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Rational expectations (Lucas (1978))
An agent maximizes expected life-time utility from consumption:

max
{Ct},{αt}

E0

[ ∞∑
t=0

βtU(Ct; γ)

]
s.t. Ct + ptαt = ptαt−1

U(Ct; γ) = [C1−γ
t − 1]/(1 − γ) (say) is utility from consumption Ct

αt is the number of shares in [t, t + 1) of an asset with price pt

First-order condition for maximization (Euler equation):

−ptU
′(Ct; γ) + βEt [U

′(Ct+1; γ)pt+1] = 0

⇔ pt = Et

[
β

U′(Ct+1; γ)

U′(Ct; γ)
pt+1

]
⇔ Et

[
β

U′(Ct+1; γ)

U′(Ct; γ)
Rt+1 − 1

]
= 0, Rt+1 = pt+1/pt

Et[.] is conditional expectation given the information at time t
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No-arbitrage pricing
Stochastic discount factor (sdf): the no-arbitrage condition
implies the existence of a random variable Mt,t+1 > 0 such that

pt = Et [Mt,t+1pt+1]

[Harrison-Kreps (1979), Harrison-Pliska (1981),
Hansen-Richard (1987)]

Econometric sdf specification:

Mt,t+1 = m(Yt+1; θ0)

where Yt+1 are relevant state variables and θ0 is a vector of
unknown risk premia parameters yielding

Et [m(Yt+1; θ0)Rt+1 − 1] = 0
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Examples of sdf specifications

Time-separable preferences, CRRA utility U(Ct; γ) =
C1−γ

t − 1
1 − γ

Mt,t+1(θ) = β (Ct+1/Ct)
−γ , θ = (β, γ)

Time-nonseparable Epstein-Zin (1989, 1991) preferences

Mt,t+1(θ) = βλ (Ct+1/Ct)
−γλ Rλ−1

0,t+1, θ = (β, γ, λ)

where R0,t+1 is the gross return of the optimal portfolio

Parameterization such that the risk-aversion is 1 − λ(1 − γ) and
the elasticity of intertemporal substitution (EIS) is ψ = 1/γ

Reduced-form sdf for derivative pricing:

Mt,t+1(θ) = e−rf ,t+1 exp
(−θ1 − θ2σ

2
t+1 − θ3σ

2
t − θ4rt+1

)
where rf ,t is the risk-free rate and σ2

t is the stochastic volatility of
the underlying asset with logarithmic return rt
Patrick Gagliardini (USI and SFI) GMM Estimation of asset pricing models 5 / 40



Conditional moment restrictions

Let the information at date t be contained in the stochastic vector
Wt following a Markov process, e.g. Wt = (Yt,Yt−1, · · · ,Yt−q)

Euler conditions/no-arbitrage conditions yield restrictions on
data and parameters in the form of a ...

Conditional Moment Restriction (CMR):

E [h(Yt+1; θ0)|Wt] = 0

where

h(Yt+1; θ) = m(Yt+1; θ)Rt+1 − 1
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From conditional to unconditional MR

Let Zt = ϕ(Wt) be an instrument

By the iterated expectation theorem:

E [Zth(Yt+1; θ0)] = E [E [Zth(Yt+1; θ0)|Wt]]

= E [ZtE [h(Yt+1; θ0)|Wt]]

= 0

which yields an ...

Unconditional Moment Restriction (UMR):

E [g(Xt; θ0)] = 0

where g(Xt; θ0) = Zth(Yt+1θ0)
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GMM inference in asset pricing models
(Hansen and Singleton (1982))
The two-step GMM estimator:

θ̂T = arg min
θ∈Θ

ĝT(θ)′V̂−1
T ĝT(θ)

where

ĝT(θ) =
1
T

T∑
t=1

g(Xt; θ), g(Xt; θ) = Zt ⊗ (Mt,t+1(θ)Rt+1 − ι)

θ is p × 1 vector of unknown parameters

Rt+1 is G × 1 vector of asset gross returns

Zt is K × 1 vector of instruments

ι is G × 1 vector of ones

and V̂T is consistent estimator of V0 = lim
T→∞

V

[
1√
T

T∑
t=1

g(Xt; θ0)

