jump magnitude
for any t is equivalent to the knowledge of Ψ

0
up to a multiplicative factor, that

is to the knowledge of the copula.

Example 5 (continued): For gamma heterogeneity the amplitude of the jump
in intensity is given by:

γ1(t, t
−)− λ1(t) =

1

1 + 2t
,

and the relative amplitude is constant, equal to 1/ν. More generally, default of
firm 2 has a multiplicative effect on the term structure of firm 1: r1(t, h, 0+) =
(1 + 1/ν) r1(t, h).

ii) First-to-default basket

The first-to-default term structure is given by:

C (t, h) =
Ψ (2t+ 2h)

Ψ (2t)
,

and is deduced from the term structure B1 (t, h) of the underlying corporate
bonds by a simple change of time unit: h→ 2h.

iii) Extension to an arbitrary number of firms

The basic model is easily extended to an arbitrary number of firms [see section
2.6]. The joint survivor function becomes:

Ψ (y1, y2, ..., yN ) = Ψ (y1 + y2 + ...+ yN ) . (29)

The expressions of prices of zero-coupon bonds are [see (20)]:

B1(t, h, km+1, ..., kN ) =
Ψ(N−m) (Nt+ h− km+1 − ...− kN )

Ψ(N−m) (Nt− km+1 − ...− kN )
,

whereas the intensity is:

γ1(t, t− km+1, ..., t− kN ) = −Ψ
(N−m+1) (Nt− km+1 − ...− kN )

Ψ(N−m) (Nt− km+1 − ...− kN )
.

13The dispersion of factor Z is also related to the strength of positive nonlinear dependence
between times to default Y1, Y2 [see e.g. Gagliardini, Gouriéroux (2002)].
14Proposition 9 is also a consequence of the general result proved in Appendix 2 ii) and is

deduced by taking Z = Z, λ∗1(t) = λ∗2(t) = Z.
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Thus the term structures depend on defaulted firms by their number N − m
and their average date of default k, say:

B1(t, h, km+1, ..., kN ) =
Ψ(N−m)

¡
Nt+ h− (N −m) k

¢
Ψ(N−m)

¡
Nt− (N −m) k

¢
=

Ψ(N−m)
³PN

i=1min (Yi, t) + h
´

Ψ(N−m)
³PN

i=1min (Yi, t)
´ ,

γ1(t, km+1, ..., kN ) = −Ψ
(N−m+1) ¡Nt− (N −m) k

¢
Ψ(N−m)

¡
Nt− (N −m) k

¢
=

Ψ(N−m+1)
³PN

i=1min (Yi, t)
´

Ψ(N−m)
³PN

i=1min (Yi, t)
´ .

This possibility of aggregating the times to default is a direct consequence of
the equidependence assumption.

Example 5 (continued): For an heterogeneity factor following a gamma
distribution with parameter ν, the default intensity is given by:

γ1(t, km+1, ..., kN ) =
ν +N −m+ 1

Nt− (N −m) k
,

and the term structures are:

r1(t, h, km+1, ..., kN ) =
ν +N −m

h
log

µ
1 +

h

Nt− (N −m) k

¶
.

These term structures are decreasing, and converge in the long run to zero.
Note that such a situation is observed in practice. A typical example is default
behaviour of firms with a low rating CCC, say, at a given date. The class
CCC is often very heterogeneous including some good risks which have not
been detected. After a large term h the firms from this class which are still
alive correspond in fact to firms with a small default probability [see e.g. Carty
(1997), Foulcher, Gouriéroux, Tiomo (2003)]. This change of default probability
is due to the positive effect of the no default observed for the firm between t
and t+ h.
Furthermore, at each date of default of a firm, there is a multiplicative effect

on the term structure, which increases at all terms, and afterwards converges to
zero at a smaller rate. More precisely the jump of order N −m has a relative
effect on the intensity given by: (ν +N −m+ 1)−1 . It depends on the num-
ber N −m of defaulted firms only, not on times to default, and decreases with
N −m. Note finally that this jump in intensities arise for all remaining firms
simultaneously. The positive default correlation implies a correlation between
the jumps in intensity.
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iv) jth-to-default basket

It is also interesting to extend the result on credit derivatives to first-, second-,
third-to-default baskets. Indeed let us denote Y(1) < Y(2) < ... < Y(N) the times
to default ranked in increasing order and D1 = Y(1),D2 = Y(2) − Y(1), ...,DN =
Y(N) − Y(N−1) the interdefault durations. D1,D2, ...,DN are independent con-
ditional on Z, with exponential distributions γ (1, NZ), γ (1, (N − 1)Z) , ...,
γ (1, Z) , respectively. In particular their conditional survivor function is:

P [D1 > d1, ...,DN > dN | Z] = exp−Z [Nd1 + (N − 1) d2 + ...+ dN ] .

At date t = 0 the joint survivor function of D1, ...,DN is:

Sd (d1, ..., dN ) = Ψ [Nd1 + (N − 1) d2 + ...+ dN ] . (30)

Example 6: Second-to-default basket

A second-to-default basket with residual maturity h pays 1$ if the second default
occurs after t+ h. Its price at time t is given by:

C2 (t, h) = P
£
Y(2) > t+ h | It

¤
.

Different cases can be distinguished according to default histories of the firms
at time t.
i) The price is zero if the second default occurred before t.
ii) If only the first default occurred before t, at time t−k, say, the price is given
by:

C2 (t, h) = P
£
Y(2) > t+ h | Y(1) = t− k

¤
= P [D2 > k + h | D1 = t− k]

=
∂Sd
∂d1

(t− k, k + h, 0, ..., 0)
∂Sd
∂d1

(t− k, 0, 0, ..., 0)

=
Ψ

0
[N (t− k) + (N − 1) (k + h)]

Ψ0 [N (t− k)]
.

iii) Finally, if no default occurred before date t, the price is given by:

C2 (t, h) = P
£
Y(2) > t+ h | Y(1) > t

¤
=

P [D1 > t,D1 +D2 > t+ h]

P [D1 > t]

=
P [D1 > t+ h]

P [D1 > t]
+

P [t < D1 < t+ h,D1 +D2 > t+ h]

P [D1 > t]
.

