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Efficient Derivative Pricing by the Extended Method of Moments

Abstract

In this paper we introduce the Extended Method of Moments (XMM) estimator. This

estimator accommodates a more general set of moment restrictions than the standard Gen-

eralized Method of Moments (GMM) estimator. More specifically, the XMM differs from

the GMM in that it can handle not only uniform conditional moment restrictions (i.e. valid

for any value of the conditioning variable), but also local conditional moment restrictions

valid for a given fixed value of the conditioning variable. The local conditional moment

restrictions are of special relevance in derivative pricing for reconstructing the pricing op-

erator at a given day, by using the information in a few cross-sections of observed traded

derivative prices and a time series of underlying asset returns. The estimated derivative

prices are consistent for large time series dimension, but fixed number of cross-sectionally

observed derivative prices. The asymptotic properties of the XMM estimator are non-

standard, since the combination of uniform and local conditional moment restrictions in-

duces different rates of convergence (parametric and nonparametric) for the parameters.

Keywords: Derivative Pricing, Trading Activity, GMM, Information Theoretic Estima-

tion, KLIC, Identification, Weak Instrument, Nonparametric Efficiency, Semiparametric

Efficiency.
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1 Introduction

The Generalized Method of Moments (GMM) was introduced by Hansen (1982) and Hansen,

Singleton (1982) to estimate a structural parameter θ identified by Euler conditions:

pi,t = Et [Mt,t+1(θ)pi,t+1] , i = 1, ..., n, ∀t, (1.1)

where pi,t, i = 1, ..., n, are the observed prices of n financial assets, Et denotes the ex-

pectation conditional on the available information at date t, and Mt,t+1(θ) is the stochastic

discount factor. Model (1.1) is semi-parametric. The GMM estimates parameter θ re-

gardless of the conditional distribution of the state variables. This conditional distribution

however becomes relevant when the Euler conditions (1.1) are used for pricing derivative

assets. Indeed, when the derivative payoff is written on pi,t+1 and a reliable current price is

not available on the market, the derivative pricing requires the joint estimation of parameter

θ and the conditional distribution of the state variables.

The Extended Method of Moments (XMM) estimator extends the standard GMM to

accommodate a more general set of moment restrictions. The standard GMM is based

on uniform conditional moment restrictions such as (1.1), that are valid for any value of

the conditioning variables. The XMM can handle not only the uniform moment restric-

tions, but also local moment restrictions that are valid for a given value of the conditioning

variables only. This leads to a new field of application of moment-based methods to deriva-

tive pricing, where the local moment restrictions correspond to Euler conditions for cross-

sectionally observed prices of actively traded derivatives. Such a framework accounts for

the fact that the trading activity is much smaller on each derivative than on the underlying

asset, and that the characteristics of actively traded derivatives are not stable over time.

More precisely, we explain how the XMM can be used for reconstructing the pricing oper-

ator on a given day, by using the information in a few cross-sections of observed actively

traded derivative prices and a time series of underlying asset returns. To illustrate the prin-

ciple of XMM, let us consider the S&P 500 index and its derivatives. Suppose an investor

at date t0 is interested in estimating the price ct0(h, k) of a call option with time-to-maturity

h and moneyness strike k that is currently not actively traded on the market. She has data

on a time series of T daily returns of the S&P 500 index, as well as on a small cross-section
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of current option prices ct0(hj, kj), j = 1, ..., n, of n highly traded derivatives. The XMM

approach provides the estimated prices ĉt0(h, k) for different values of moneyness strike

k and time-to-maturity h, that interpolate the observed prices of highly traded derivatives

and satisfy the hypothesis of absence of arbitrage opportunities. These estimated prices

are consistent for a large number of dates T , but a fixed, even small, number of observed

derivative prices n.

To highlight the specificity of XMM with respect to GMM, we present in Section 2 an

application to the S&P 500 index and its derivatives. First we show that the trading activ-

ity on the index option market is rather weak and the daily number of reliable derivative

prices is small. Then we explain why the time series observations on the underlying index

induce uniform moment restrictions, whereas the observed cross-sectional derivative prices

correspond to local moment restrictions. The XMM estimator minimizes the discrepancy

of the historical transition density from a kernel density estimator, subject to both types

of moment restrictions. The estimation criterion includes a Kullback-Leibler information

criterion associated with the local moment restrictions to ensure the compatibility of the

estimated derivative prices with the absence of arbitrage opportunities. The comparison of

the XMM estimator and the standard calibration estimator for S&P 500 options data shows

clearly that XMM outperforms the traditional approach.