]
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GMM inference in asset pricing models
(Hansen and Singleton (1982))
Since E [Mt,t+1(θ0)Rt+1 − ι|Wt] = 0, the autocovariances vanish

Γ(j) = E [g(Xt, θ0)g(Xt+j, θ0)] = 0, j ≥ 1

and

V0 = E [g(Xt, θ0)g(Xt, θ0)
′] , V̂T =

1
T

T∑
t=1

g(Xt, θ̃T)g(Xt, θ̃T)′

The Hansen statistic

ξH
T = TĝT(θ̂T)′V̂−1

T ĝT(θ̂T) ∼ χ2
GK−p

can be used to test the asset pricing model
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Empirical results:
Hansen and Singleton (1982)
Monthly data from 1959:2 to 1977:12

Returns of equally-weighted and value-weighted portfolios of
NYSE stocks

Instruments include current and lagged values of asset return
and consumption growth

Time-separable preferences, CRRA utility U(C; γ) =
C1−γ − 1

1 − γ

Estimates of risk-aversion γ range between 0.5 and 1 with
standard errors of about 0.20

Hansen overidentification test rejects the model
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Empirical results: Stock and Wright (2000)

Monthly data on stock and bond portfolios from 1959:1 to
1990:12

Instruments include additionally current and lagged values of
bond term spread and dividend yield

CRRA utility: estimated risk-aversion between 0 and 1

Epstein-Zin preferences: estimated risk-aversion is often
negative!
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Empirical results: Yogo (2004)
Yogo (2004) estimates the EIS ψ by GMM from the regression

Δct+1 = α+ ψrf ,t+1 + εt+1

where Δct+1 = log(Ct+1/Ct) is log consumption growth

For time-separable preferences and CRRA utility ψ = 1/γ

The CMR E [Δct+1 − α− ψrf ,t+1|Wt] = 0 corresponds to the
linearized Euler condition with CRRA utility written for the
riskfree asset and divided by γ

GMM estimates of EIS ψ are in general small (and sometimes
negative!), in accordance with Hall (1988)

Results suggest that risk-aversion γ =
1
ψ

is (much) larger than 1
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Empirical results: Hall (2005)

Monthly stock returns data as in Hansen and Singleton (1982)
but on the period 1959:1-1997:12

Instruments include current and past values of asset return and
consumption growth only

Time-separable preferences with CRRA utility

Estimated risk-aversion ranges between 0.7 and 1.3

Confidence intervals for γ are large, e.g. (−4, 4)
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Summary on empirical analysis
Advantage of GMM:

allows to estimate general nonlinear rational expectations and
no-arbitrage asset pricing models “when only a subset of the
economic environment is explicitly specified a-priori”

Drawbacks of GMM:

Instability of estimates when changing basic asset returns
and/or instruments and/or parameterization

Large confidence intervals for some preference parameters
such as risk-aversion coefficient

Confidence intervals and hypothesis tests based on standard
asymptotic approximations are often unreliable in finite sample
[see e.g. Hansen, Heaton, Yaron (1996)]
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Weak identification

Drawbacks of GMM are likely related to weak identification

A parameter θ is weakly identified when the UMR is not very
informative to estimate the true value θ0

Figures 3.1 and 3.2 in Hall (2005), pp. 62 and 64, show that the
GMM criterion is very flat over a wide range of values of the
risk-aversion parameter!

Locally, weak identification means that the Jacobian matrix

J0 = E0

[
∂g(Xt; θ0)

∂θ′

]
= E0

[
Zt
∂Mt,t+1(θ0)

∂θ′

]
is near reduced-rank, i.e., the instrument Zt is only weakly
correlated with (some function of) the future state variables
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Intuition with CRRA utility

For CRRA utility the sdf is

Mt,t+1(θ) = β (Ct+1/Ct)
−γ = β exp(−γΔct+1), θ = (β, γ)′

where Δct+1 = log(Ct+1/Ct) is log consumption growth

By linearization around Δct+1 � 0 we have:

∂Mt,t+1(θ)

∂θ′
= exp(−γΔct+1) (1,−βΔct+1) � (1,−βΔct+1)

Consumption growth Δct+1 is difficult to forecast with variables
at time t (Hall (1988))

⇒ the risk-aversion parameter γ is likely weakly identified while
the time-discount parameter β is strongly identified!
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Weak instruments in linear IV model