By using the conditional independence of D1,D2 given Z we have [see Appendix
6]:

P [t < D1 < t+ h,D1 +D2 > t+ h] = N {Ψ [(N − 1) (t+ h) + t]−Ψ [N (t+ h)]} .
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Thus:

C2 (t, h) =
NΨ [(N − 1) (t+ h) + t]− (N − 1)Ψ [N (t+ h)]

Ψ (Nt)
, (31)

when no default occurs before t.

3.1.2 Models with common and idiosyncratic unobservable risk fac-
tors

The results above can be directly extended to distinguish between common and
idiosyncratic factors.

i) The factor model

Let Z,Z1, ..., ZN denote N + 1 mutually independent factors. Let us assume
that, conditionally to factors Z,Z1, ..., ZN , the times to default Yi, i = 1, ..., N,
are independent, and follow exponential distributions with parameters λi, i =
1, ...,N , given by:

λi = Z + Zi, i = 1, ..., N.

The factors Z and Z1, ..., ZN are interpreted as common and firm specific factors,
respectively, which are constant through time, and affect default intensities of
the firms. Default correlation is originated from the common factor Z.
Let us denote by Ψc = exp (−ψc) and Ψ = exp (−ψ) the real Laplace trans-

forms of factors Z and Zi, i = 1, ..., N , respectively. The joint survivor function
of times to default Y1, ..., YN becomes:

S (y1, ..., yN ) = E exp [− (Z + Z1) y1 − ...− (Z + ZN ) yN ]

= E exp [−Z (y1 + ...+ yN )]
NY
i=1

E exp (−Ziyi)

= Ψc (y1 + ...+ yN )
NY
i=1

Ψ (yi) . (32)

The nonlinear dependence can be summarized by the associated N -variate sur-
vivor copula. The times to default admit identical marginal distributions with
survivor functions: Si (yi) = Ψc (yi)Ψ (yi). Thus the survivor copula is:

C (u1, ..., uN ) = Ψc

"
NX
i=1

(ΨcΨ)
−1
(ui)

#
NY
i=1

Ψ
h
(ΨcΨ)

−1
(ui)

i
, (33)

and provides a natural extension of the Archimedean copula of Section 3.1.1.

ii) The term structures
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Let us derive the term structures for N = 3 firms. From (32) we deduce [see
Appendix 5]:

B1 (t, h) =
S (t+ h, t, t)

S (t, t, t)
=
Ψc (3t+ h)Ψ (t+ h)

Ψc (3t)Ψ (t)
,

B1 (t, h, k3) =
Ψc (3t+ h− k3)Ψ (t+ h)

Ψc (3t− k3)Ψ (t)

ψ
0
c (3t+ h− k3) + ψ

0
(t− k3)

ψ
0
c (3t− k3) + ψ

0
(t− k3)

,

B1 (t, h, k2, k3) =
Ψc (3t+ h− k2 − k3)Ψ (t+ h)

Ψc (3t− k2 − k3)Ψ (t)

·
n
ψ
00

c (3t+ h− k2 − k3)− ψ
0
(t− k2)ψ

0
(t− k3)

−ψ0
c (3t+ h− k3)

h
ψ
0
c (3t+ h− k3)− ψ

0
(t− k2)− ψ

0
(t− k3)

io
·
n
ψ
00

c (3t− k2 − k3)− ψ
0
(t− k2)ψ

0
(t− k3)

−ψ0
c (3t− k3)

h
ψ
0
c (3t− k3)− ψ

0
(t− k2)− ψ

0
(t− k3)

io−1
.

The associated intensities are:

λ1 (t) = − ∂B1 (t, h)

∂h

¯̄̄̄
h=0

= ψ
0
c (3t) + ψ

0
(t) ,

λ1 (t, t− k3) = − ∂B1 (t, h, k3)

∂h

¯̄̄̄
h=0

= ψ
0
c (3t− k3) + ψ

0
(t)− ψ

00

c (3t− k3)

ψ
0
c (3t− k3) + ψ

0
(t− k3)

,

λ1 (t, t− k2, t− k3) = − ∂B1 (t, h, k2, k3)

∂h

¯̄̄̄
h=0

= ψ
0
c (3t− k2 − k3) + ψ

0
(t)

−
n
ψ
00

c (3t− k2 − k3)− ψ
0
(t− k2)ψ

0
(t− k3)

−ψ0
c (3t− k3)

h
ψ
0
c (3t− k3)− ψ

0
(t− k2)− ψ

0
(t− k3)

io−1
·
n
ψ
000
c (3t− k2 − k3)

−ψ
00

c (3t− k3)
h
2ψ

0
c (3t− k3)− ψ

0
(t− k2)− ψ

0
(t− k3)

io
As expected the intensity jump involves the common component Ψc, but not the
idiosyncratic component ψ

0
. Contrary to Section 3.1.1 iii) the effect of previous

default can no longer be summarized by the sum k2 + k3.

iii) First-to-default

The first-to-default term structure is given by:

CN (t, h) =
Ψc (Nt+Nh)Ψ (t+ h)N

Ψc (Nt)Ψ (t)N
. (34)
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The associated term structure of interest rates is:

rC,N (t, h) = − 1
h
log
Ψc (Nt+Nh)

Ψc (Nt)
− N

h
log
Ψ (t+ h)

Ψ (t)
, (35)

whereas the first-to-default intensity is:

rC,N (t) = N
h
ψ
0
c (Nt) + ψ

0
(t)
i
. (36)

The latter formula illustrates the effect of the portfolio size. If the times to
default are independent rC,N (t) = Nψ

0
(t), and the intensity is a linear function

of the size. Otherwise the default correlation effect is not negligible w.r.t. the
idiosyncratic effect.

Example 4 (continued): When the common heterogeneity factor takes two
values z1 < z2, we get:

lim
N→∞

ψ
0
c (Nt) = z1,

and for large portfolio size:

rC,N (t) ' N
h
z1 + ψ

0
(t)
i
.

Example 5 (continued): For a gamma common heterogeneity factor: Ψc(y) =
1/ (1 + y)ν , the intensity becomes:

rC,N (t) =
νN

1 +Nt
+Nψ

0
(t);

the effect of default correlation vanishes for large size portfolios.