The theoretical properties of the XMM estimator are presented in Section 3 in a general

semiparametric framework. We discuss the parameter identification under both uniform

and local moment restrictions and derive the efficiency bound. We prove that the XMM

estimator is consistent for a fixed number n of cross-sectional observations associated with

the local restrictions and a large number T (T → ∞) of time series observations asso-

ciated with uniform restrictions. Moreover, the XMM estimator is asymptotically normal

and semi-parametrically efficient. Section 4 concludes. The set of regularity assumptions

and the proofs of the theoretical results are gathered in Appendix A. Proofs of technical

Lemmas are given in Appendix B in the Supplemental Material [Gagliardini, Gouriéroux,

Renault (2010)].
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2 The XMM applied to derivative pricing

2.1 The activity on the index option market

In order to maintain a minimum activity, the Chicago Board Options Exchange (CBOE)

enhances the market of options on the S&P 500 index by periodically issuing new option

contracts [Hull (2005), p. 187]. The admissible times-to-maturity at issuing are 1-month,

2-month, 3-month, 6-month, 9-month, 12-month, etc, up to a maximal time-to-maturity.

For instance, new 12-month options are issued every three months, when the options from

the previous issuing attain the time-to-maturity of 9-month. This induces a cycle in the

times-to-maturity of quoted options [see e.g. Schwartz (1987), Figure 1, and Pan (2002),

Figure 2]. For any admissible time-to-maturity, the options are issued for a limited number

of strikes around the value of the underlying asset at the issuing date.

This strategy restricts the number of options quoted on the market. Among these, only

a few options are traded on a daily basis. This phenomenon is illustrated in Section 2.6,

where we select the call and put options with a daily traded volume of more than 4000

contracts in June 2005. Since each contract corresponds to 100 options, 4000 contracts are

worth between 5 millions USD and 7 millions USD, on average. The daily number of the

highly traded options varies between a minimum of 7 in June 10, 2005 and a maximum of

31 in June 16, 2005. The corresponding times-to-maturity and moneyness strikes also vary

in time. For instance in June 10, 2005 the actively traded times-to-maturity are 5, 70 and

135 days, while in June 16, 2005 the actively traded times-to-maturity are 1, 21, 46, 66,

131, 263 and 393 days. In brief, the number of highly traded derivatives on a given day

is rather small. They correspond generally to puts for moneyness strikes below 1, and to

calls otherwise. Moreover, the number of options and the moneyness strikes and times-to-

maturity vary from one day to another due to the issuing cycle and the trading activity.

2.2 Calibration based on current derivative prices

The underlying asset features a regular trading activity, and the associated returns can be

observed and are expected to be stationary. In contrast, the trading prices of a given option
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on two consecutive dates are not always observed and reliable. Therefore the associated

returns might not be computed. Even if these option returns were available, they would

be nonstationary due to the issuing cycle discussed above. To circumvent the difficulty in

modelling the trading activity and its potential nonstationary effect on prices, the standard

methodology consists in calibrating daily the pricing operator 1. More precisely, let us

assume that at date t0 the option prices ct0(hj, kj), j = 1, ..., n, are observed, and that

a parametric model for the risk-neutral dynamics of the relevant state variables implies a

pricing formula ct0(h, k; θ) for the option prices at t0. The number n of actively traded

derivatives and their design hj, kj depend on date t0, but the time index is omitted for

expository purpose. The unknown parameter θ is usually estimated daily by minimizing

the least-squares criterion 2 [e.g., Bakshi et al. (1997)]:

θ̂t0 = arg min
θ

n∑
j=1

[ct0(hj, kj)− ct0(hj, kj; θ)]
2 . (2.1)

This practice has the following drawbacks: First, the estimated parameters θ̂t0 are gener-

ally erratic over time. Second, the approximated prices ĉt0(hj, kj) = ct0(hj, kj; θ̂t0) are

not compatible with the absence of arbitrage opportunities, since the approximated option

prices ĉt0(hj, kj) differ from the observed prices ct0(hj, kj) for highly traded options 3.

Third, even if the estimates can be shown to be consistent when n is large and the options

characteristics (hj , kj) are well distributed [see e.g. Aı̈t-Sahalia and Lo (1998)], in practice

n is small and the estimates are not very accurate.

2.3 Semi-parametric pricing model

In general, the underlying asset is much more actively traded than each of its derivatives.