Consider a linear IV regression model

y = Xβ + u

X = ZΠ + v

where y and X are T × 1 vectors of endogenous variables
and Z is a T × K matrix of nonstochastic instruments

Errors (ut, vt)
′, t = 1, · · · ,T are IIN(0,Σ) with Σ =

(
σ2

u σuv

σuv σ2
v

)
and σuv 	= 0

Matrix Π measures the strength of the instruments Z
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Weak instruments in linear IV model

Theoretical and Monte-Carlo insights show that the finite-sample
distribution of the 2SLS estimator depends on sample size T,
number of instruments K and instrument strength Π through

μ2/K

where μ2 is the concentration parameter defined by

μ2 = Π′ZZ′Π/σ2
v

Figure 1 in Stock, Wright, Yogo (2002) shows that for small
values of μ2/K (≤ 10, say), the distributions of the 2SLS
estimator and t-statistics are highly nonnormal!

(see also Nelson and Startz (1990))
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Weak instruments asymptotics

Usual (fixed-model) asymptotic normal approximations rely on

K,Π fixed and T → ∞, i.e. μ2/K → ∞

and cannot provide a good description for a setting with low
μ2/K !

Weak instruments asymptotics: a sequence of drifting models

K fixed,Π → 0 and T → ∞ such that μ2/K → constant (small)

to provide an approximation for a setting with low μ2/K
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An example of weak IV asymptotics

Linear IV regression:

yt = β + αxt + ut, t = 1, · · · ,T
wt = πxt + vt

where (xt, ut, vt)
′ ∼ IIN(0, I3)

Orthogonality condition for parameter of interest θ = (β, α)′

E[g(Xt; θ0)] = E[zt(yt − β0 − α0xt)] = 0

where zt = (1,wt)
′ is the instrument

If π = π0/
√

T the instrument wt is weakly correlated with
regressor xt and parameter α is weakly identified!
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An example of weak IV asymptotics
Write the GMM=2SLS estimator as:

α̂T =

(
T∑

t=1

(wt − w̄)(xt − x̄)

)−1 T∑
t=1

(wt − w̄)yt, β̂T = ȳ − x̄α̂T

Then:

α̂T − α0 =

(
1√
T

T∑
t=1

(wt − w̄)(xt − x̄)

)−1
1√
T

T∑
t=1

(wt − w̄)ut
d→ Z1

π0 + Z2

√
T
(
β̂T − β0

)
=

√
Tū −

√
Tx̄ (α̂T − α0)

d→ Z3 − Z1Z4

π0 + Z2

where (Z1,Z2,Z3,Z4)
′ ∼ N(0, I4)

The estimator of the weakly identified parameter α is
inconsistent while the estimator of the strongly identified
parameter β is root-T consistent but asymptotically nonnormal!
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Weak IV asymptotics:
Stock and Wright (2000)
Consider a general GMM setting with UMR E[g(Xt; θ0)] = 0

Partition θ = (α′, β′)′ and assume a drifting DGP such that

E [g(Xt; θ)] = m1(α, β)/
√

T + m2(β) (1)

where m1(α0, β0) = 0 and m2(β) = 0 ⇔ β = β0

Parameter α is weakly identified since the UMR is almost
uninformative for α when T is large, parameter β is strongly
identified

Proposition (Stock-Wright (2000), Thm 1): Under the weak
identification assumption (1) the GMM estimator α̂ is
inconsistent and the GMM estimator β̂ is root-T consistent, with
non-Gaussian asymptotic distribution
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Weak identification robust inference
The Continuously Updated Estimator (CUE):

θ̂CUE
T = arg min

θ∈Θ
QCUE

T (θ), QCUE
T (θ) = ĝT(θ)′V̂T(θ)−1ĝT(θ)

where V̂T(θ) is consistent estimator of V0(θ) := V[g(Xt, θ)]

Proposition (Stock-Wright (2000), Thm 2): Under the null
hypothesis θ = θ0 we have T · QCUE

T (θ0)
d→ χ2(m), m = dim(g),

whether identification is weak or strong

By inverting the statistic T · QCUE
T we can construct a so-called

S-confidence set for θ with asymptotic level ε

ST :=
{
θ : T · QCUE

T (θ) ≤ χ2
1−ε(m)

}
which is robust to weak identification!
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Application of S-sets for asset pricing
Stock and Wright (2000) apply S-sets to inference in asset
pricing models with US data

In their empirical analysis conventional confidence ellipses and
S-sets strongly differ for time-separable CRRA utilities, habit
formation and Epstein-Zin preferences!