3.2 Dynamic factor models and information sets

The factor models can easily be extended to include time varying factors. The
aim of this section is to point out the importance of the information set, already
mentioned in the theoretical literature [see e.g. Elliot, Jeanblanc, Yor (2000),
Rutkowski (1999), Schonbucher, Schubert (2001)]. Indeed the intensities, inten-
sity jumps, term structures and default correlations depend heavily on this set.
The time varying factor is denoted by Zt, t ∈ R+. The information set including
the current and lagged factor values at time t is denoted by Zt. In particular
Z = Z∞ is generated by the past, current and future values of the factor.
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3.2.1 Complete information on the factor process and default his-
tory.

If the factor trajectory is entirely known by the investors, the results of Section
2 can be applied conditionally to Z. With clear notation, we get:

B∗1(t, h) = P [Y1 > t+ h | Y1 > t, Y2 > t,Z] =
S (t+ h, t | Z)
S (t, t | Z) ,

B∗1(t, h, k) = P [Y1 > t+ h | Y1 > t, Y2 = t− k,Z] =

∂S
∂y2

(t+ h, t− k | Z)
∂S
∂y2

(t, t− k | Z) ,

r∗1(t, h) = − 1
h
logB∗1(t, h), r∗1(t, h, k) = −

1

h
logB∗1(t, h, k),

λ∗1(t) = − ∂B∗1(t, h)
∂h

¯̄̄̄
h=0

, γ∗1(t, t− k) = − ∂B∗1(t, h, k)
∂h

¯̄̄̄
h=0

.

There is a jump in the intensities (conditionally to Z), if and only if the infini-
tesimal default occurrences are correlated (conditionally to Z):

γ∗1(t, t
−)− λ∗1(t) 6= 0

⇐⇒ lim
dt→0

1

dt2
Cov [It<Y1<t+dt, It<Y2<t+dt | Y1 > t, Y2 > t,Z] 6= 0.

Thus both intensities and default correlations are computed from the same in-
formation set Z.

Example 6: Let us consider the static factor model introduced in Section
3.1.1. The factor Zt = Z is time independent and Z = Z. Conditionally to Z,
the times to default are independent. We get no default correlation, whereas
λ∗1(t) = γ∗1(t, t− k) = Z, ∀t, k, which implies no jump in intensities.

3.2.2 Information on default history only.

This framework has been considered in Section 2. We get:

B1(t, h) = P [Y1 > t+ h | Y1 > t, Y2 > t, ] =
S (t+ h, t)

S (t, t)
,

B1(t, h, k) = P [Y1 > t+ h | Y1 > t, Y2 = t− k] =

∂S
∂y2

(t+ h, t− k)
∂S
∂y2

(t, t− k)
,

where

S (y1, y2) = P [Y1 > y1, Y2 > y2]

= EP [Y1 > y1, Y2 > y2 | Z]
= E S (y1, y2 | Z) .
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Therefore the term structure B1(t, h) can be easily related to the term structure
B∗1(t, h). We get:

B1(t, h) =
S (t+ h, t)

S (t, t)
=

E S (t+ h, t | Z)
E S (t, t | Z)

= E

·
B∗1(t, h)

S (t, t | Z)
E S (t, t | Z)

¸
. (37)

Thus the term structure B1(t, h) corresponding to the smallest information is
deduced from the term structure B∗1(t, h) corresponding to the largest informa-
tion by averaging with respect to a modified probability for Z. The change of
probability is S (t, t | Z) /E [S (t, t | Z)] .
Similarly the term structure B1(t, h, k) after default of firm 2 is also deduced
by averaging B∗1(t, h, k) with a modified probability. But the change of proba-
bility is now: ∂S

∂y2
(t, t− k | Z) /E

h
∂S
∂y2

(t, t− k | Z)
i
. The difference in the two

changes of probability is due to the difference in the information sets.
The intensities λ1, λ2, γ1, γ2 are computed as in Section 2, and there is a

jump in the intensities if and only if the infinitesimal default occurrences are
correlated conditional to the default history:

γ1(t, t
−)− λ1(t) 6= 0

⇐⇒ lim
dt→0

1

dt2
Cov [It<Y1<t+dt, It<Y2<t+dt | Y1 > t, Y2 > t] 6= 0.

Example 6 (continued): When the static factor is integrated out we have
noted in Section 3.1.1 that there is a jump in the intensities, whenever Z is not
constant. Thus no jump and no default correlation exist when Z is observed,
whereas jump in intensities and default correlation are spuriously created when
the information diminishes and reduces to default history.

Example 7: In the firm value approach [Merton (1974)], two latent processes
are introduced Z1t , Z

2
t , say, and the times to default are defined by:

Y1 = inf
©
t : Z1t < 0

ª
, Y2 = inf

©
t : Z2t < 0

ª
.

Zi
t , i = 1, 2, is usually interpreted as the difference between firm’s asset values
and liabilities.
i) If the trajectories of

¡
Z1t
¢
,
¡
Z2t
¢
are known, the times to default become

deterministic. The intensities can be infinite and there is no default correlation
(conditionally to Z).

ii) Without the observations of firms’s assets and liabilities, the default of the
firm appears as imperfectly expected news, which creates the jump in intensities
and the impression of default correlation. This discussion shows that the usual
distinction done in the literature between structural and intensity (or reduced
form) models is rather misleading. Indeed any (multivariate) duration model
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can be characterized by means of intensity functions (possibly infinite) and is
automatically an intensity model. In fact the main difference is the information
set, which is generally larger, including latent quantitative processes, in the
so-called structural models.

Another remark is also important to understand the effect of information
on jump intensities and default correlation. It is known by covariance analysis
equation that:

Cov [It<Y1<t+dt, It<Y2<t+dt | Y1 > t, Y2 > t]

= Cov (E [It<Y1<t+dt | Y1 > t, Y2 > t,Z] , E [It<Y2<t+dt | Y1 > t, Y2 > t,Z] | Y1 > t, Y2 > t)

+E (Cov [It<Y1<t+dt, It<Y2<t+dt | Y1 > t, Y2 > t,Z] | Y1 > t, Y2 > t) .