For instance, the daily traded volume of a portfolio mimicking the S&P 500 index, such as
1Or, in calibrating daily the Black-Scholes implied volatility surface.
2Equivalently, a penalized Least-Squares (LS) criterion [Jackwerth (2000)], a local LS criterion under

shape constraints [Aı̈t-Sahalia, Duarte (2003)], a LS criterion under convolution constraints [Bondarenko

(2003)], or an entropy criterion [Buchen, Kelly (1996), Stutzer (1996), Jackwerth, Rubinstein (1996)] in a

nonparametric setting.
3When the pricer provides a price different from the market price, the trader can have the misleading

impression that she can profit from an arbitrage opportunity, which does not exist in reality.
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the SPDR, is about one hundred millions USD. It is possible to improve the above calibra-

tion approach by considering jointly the time series of observations on the underlying asset

and the cross-sectional data on its derivatives. For this purpose the specification cannot be

reduced to the risk-neutral dynamics only, but has to define in a coherent way the histor-

ical and risk-neutral dynamics of the variables of interest. Let us consider a discrete time

model. We denote by rt the logarithmic return of the underlying asset between dates t− 1

and t. We assume that the information available to the investors at date t is generated by

the random vector Xt of state variables, including the return rt as the first component.

Assumption on the state variables: The process (Xt) in X ⊂Rd is strictly stationary and

time homogeneous Markov under the historical probability with transition density fXt|Xt−1 .

We consider a semi-parametric pricing model defined by the historical dynamics and

a stochastic discount factor (sdf) [Hansen, Richard (1987)]. The historical transition den-

sity of process (Xt) is left unconstrained. We adopt a parametric specification for the sdf

Mt,t+1(θ) = m (Xt+1; θ), where θ ∈ Rp is an unknown vector of risk premia parame-

ters. This model implies a semi-parametric specification for the risk-neutral distribution.

For instance, the relative price at time t of a European call with moneyness strike k and

time-to-maturity h written on the underlying asset is given by:

ct(h, k) = E
[
Mt,t+h(θ)(exp Rt,h − k)+ | Xt

]
,

where Mt,t+h(θ) = m (Xt+1; θ) · · ·m (Xt+h; θ) is the sdf between dates t and t + h, and

Rt,h = rt+1 + · · · + rt+h is the return of the underlying asset in this period. The option

price depends on both the finite-dimensional sdf parameter θ and the functional historical

parameter fXt|Xt−1 .

We are interested in estimating the pricing operator at a given date t0, that is, the map-

ping that associates any European call option payoff ϕt0(h, k) = (exp Rt0,h − k)+ with its

price ct0(h, k) at time t0, for any time-to-maturity h and any moneyness strike k.

Observability assumption: The data consists of a finite number n of derivative prices

ct0(hj, kj), j = 1, ..., n, observed at date t0, and T serial observations of the state variables

Xt corresponding to the current and previous days t = t0 − T + 1, . . . , t0.
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In particular, the state variables in the sdf are assumed observable by the econometrician.

The no-arbitrage assumption implies the moment restrictions for the observed asset prices.

2.4 The moment restrictions

The moment restrictions are twofold. The constraints concerning the observed derivative

prices at t0 are given by:

ct0(hj, kj) = E
[
Mt,t+hj

(θ)(exp Rt,hj
− kj)

+|Xt = xt0

]
, j = 1, . . . , n. (2.2)

The constraints concerning the riskfree asset and the underlying asset are:




E[Mt,t+1(θ)| Xt = x ] = B(t, t + 1), ∀x ∈ X ,

E[Mt,t+1(θ) exp rt+1| Xt = x ] = 1, ∀x ∈ X ,
(2.3)

respectively, where B(t, t + 1) denotes the price at time t of the short-term riskfree bond.

The conditional moment restrictions (2.2) are local, since they hold for a single value of

the conditioning variable only, namely the value xt0 of the state variable at time t0. This

is because we consider only observations of the derivative prices ct0(hj, kj) at date t0.

Conversely, the prices of the underlying asset and the riskfree bond are observed for all

trading days. Therefore the conditional moment restrictions (2.3) hold for all values of the

state variables. They are called the uniform moment restrictions. The distinction between

the uniform and local moment restrictions is a consequence of the differences between the

trading activities of the underlying asset and its derivatives. Technically, it is the essential

feature of the XMM that distinguishes this method from its predecessor GMM.

There are n + 2 local moment restrictions at date t0 given by:




E[Mt,t+hj
(θ)(exp Rt,hj

− kj)
+ − ct0(hj, kj)|Xt = xt0 ] = 0, j = 1, . . . , n,

E [Mt,t+1(θ)−B(t0, t0 + 1)|Xt = xt0 ] = 0,

E[Mt,t+1(θ) exp rt+1 − 1|Xt = xt0 ] = 0.