S-sets are typically much larger and imply a much greater
degree of risk-aversion γ > 20 (see e.g. Figures 3, 4 and 6 in
Stock-Wright (2000))

In a few cases, the S-sets are null i.e. there are no parameter
values consistent with the moment restrictions

Yogo (2004) applies S-sets for inference on EIS and concludes
that ψ is small, e.g. 95% CI for Switzerland in period
1976:3-1998:4 is [−1.42, 0.5] (see Table 6)
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Summary on weak identification
Empirical conclusions based on weak identification robust
methodologies substantially differ from those obtained with
conventional approaches

Preference-based sdf specifications are less often rejected but
confidence sets are much larger and consistent with very high
levels of risk-aversion

Informal checks for symptoms of weak identification:
Criterion functions admitting large plateaus
Substantial difference between S-sets and conventional
GMM confidence sets
Substantially different estimates obtained from estimators
that are asymptotically equivalent under conventional theory
Monte-Carlo on a calibrated model showing large biases in
point estimates and size distortions in test statistics
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Optimal instruments
Consider the CMR

E [h(Xt, θ)|Wt] = 0, P-a.s.

to estimate parameter θ

Assume that the true value θ0 is identified by the CMR, i.e.

Global Identification (GI) assumption:

E [h(Xt, θ)|Wt] = 0 P-a.s., θ ∈ Θ ⇔ θ = θ0

Local Identification (LI) assumption:

E

[
∂h(Xt, θ0)

∂θ′
|Wt

]
is full rank P-a.s.
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Optimal instruments
Let Zt = ϕ(Wt) be an admissible instrument and let Σ(Z) denote
the asymptotic variance-covariance matrix of the best GMM
estimator with instrument Zt

Proposition (Chamberlain (1987)): There exists an optimal
instrument that minimizes Σ(Z). It is given by

Z∗
t = E

[
∂h(Xt, θ0)

′

∂θ
|Wt

]
V [h(Xt, θ0)|Wt]

−1

The associated GMM estimator achieves asymptotically the
semi-parametric efficiency bound:

Σ(Z∗) = E

[
E

[
∂h(Xt, θ0)

′

∂θ
|Wt

]
V [h(Xt, θ0)|Wt]

−1 E

[
∂h(Xt, θ0)

∂θ′
|Wt

]]−1

How to implement GMM with optimal instrument?
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Information-theoretic GMM

The optimal instrument Z∗
t involves the true conditional density

f0(x|w) of Xt given Wt by means of the conditional expectation
and variance of the moment function

The kernel estimator f̂ (x|w) does not take into account the
information in the CMR

Basic idea of information-theoretic GMM: estimate jointly θ0 and
f0(x|w) by looking for the pdf f (x|w) of Xt given Wt which is

the closest to the kernel conditional density estimator f̂ (x|w)

subject to
the conditional moment restrictions
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Information-theoretic GMM
Let Dist(f |g) denote a distance between densities f > 0 and
g > 0 over the support of X, e.g. chi-square distance

Dist(f |g) =

∫
[f (x) − g(x)]2

g(x)
dx

or Kullback-Leibler (KL) distance

Dist(f |g) =

∫
log [f (x)/g(x)] f (x)dx

Definition: The estimators θ̂T and f̂t, t = 1, · · · ,T minimize

QT(f1, · · · , fT) =
1
T

T∑
t=1

Dist
(

ft, f̂ (·|wt)
)

subject to∫
ft(x)dx = 1,

∫
h(x; θ)ft(x)dx = 0, t = 1, · · · ,T
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Euclidean likelihood: Chi-square distance

The Lagrangian is

L =
1
T

∫
[ft(x) − f̂ (x|wt)]

2

f̂ (x|wt)
dx−

T∑
t=1

μt

∫
ft(x)dx−

T∑
t=1

λ′t

∫
h(x; θ)ft(x)dx

The optimization w.r.t. functions ft, t = 1, · · · ,T, for given θ can
be performed analytically:

f̂t(x; θ) = f̂ (x|wt)
{

1 − Ê[h(θ)|wt]
′V̂[h(θ)|wt]