Thus the sign of default correlation can be completely modified by the choice
of the information set. Examples 6 and 7 are special cases in which the second
component of the RHS is equal to zero. The absence of default correlation at
the informed level does not imply the absence of default correlation at the less
informed level due to the first component in the RHS.
A similar remark can be done on the jump in intensities. Indeed we have:

γ1(t, t
−)− λ1(t)

= E

"
γ∗1(t, t

−)
∂S
∂y2
(t, t | Z)

E ∂S
∂y2
(t, t | Z)

#
−E

·
λ∗1(t)

S (t, t | Z)
E S (t, t | Z)

¸
= E

µ£
γ∗1(t, t

−)− λ∗1(t)
¤ S (t, t | Z)
E S (t, t | Z)

¶
+E

"
γ∗1(t, t

−)

Ã
∂S
∂y2
(t, t | Z)

E ∂S
∂y2
(t, t | Z) −

S (t, t | Z)
E S (t, t | Z)

!#

= E

µ£
γ∗1(t, t

−)− λ∗1(t)
¤ S (t, t | Z)
E S (t, t | Z)

¶
+Cov

"
γ∗1(t, t

−),

Ã
∂S
∂y2
(t, t | Z)

E ∂S
∂y2
(t, t | Z) −

S (t, t | Z)
E S (t, t | Z)

!#
, (38)

since the two probability changes have the same unitary mean. In Example 6
and 7, the first component of the RHS is zero, but the second component does
not vanish. In fact we have to take into account the different probability changes
involved in the expression of the intensities.
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3.2.3 Information on default and factor history

Let us finally consider the intermediate case where the information includes
default history and Zt. The same arguments as above will apply. We get:

B1(t, h, Zt) = P
£
Y1 > t+ h | Y1 > t, Y2 > t,Zt

¤
,

λ1(t, Zt) = lim
dt→0

1

dt
P
£
Y1 < t+ dt | Y1 > t, Y2 > t,Zt

¤
,

γ1(t, t− k, Zt) = lim
dt→0

1

dt
P
£
Y1 < t+ dt | Y1 > t, Y2 = t− k, Zt

¤
,

and so on, where the information introduced in the different expressions corre-
sponds to date t. The remarks on jump intensities and default correlation of
Section 2.2 remain valid after conditioning on Zt. Moreover it is easy to char-
acterize the jump in intensities in terms of default correlation [see Appendix 2
ii)].

Proposition 10 If the default risks are diversifiable (that is Y1 and Y2 are
independent conditional on Z) 15 :

γ1(t, t
−, Zt)− λ1(t, Zt) = lim

dt→0
Cov

£
λ∗1(t), λ

∗
2(t− dt) | Y1 > t, Y2 > t− dt, Zt

¤
E
£
λ∗2(t− dt) | Y1 > t, Y2 > t− dt, Zt

¤ .

However some other results of Section 2 are no longer valid for dynamic
factors. This is typically the case of Proposition 3 and its associated Corollaries.
For instance the term structures of zero-coupon bonds computed when both
firms are still alive no longer provide the same information as the short term
spreads. To illustrate this point, let us note that:

B1(t, h, Zt) = E
£
B∗1(t, h) | Y1 > t, Y2 > t,Zt

¤
,

λ1(t, Zt) = E
£
λ∗1(t) | Y1 > t, Y2 > t,Zt

¤
,

B1(t, h, k, Zt) = E
£
B∗1(t, h, k) | Y1 > t, Y2 = t− k, Zt

¤
,

γ1(t, t
−, Zt) = E

£
γ∗1(t, t

−) | Y1 > t, Y2 = t, Zt
¤
.

The dynamic factor models introduced in the literature generally satisfy the
following assumption [see e.g. Lando (1998), Duffie, Singleton (1999), Duffie,
Garleanu (2001), Jarrow, Lando, Yu (2001), Gouriéroux, Monfort, Polimenis
(2003)].

Assumption A.2: For any t, (Y1 > t, Y2 > t) is independent of Z conditional
on Zt: (Y1 > t, Y2 > t) ⊥ Z | Zt.

15The diversifiability assumption is satisfied by several models proposed in the literature,
see e.g. Lando (1998), Duffie, Singleton (1999), Duffie, Garleanu (2001), Jarrow, Lando, Yu
(2001), Gouriéroux, Monfort, Polimenis (2003).
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Assumption A.2 is equivalent to:

P [Y1 > t, Y2 > t | Z] = P
£
Y1 > t, Y2 > t | Zt

¤
⇐⇒ exp

·
−
Z t

0

λ∗1(s)ds−
Z t

0

λ∗2(s)ds
¸
= E

µ
exp

·
−
Z t

0

λ∗1(s)ds−
Z t

0

λ∗2(s)ds
¸
| Zt

¶
.

It is satisfied if λ∗1(t) and λ∗2(t) are functions of Zt. Under Assumption A.2, we
get from Corollary 6:

B1(t, h, Zt) = E
£
B∗1(t, h) | Zt

¤
= E

h
e−[Λ

∗
1(t+h)−Λ∗1(t)]−[Λ∗2(t+h)−Λ∗2(t)]

+

Z t+h

t

λ∗2 (y) e
−[Λ∗1(y)−Λ∗1(t)]−[Λ∗1(y)−Λ∗1(t)]−Γ∗1(t+h−y,y)dy | Zt

#
,

which does not coincide with the expression of Corollary 6 after replacing the
intensities λ, γ by λ

¡
.;Zt

¢
, γ
¡
.;Zt

¢
.

Example 8: The model with common and idiosyncratic unobservable risk fac-
tors can be directly extended to the dynamic framework. Let us introduce
[Z1(t)], [Z2(t)], [Z (t)] , three independent factor processes, and assume that Y1,
Y2 are independent conditionally to Z1, Z2, Z with conditional intensities:

λ∗i (t) = Zi(t) + Z (t) , i = 1, 2.

The term structure of zero-coupon prices can be computed with different infor-
mation sets.
i) With complete information on factor processes, we get:

B∗1 (t, h) = B∗1 (t, h, k) = exp

"
−
Z t+h

t

Z1(s)ds−
Z t+h

t

Z(s)ds

#
,

λ∗1 (t) = γ∗1 (t, t− k) = Z1(t) + Z (t) .

ii) With partial information on all factor processes, we get:

B1(t, h, Z1t, Z2t, Zt) = B1(t, h, k, Z1t, Z2t, Zt)

= E

"
exp−

Z t+h

t

Z1(s)ds | Z1t
#
E

"
exp−

Z t+h

t

Z(s)ds | Zt
#
,

λ1(t, Z1t, Z2t, Zt) = γ1(t, t
−, Z1t, Z2t, Zt) = Z1(t) + Z (t) .

The model admits no jump in intensity.
iii) With partial information on the common factor and no information on the
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idiosyncratic factors, we get:

B1(t, h, Zt) =
E
h
exp− R t+h

0
Z1(s)ds

i
E
h
exp− R t

0
Z1(s)ds

i E

"
exp−

Z t+h

t

Z(s)ds | Zt
#
,

λ1(t, Zt) = E

"
Z1(t)

exp− R t
0
Z1(s)ds

E exp− R t
0
Z1(s)ds

#
+ Z (t) .

The possible jump in intensities is given by [see Proposition 10]:

γ1(t, t
−, Zt)− λ1(t, Zt)

=
Cov

£
Z1(t) + Z(t), Z2(t) + Z(t) | Y1 > t, Y2 > t,Zt

¤
E
£
Z2(t) + Z(t) | Y1 > t, Y2 > t,Zt

¤
=

Cov
£
Z1(t), Z2(t) | Y1 > t, Y2 > t,Zt

¤
E
£
Z2(t) | Y1 > t, Y2 > t,Zt

¤
+ Z(t)

.

It is easily checked that the conditional distribution of [Z1(t), Z2(t)] given Y1 >
t, Y2 > t,Zt is deduced from the risk neutral distribution of Z1(t), Z2(t) by the
change of density:

exp− R t
0
Z1(s)ds

E exp− R t
0
Z1(s)ds

exp− R t
0
Z2(s)ds

E exp− R t
0
Z2(s)ds

.

Therefore Z1(t) and Z2(t) are also independent conditionally to Y1 > t, Y2 >
t,Zt, and there is no jump in the intensities. This independence is a consequence
of the additive decomposition of λ∗1 (t) as Z1(t) +Z(t). The independence is no
longer satisfied if λ∗1 (t) = a(Z1(t), Z(t)) involves cross effects of common and
idiosyncratic factors.
iv) With the information on default histories only, we get:

B1(t, h) =
E
h
exp− R t+h

0
Z1(s)ds

i
E
h
exp− R t

0
Z1(s)ds

i E
h
exp−2 R t

0
Z(s)ds− R t+h

t
Z(s)ds

i
E
h
exp−2 R t

0
Z(s)ds

i ,

λ1(t) = E

"
Z1(t)

exp− R t
0
Z1(s)ds

E exp− R t
0
Z1(s)ds

#
+ E

"
Z(t)

exp−2 R t
0
Z(s)ds

E exp−2 R t
0
Z(s)ds

#
.

In this case there is a jump in intensities:

γ1(t, t
−)− λ1(t) =

V
Q
[Z(t)]

E
Q2

[Z2(t)] +E
Q
[Z(t)]

,

where Q is deduced from the risk neutral distribution of Z(t) by the change of
density:

exp−2 R t
0
Z(s)ds

E exp−2 R t
0
Z(s)ds

,
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and Q2 is deduced from the risk neutral distribution of Z2(t) by the change of
density:

exp− R t
0
Z2(s)ds

E exp− R t
0
Z2(s)ds

.

Note that Assumption A.2 is not satisfied in the last two cases iii) and iv).
It is important to realize that the choice of the relevant information set

is not completely unambiguous. Indeed, even if the factors cannot be observed
directly, in affine models for instance they can be recovered from corporate bond
prices [see e.g. Duffie, Kan (1996), and Gouriéroux, Monfort, Polimenis (2003)],
with clear implications for the analysis of default correlation.

4 Concluding remarks
In this paper we provide different characterizations for the joint distribution
of corporate times to default with general dependence structure. We analyse
the implications of default correlation on the patterns of the term structures of
corporate bonds and credit derivatives.
A key feature is that the spread term structure of a firm generally admits

discontinuities at default dates of other firms. Similarly, the default intensity of
a firm features a jump at default dates of other firms. We discuss carefully the
links between intensity jumps and default correlation. Intensity jumps provide
an alternative measure of default correlation, with a clear financial interpreta-
tion.
Finally we emphasize the importance of the information set for the discussion

of default correlation. Indeed the sign and size of default correlation (or intensity
jumps) heavily depend on the selected information set. We point out that the
choice of the relevant information set is not completely unambiguous when the
unobservable factors can be recovered from corporate bond prices.
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Appendix 1
Term structure of corporate bonds when one firm defaulted earlier

Let us consider the price at time t of the zero-coupon bonds issued by firm
1. If firm 2 defaulted at the previous date t− k, the price at time t of this bond
with residual maturity h is given by:

B1 (t, h, k) = P [Y1 > t+ h | Y1 > t, Y2 = t− k]

=
P [Y1 > t+ h | Y2 = t− k]

P [Y1 > t | Y2 = t− k]

=

R∞
t+h

f(y1 | t− k)dy1R∞
t

f(y1 | t− k)dy1
=

R∞
t+h

f(y1, t− k)dy1R∞
t

f(y1, t− k)dy1

=

∂S
∂y2

(t+ h, t− k)
∂S
∂y2

(t, t− k)
,

where f(y1 | y2) and f(y1, y2) = ∂2S(y1, y2)/∂y1∂y2 are the conditional density
of Y1 given Y2, and the joint density of Y1,Y2, respectively.
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Appendix 2
Default correlation and jumps in intensities

i) A general result

To prove the result, it is useful to introduce the associated counting processes
N1, N2, where Nj(t) = 0, if Yj > t, Nj(t) = 1, otherwise. Note that the process
increment dNj(t) is dichotomous with admissible values 0, 1. Let us rewrite the
expression of intensities in terms of the counting processes. We get:

λ1
¡
t, Zt

¢
= lim

dt→0
1

dt
P
£
Y1 < t+ dt | Y1 > t, Y2 > t,Zt

¤
= lim

dt→0
1

dt
E
£
dN1(t) | N1(t) = 0, N2(t) = 0, Zt

¤
= lim

dt→0
1

dt
E
£
dN1(t) | N1(t) = 0, N2(t

−) = 0, dN2(t
−) = 0, Zt

¤
,

where dN2(t
−) = N2(t)−N2(t− dt), and (Zt) is a factor. Similarly we have:

γ1
¡
t, t−, Zt

¢
= lim

k→0
lim
dt→0

1

dt
P
£
Y1 < t+ dt | Y1 > t, Y2 = t− k, Zt

¤
= lim

k→0
lim
dt→0

1

dt
E
h
dN1(t) | N1(t) = 0,N2((t− k)

−
) = 0, dN2((t− k)

−
) = 1, Zt

i
= lim

dt→0
1

dt
E
£
dN1(t) | N1(t) = 0,N2(t

−) = 0, dN2(t
−) = 1, Zt

¤
.