−1
(

h(xt, θ) − Ê[h(θ)|wt]
)}

where Ê[h(θ)|wt] and V̂[h(θ)|wt] denote conditional expectation
and variance of h(xt, θ) w.r.t. the kernel density f̂ (.|wt)
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Euclidean likelihood: Chi-square distance

The estimator of θ is computed by minimizing the concentrated
criterion

θ̂CUE
T = arg min

θ

1
T

T∑
t=1

Ê[h(θ)|wt]
′V̂[h(θ)|wt]

−1Ê[h(θ)|wt]

and corresponds to a Continuosly Updated estimator

Proposition (Antoine, Bonnal, Renault (2007)): The estimator
θ̂CUE

T is consistent, asymptotically normal and reaches the
semi-parametric efficiency bound Σ(Z∗)

The information-theoretic approach to GMM automatically
selects the optimal instruments and weighting matrix!
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Exponential tilting: KL distance
The estimates of ft, t = 1, · · · ,T, for given θ are

f̂t(x; θ) = f̂ (x|wt) exp (λt(θ)
′h(xt, θ)) /Ê [exp (λt(θ)

′h(xt, θ)) |wt]

where the Lagrange multiplier vector λt(θ) is such that the tilted
density f̂t(x; θ) satisfies

∫
h(x, θ)f̂t(x, θ)dx = 0

The exponential tilting (ET) estimator is

θ̂ET
T = arg min

θ
− 1

T

T∑
t=1

log Ê [exp (λt(θ)
′h(xt, θ)) |wt]

Proposition (Kitamura, Tripathi, Ahn (2004)): The ET
estimator is asymptotically equivalent to CUE, in particular
semi-parametrically efficient

Computation of ET estimator is more cumbersome than CUE
but ensures positive estimated densities!
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Lack of identification in asset pricing
models
No-arbitrage restrictions from a set of fundamental assets can
be insufficient to identify the sdf parameter θ, i.e. GI and LI fail

In such a case any (information-theoretic) GMM estimator of θ is
inconsistent!

Gagliardini, Gouriéroux and Renault (2005) provide an example
in a derivative pricing framework

Under the DGP P0 the underlying asset return is such that

rt = rf ,t + γ0σ
2
t + σtεt

where (εt) ∼ IIN(0, 1), the risk-free rate rf ,t is deterministic and
the stochastic volatility (σ2

t ) follows a discrete-time Heston
(1993) model
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Lack of identification
The true sdf is exponential affine:

Mt,t+1(θ0) = e−rf ,t+1 exp
(−θ0

1 − θ0
2σ

2
t+1 − θ0

3σ
2
t − θ0

4rt+1

)
where θ0 = (θ0

1, θ
0
2, θ

0
3, θ

0
4)

′

The no-arbitrage restrictions for the risk-free asset and the
underlying asset are

E0

[
Mt,t+1(θ0)e

rf ,t+1|Xt] = 1, E0

[
Mt,t+1(θ0)e

rt+1 |Xt] = 1, Xt = (rt, σ
2
t )

Proposition (Gagliardini, Gouriéroux, Renault (2005): There
exists a set of parameter vectors θ = θ(θ2) indexed by θ2 ∈ R s.t.

E0 [Mt,t+1(θ)e
rf ,t+1 |Xt] = 1, E0 [Mt,t+1(θ)e

rt+1 |Xt] = 1, P-a.s.

for any θ2 ∈ R

Identification of θ0 requires the use of derivative prices!
Patrick Gagliardini (USI and SFI) GMM Estimation of asset pricing models 34 / 40



Extended Method of Moments (XMM):
Gagliardini, Gouriéroux, Renault (2005)
XMM is an extension of GMM to accommodate a more general
set of conditional moment restrictions:

uniform CMR, i.e. valid for any value of the conditioning
variable (the usual CMR!)

local CMR, i.e. valid for a given value of the conditioning
variable only

Local CMR correspond to no-arbitrage restrictions for
cross-sectionally observed prices of actively traded derivatives

Characteristics of actively traded derivatives change from one
trading day to the other

Local restrictions from derivative assets provide identification
and efficiency in estimation of risk premia and option prices
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