Therefore both intensities admit interpretations in terms of conditional expec-
tations of dN1(t) on dN2(t

−), given N1(t) = 0,N2(t
−) = 0, Zt. Since dN1(t)

and dN2(t
−) are dichotomous qualitative variables, the conditional expectation

coincides with the linear regression. Thus we have:

E
£
dN1(t) | N1(t) = 0, N2(t

−) = 0, dN2(t
−), Zt

¤
= E

£
dN1(t) | N1(t) = 0, N2(t

−) = 0, Zt
¤

+
Cov

£
dN1(t), dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Zt

¤
V
£
dN2(t−) | N1(t) = 0, N2(t−) = 0, Zt

¤
· ¡dN2(t

−)−E
£
dN2(t

−) | N1(t) = 0,N2(t
−) = 0, Zt

¤¢
.

We deduce that:

γ1
¡
t, t−, Zt

¢− λ1
¡
t, Zt

¢
= lim

dt→0
1

dt

Cov
£
dN1(t), dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Zt

¤
V
£
dN2(t−) | N1(t) = 0, N2(t−) = 0, Zt

¤
= lim

dt→0
Cov

£
dN1(t), dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Zt

¤
/dt2

E
£
dN2(t−) | N1(t) = 0,N2(t−) = 0, Zt

¤
/dt

,
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since the expectation and the variance of dN2(t
−) are equivalent. For instance,

when there is no factor, the numerator reduces to the expression in (10) in the
text.

ii) Diversifiable risk

Let us now assume that the default risks are diversifiable, that is the processes
N1 andN2 are independent conditionally to Z. The intensities with full informa-
tion on the factors are: λ∗j (t) = limdt→0E [dNj(t) | Nj(t) = 0, Z] /dt, j = 1, 2.
By the covariance analysis equation:

Cov
£
dN1(t), dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Zt

¤
/dt2

= Cov
©
E
£
dN1(t) | N1(t) = 0, N2(t

−) = 0, Z
¤
/dt,

E
£
dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Z

¤
/dt | N1(t) = 0, N2(t

−) = 0, Zt
ª

+E
©
Cov

£
dN1(t), dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Z

¤ | N1(t) = 0,N2(t
−) = 0, Zt

ª
/dt2

→ Cov
£
λ∗1 (t) , λ

∗
2

¡
t−
¢ | N1(t) = 0, N2(t

−) = 0, Zt
¤

(by the diversifiability assumption).

Similarly we get:

E
£
dN2(t

−) | N1(t) = 0, N2(t
−) = 0, Zt

¤
/dt→ E

£
λ∗2
¡
t−
¢ | N1(t) = 0, N2(t

−) = 0, Zt
¤
.

Thus the jump in intensities is given by:

γ1
¡
t, t−, Zt

¢− λ1
¡
t, Zt

¢
=

Cov
£
λ∗1 (t) , λ

∗
2 (t
−) | N1(t) = 0, N2(t

−) = 0, Zt
¤

E
£
λ∗2 (t−) | N1(t) = 0, N2(t−) = 0, Zt

¤ .
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Appendix 3
Flat term structure

If the term structures are flat when both firms are still alive, the joint sur-
vivor function admits the representation:

S (y1, y2) = exp [−λ1(y2) (y1 − y2)− Λ1 (y2)− Λ2 (y2)] , for y1 ≥ y2,

and:

S (y1, y2) = exp [−λ2(y1) (y2 − y1)− Λ1 (y1)− Λ2 (y1)] , for y1 < y2.

Let us first derive the conditions on functions λ1, λ2 such that S is a well-defined
bivariate survivor function.

i) Conditions on λ1, λ2

The survivor function is well-defined and corresponds to a continuous distribu-
tion iff:

a) S (y1, 0) and S (0, y2) are univariate survivor functions;

b) the density associated to S is positive:

∂2S

∂y1∂y2
(y1, y2) ≥ 0, ∀y1 6= y2,

that is the function is differentiable;

c) the probability mass on {(y1, y2) : y1 = y2} is equal to zero.
Let us consider condition a). We get:

S (y1, 0) = exp [−λ1(0)y1] ,
which is the survivor function of an exponential distribution, if λ1(0) > 0.
Similarly, we get the necessary condition λ2(0) > 0. In particular S(0, 0) = 1
and the total mass is equal to one.
Let us now consider condition b). For y1 > y2 we have:

∂S

∂y2
(y1, y2) = −S (y1, y2)

·
dλ1
dt
(y2) (y1 − y2) + λ2(y2)

¸
, (a.1)

∂2S

∂y1∂y2
(y1, y2) = S (y1, y2)λ1(y2)

·
dλ1
dt
(y2) (y1 − y2) + λ2(y2)

¸
− S (y1, y2)

dλ1
dt
(y2)

= S (y1, y2)

½
dλ1
dt
(y2) [λ1(y2) (y1 − y2)− 1] + λ1(y2)λ2(y2)

¾
.
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Thus the nonnegativity condition of the second order cross derivative becomes:

dλ1
dt
(y2) [λ1(y2) (y1 − y2)− 1] + λ1(y2)λ2(y2) ≥ 0, ∀y1 > y2. (a.2)

We see that necessarily dλ1/dt(y2) ≥ 0 by letting y1 →∞. Moreover, we have
dλ1/dt(y2) ≤ λ1(y2)λ2(y2) by considering the limiting condition y1 → y2. The
two inequalities are also sufficient for (a.2). Thus condition (a.2) is equivalent
to:

0 ≤ dλ1
dt
(y2) ≤ λ1(y2)λ2(y2), ∀y2 ≥ 0.

Similarly, by considering the symmetric case y1 < y2, we deduce the condition:

0 ≤ dλ2
dt
(y1) ≤ λ1(y1)λ2(y1), ∀y1 ≥ 0.

Finally, in order to verify that the distribution associated to S has no mass on the
diagonal {y1 = y2}, let us prove that the integrals of the density ∂2S/∂y1∂y2 on
the two triangles {y1 > y2} and {y1 < y2} sum up to 1. Indeed, for the triangle
{y1 > y2} we get:

I1 =

Z ∞
0

Z ∞
y2

∂2S

∂y1∂y2
(y1, y2) dy1dy2 =

Z ∞
0

∂S

∂y2
(y1, y2)

¯̄̄̄y1=∞
y1=y2

dy2

=

Z ∞
0

λ2(y2) exp [−Λ1 (y2)− Λ2 (y2)] dy2.

Similarly the integral of the density over the triangle {y1 < y2} is given by:

I2 =

Z ∞
0

λ1(y1) exp [−Λ1 (y1)− Λ2 (y1)] dy1.

Therefore:

I1 + I2 =

Z ∞
0

[λ1(y) + λ2(y)] exp [−Λ1 (y)− Λ2 (y)] dy = 1.

ii) Intensities

Let us now derive the default intensity of firm 1 when the second firm has
defaulted at t− k. From equations (9) and (a.1) we get:

γ1 (t, t− k) = − ∂

∂y1

·
log− ∂S

∂y2

¸
(t, t− k) = λ1 (t− k)− λ

0
1(t− k)

λ
0
1(t− k)k + λ2(t− k)

.

iii) Term structure

Finally, let us derive from Corollary 6 the term structure of firm 1 when the
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second firm has defaulted at t− k. We get:

B1 (t, h, k) = e−λ1(t−k)h exp

"Z t+h

t

λ
0
1(t− k)

λ
0
1(t− k) (s− t+ k) + λ2(t− k)

ds

#

= e−λ1(t−k)h exp

"Z λ
0
1(t−k)(k+h)

λ
0
1(t−k)k

1

s+ λ2(t− k)
ds

#

= e−λ1(t−k)h
λ
0
1(t− k) (k + h) + λ2(t− k)

λ
0
1(t− k)k + λ2(t− k)

= e−λ1(t−k)h
"
1 +

λ
0
1(t− k)

λ
0
1(t− k)k + λ2(t− k)

h

#
. (a.3)

In particular if λ
0
1(t− k) = 0, we get:

B1 (t, h, k) = exp

"
−
Z t+h

t

γ1 (s, t− k) ds

#
= e−λ1(t−k)h.

Thus the term structure of firm 1 is flat even after the default of firm 2, and it
depends only on its date of occurrence.
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Appendix 4
MMPH model

The aim of this Appendix is to prove Proposition 8. Before we need the
following Lemma.

Lemma A.1: Let ψ be the log-Laplace transform of a positive variable Z:
ψ(y) = − logE [exp (−yZ)] . Let z1 ≥ 0 be the smallest value in the support of
Z. Then function:

y 7−→ ψ(y)

y
,

is decreasing, and:

lim
y→∞

ψ(y)

y
= z1.

Proof: We have:

d

dy

ψ(y)

y
=

ψ
0
(y)y − ψ(y)

y2
= − 1

y2

ψ (y) + (−y)ψ0
(y)| {z }

≥ψ(0)=0


≤ 0,

since ψ is concave. Let us now compute the limit of ψ (y) /y when y →∞. We
have Z ≥ z1 with probability 1 [resp. Z < z∗1 with probability P (Z ≤ z∗1) > 0,
for any z∗1 > z1]. We deduce that:

P (Z ≤ z∗1) exp (−yz∗1) ≤ E [exp (−yZ)] ≤ exp (−yz1) ,
and:

z1 ≤ lim
y→∞ inf

ψ(y)

y
≤ lim

y→∞ sup
ψ(y)

y
≤ z∗1 , ∀z∗1 > z1.

Q.E.D.

Let us now prove Proposition 8. Since:

r1(t, h) = − 1
h
logE [exp (−hZ) | Y1 > t, Y2 > t] ,

r1(t, h, k) = − 1
h
logE [exp (−hZ) | Y1 > t, Y2 = t− k] ,

i) and ii) follow immediately from Lemma A.1 since the lowest point in the
support of the distribution of Z given It is z1. Let us now consider iii). From
(22) we have:

∂

∂t
r1(t, h) =

1

h

∂

∂t
[ψ (2t+ h)− ψ(2t)]

=
2

h

h
ψ
0
(2t+ h)− ψ

0
(2t)

i
≤ 0,
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since ψ is concave.
Moreover:

∂

∂t
B1(t, h, k) =

∂

∂t

E
£
Ze−(2t+h−k)Z

¤
E
£
Ze−(2t−k)Z

¤
= −2E

£
Z2e−(2t+h−k)Z

¤
E
£
Ze−(2t−k)Z

¤−E
£
Ze−(2t+h−k)Z

¤
E
£
Z2e−(2t−k)Z

¤
E
£
Ze−(2t−k)Z

¤2
= −2 eQ

cov [Z, exp (−hZ)] ≥ 0,

where eQ is the distribution with density ze−(2t−k)z/E
£
Ze−(2t−k)Z

¤
G(dz), and

G is the distribution of Z.
Finally from Lemma A.1:

B1(t, h) =
Ψ (2t+ h)

Ψ (2t)
' exp (−z1h) ,

for t→∞, and similarly for B1(t, h, k).
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Appendix 5
Model with idiosyncratic factors

The joint survivor function of Y1, Y2, Y3 is given by:

S (y1, y2, y3) = Ψc (y1 + y2 + y3)Ψ (y1)Ψ (y2)Ψ (y3) .

Their derivatives with respect to y3 and y2, y3 are given by:

∂S

∂y3
(y1, y2, y3) = Ψ

0
c (y1 + y2 + y3)Ψ (y1)Ψ (y2)Ψ (y3)

+Ψc (y1 + y2 + y3)Ψ (y1)Ψ (y2)Ψ
0
(y3)

= S (y1, y2, y3)

"
Ψ

0
c (y1 + y2 + y3)

Ψc (y1 + y2 + y3)
+
Ψ

0
(y3)

Ψ (y3)

#
= −S (y1, y2, y3)

h
ψ
0
c (y1 + y2 + y3) + ψ

0
(y3)

i
,

and:

∂2S

∂y3∂y2
(y1, y2, y3) = Ψ

00

c (y1 + y2 + y3)Ψ (y1)Ψ (y2)Ψ (y3)

+Ψ
0
c (y1 + y2 + y3)Ψ (y1)Ψ

0
(y2)Ψ (y3)

+Ψ
0
c (y1 + y2 + y3)Ψ (y1)Ψ (y2)Ψ

0
(y3)

+Ψc (y1 + y2 + y3)Ψ (y1)Ψ
0
(y2)Ψ

0
(y3)

= S (y1, y2, y3)

"
Ψ

00
c (y1 + y2 + y3)

Ψc (y1 + y2 + y3)

+
Ψ

0
c (y1 + y2 + y3)

Ψc (y1 + y2 + y3)

Ã
Ψ

0
(y2)

Ψ (y2)
+
Ψ

0
(y3)

Ψ (y3)

!

+
Ψ

0
(y2)

Ψ (y2)

Ψ
0
(y3)

Ψ (y3)

#
= −S (y1, y2, y3)

n
ψ
00
c (y1 + y2 + y3)− ψ

0
c (y1 + y2 + y3)

2

−ψ0
c (y1 + y2 + y3)

h
ψ
0
c (y2) + ψ

0
c (y3)

i
− ψ

0
c (y2)ψ

0
c (y3)

o
.

Thus the term structure is given by:

B1 (t, h) =
S (t+ h, t, t)

S (t, t, t)
=
Ψc (3t+ h)Ψ (t+ h)

Ψc (3t)Ψ (t)
,

B1 (t, h, k3) =

∂S
∂y3

(t+ h, t, t− k3)
∂S
∂y3

S (t, t, t− k3)

=
Ψc (3t+ h− k3)Ψ (t+ h)

Ψc (3t− k3)Ψ (t)

ψ
0
c (3t+ h− k3) + ψ

0
(t− k3)

ψ
0
c (3t− k3) + ψ

0
(t− k3)

,
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B1 (t, h, k2, k3) =

∂2S
∂y2∂y3

S (t+ h, t− k2, t− k3)

∂2S
∂y2∂y3

S (t, t− k2, t− k3)

=
Ψc (3t+ h− k2 − k3)Ψ (t+ h)

Ψc (3t− k2 − k3)Ψ (t)

·

ψ
00

c (3t+ h− k2 − k3)− ψ
0
(t− k2)ψ

0
(t− k3)

−ψ0
c (3t+ h− k3)

h
ψ
0
c (3t+ h− k3)− ψ

0
(t− k2)− ψ

0
(t− k3)

i
ψ
00

c (3t− k2 − k3)− ψ
0
(t− k2)ψ

0
(t− k3)

−ψ0
c (3t− k3)

h
ψ
0
c (3t− k3)− ψ

0
(t− k2)− ψ

0
(t− k3)

i .
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Appendix 6
Second-to-default in a MMPH model with N firms

We have:

P [t < D1 < t+ h,D1 +D2 > t+ h] = E

"Z t+h

t

e−(N−1)Z(t+h−y)NZe−NZydy

#

= NE

"
e−(N−1)Z(t+h)Z

Z t+h

t

e−Zydy

#
= NE

h
e−(N−1)Z(t+h)

³
e−Zt − e−Z(t+h)

´i
= NE

h
e−Z[(N−1)(t+h)+t] − e−NZ(t+h)

i
= N (Ψ [(N − 1) (t+ h) + t]−Ψ [N (t+ h)]) .
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Figure 1: Term structure of interest rates associated with firm 1 when the second
firm is still alive (solid line), and when the second firm defaulted earlier (dashed
line). In Panel A the two curves differ at all term, in Panel B they differ in the
long term, finally in panel C they differ in the short term but coincide in the
long term.
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Figure 2: Constant intensities. In the upper panels we report the term structure
associated with firm 1: when both firms are still alive, for the parameters r1 =
0.01, r2 = 0.02 and different values of r∗1 (Panel A), and when firm 2 has
defaulted earlier, for the parameters r1 = 0.01, r2 = 0.02, r∗1 = 0.05 (Panel B).
In the lower panels we report the short term spreads of firm 1 for the parameters
r1 = 0.01, r2 = 0.02, r∗1 = 0.05: when firm 2 defaults after firm 1 [Y2 > Y1 = 7]
in Panel C, respectively before [Y2 = 4, Y1 = 7] in Panel D.
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Figure 3: Constant intensities. Interest rate spread for a zero-coupon bond with
maturity t = H = 10 issued by firm 1, for the parameters r1 = 0.01, r2 = 0.02,
r∗1 = 0.05: when both firms default after H in Panel A, and when firm 2 defaults
before H [Y2 = 7] in Panel B.
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Figure 4: Model with proportional hazard for the parameters r1 = 0.01, r2 =
0.02, and a baseline hazard λ0(t) = 1/(1 + t)0.3. In the upper panels we report
the term structure associated with firm 1 at time t = 1: when both firms are still
alive, for different values of r∗1 , in Panel A, and when firm 2 defaulted earlier,
for the parameter r∗1 = 0.05, in Panel B. In the lower panels we report the short
term spread associated with firm 1 for the parameter r∗1 = 0.05: when firm 2
defaults after firm 1 [Y2 > Y1 = 7] in Panel C, respectively before [Y1 = 7,
Y2 = 4] in Panel D.

54



Figure 5: Flat term structures with intensities λi(t) = ri exp (βit), i = 1, 2,
r1 = 0.01, r2 = 0.05, β1 = 0.05, β2 = 0.01. In Panels A and B we report the
term structure associated with firm 1 at time t = 4 when both firms are still
alive, and at time t = 5 when firm 2 has defaulted at t− k = 4, respectively. In
Panels C and D we report the short term spread of firm 1 when both firms are
still alive, and when firm 2 defaults at t− k = 4, respectively.
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