(2.4)

Let us denote the local moment restrictions (2.2) as:

E [g̃(Y ; θ)|X = x0] = 0, (2.5)
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where Yt = (Xt+1, · · · , Xt+h̄)
′ is the d̃-dimensional vector of relevant future values of the

state variables, h̄ is the largest time-to-maturity of interest, x0 ≡ xt0 , and the time index is

suppressed. Similarly, the uniform moment restrictions (2.3) are written as:

E [g(Y ; θ)|X = x] = 0, ∀x ∈ X . (2.6)

Then, the whole set of local moment restrictions (2.4) corresponds to:

E [g2(Y ; θ)|X = x0] = 0, (2.7)

where g2 = (g′, g̃′)′. Since we are interested in estimating the pricing operator at a given

date t0, the value x0 is considered as a given constant.

We assume that the sdf parameter θ is identified from the two sets of conditional mo-

ment restrictions (2.5) and (2.6). We allow for the general case where some linear com-

binations η∗2 , say, of the components of θ are unidentifiable from the uniform moment

restrictions (2.6) on the riskfree asset and the underlying asset, only. The identification of

these linear combinations requires local moment restrictions (2.5) on the cross-sectional

derivative prices at t0. Intuitively, these linear combinations η∗2 correspond to risk-premia

parameters associated with risk factors that are not spanned by the returns of the underlying

asset and the riskfree asset. This point is further discussed in Sections 2.7 and 3.2.

2.5 The XMM estimator

The XMM estimator presented in this section is related to the recent literature on the infor-

mation based GMM [e.g., Kitamura, Stutzer (1997), Imbens, Spady, Johnson (1998)]. It

provides estimators of both the sdf parameter θ and the historical transition density f(y|x)

of Yt given Xt. By using the parameterized sdf, the information based estimator of the

historical transition density defines the estimated state price density for pricing derivatives.

The XMM approach involves a consistent nonparametric estimator of the historical

transition density f(y|x), such as the kernel density estimator:

f̂(y|x) =
1

hd̃
T

T∑
t=1

K̃

(
yt − y

hT

)
K

(
xt − x

hT

)
/

T∑
t=1

K

(
xt − x

hT

)
, (2.8)
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where K (resp. K̃) is the d-dimensional (resp. d̃-dimensional) kernel, hT is the bandwidth

and (xt, yt), t = 1, ..., T , are the historical sample data. 4 Next, this kernel density estimator

is improved by selecting the conditional pdf that is the closest to f̂ (y|x), and satisfies the

moment restrictions, as defined below.

Definition 1: The XMM estimator
(
f̂ ∗ (·|x0) , f̂ ∗ (·|x1) , ..., f̂ ∗ (·|xT ) , θ̂

)
consists of the

functions f0, f1, ..., fT defined on Y ⊂ Rd̃, and the parameter value θ, that minimize the

objective function:

LT =
1

T

T∑
t=1

∫ [
f̂(y|xt)− ft(y)

]2

f̂(y|xt)
dy + hd

T

∫
log

[
f0(y)

f̂(y|x0)

]
f0(y)dy, (2.9)

subject to the constraints:
∫

ft(y)dy = 1, t = 1, ..., T,

∫
f0(y)dy = 1,

∫
g (y; θ) ft(y)dy = 0, t = 1, ..., T,

∫
g2 (y; θ) f0(y)dy = 0. (2.10)

The objective function LT has two components. The first component involves the chi-

square distance between the density ft and the kernel density estimator f̂(.|xt) at any sam-

ple point xt, for t = 1, ..., T . The second component corresponds to the Kullback-Leibler

Information Criterion (KLIC) between the density f0 and the kernel estimator f̂(.|x0) at

the given value x0. In addition to the unit mass restrictions for the density functions, the

constraints include the uniform moment restrictions (2.6) written for all sample points, and

the whole set of local moment restrictions (2.7) at x0. The combination of two types of

discrepancy measures is motivated by computational and financial reasons. The chi-square

criterion evaluated at the sample points allows for closed form solutions f1 (θ), ..., fT (θ)

for a given θ (see Appendix A.2.1). Therefore, the objective function can be easily concen-

trated with respect to functions f1, ..., fT , which reduces the dimension of the optimization

problem. The KLIC criterion evaluated at x0 ensures that the minimizer f0 satisfies the

positivity restriction [see e.g. Stutzer (1996) and Kitamura, Stutzer (1997)]. The positivity
4For expository purpose, the dates previous to t0, at which data on (X, Y ) are available, have been re-

indexed as t = 1, ..., T .
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of the associated state price density at t0 guarantees the absence of arbitrage opportunities

in the estimated derivative prices. The estimator of θ̂ minimizes the concentrated objective

function:

Lc
T (θ) =

1

T

T∑
t=1

Ê (g(θ)|xt)
′
V̂ (g(θ)|xt)

−1 Ê (g(θ)|xt)−hd
T log Ê

(
exp

(
λ (θ)

′
g2(θ)

)
|x0

)
,

(2.11)

where the Lagrange multiplier λ (θ) ∈ Rn+2 is such that:

Ê
[
g2(θ) exp

(
λ (θ)

′
g2(θ)

)
|x0

]
= 0, (2.12)

for all θ, and Ê (g(θ)|xt) and V̂ (g(θ)|xt) denote the expectation and variance of g(Y ; θ),

respectively, w.r.t. the kernel estimator f̂(y|xt). The first part of the concentrated objective

function (2.11) is reminiscent from the conditional version of the continuously updated

GMM [Ai, Chen (2003), Antoine, Bonnal, Renault (2007)]. The estimates θ̂ and λ(θ̂) are

computed by writing the constrained optimization (2.11)-(2.12) as a saddle-point problem

[see e.g. Kitamura, Stutzer (1997)] and applying a standard Newton-Raphson algorithm.

Then the estimator of f(y|x0) is given by:

f̂ ∗(y|x0) =

exp

(
λ

(
θ̂
)′

g2(y; θ̂)

)

Ê

[
exp

(
λ

(
θ̂
)′

g2(θ̂)

)
|x0

] f̂(y|x0), y ∈ Y . (2.13)

This conditional density is used to estimate the pricing operator at time t0.

Definition 2: The XMM estimator of the derivative price ct0(h, k) is:

ĉt0(h, k) =

∫
Mt0,t0+h(θ̂) (exp Rt0,h − k)+ f̂ ∗ (y|x0) dy, (2.14)

for any time-to-maturity h ≤ h̄ and any moneyness strike k. The estimator of the pricing

operator density at time t0 up to time-to-maturity h̄ is Mt0,t0+h̄(θ̂)f̂
∗ (y|x0).

The constraints (2.10) imply that the estimator ĉt0(h, k) is equal to the observed option

price ct0(hj, kj) when h = hj and k = kj , j = 1, ..., n. Moreover, the no-arbitrage re-

strictions for the underlying asset and the riskfree asset are perfectly matched at all sample

dates. The large sample properties of estimators θ̂ and ĉt0(h, k) in Definitions 1 and 2 are
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examined in Section 3. The asymptotic analysis for T → ∞ corresponds to long histories

of the state variables before t0 and a fixed number n of observed derivative prices at t0,

and is conditional on Xt0 = x0 and the option prices observed at t0. The estimators θ̂ and

ĉt0(h, k) are consistent and asymptotically normal. 5 The linear combinations of θ that are

identifiable from the uniform moment restrictions (2.6) on the riskfree asset and the un-

derlying asset only, are estimated at the standard parametric rate
√

T . Any other direction

η∗2 in the parameter space (see Section 2.4) and the derivative prices as well are estimated

at the rate
√

Thd
T corresponding to nonparametric estimation of conditional expectations

given X = x0. The estimators of derivative prices are asymptotically semi-parametrically

efficient for the informational content of the no-arbitrage restrictions. 6 Finally, the XMM

estimator in Definition 1 does not account for the restrictions induced by the time homoge-

neous first-order Markov assumption. While this could induce an efficiency loss, it has the

advantage to provide computationally tractable estimators. 7 The difficulty of accounting

for the time-homogenous first-order Markov assumption is not specific to XMM. It con-

cerns also the standard GMM, when the researcher adopts the first-order Markov assump-

tion for the state process. Such an assumption is used to ensure that the derivative prices

are functions of a finite-dimensional state vector and to derive the optimal instruments.

2.6 Application to S&P 500 options

In this section we compare the XMM estimation and a traditional cross-sectional calibration

approach using the data on the S&P 500 options in June 2005 with daily trading volume

5The sample end-point condition Xt0 = x0 is irrelevant for the asymptotic properties of the kernel density

estimator (2.8) when the data are weakly serially dependent (see the mixing condition in Assumption A.5).
6Asymptotically equivalent estimators are obtained by replacing the integral w.r.t. the kernel density

estimator in (2.14) by the discrete sum involved in a kernel regression estimator. These latter estimators

involve a smoothing w.r.t. X only, and are used in the application in Section 2.6.
7The first-order Markov assumption implies the conditional independence of the future value Xt+1 and

the past history Xt−1 given the current value Xt. This can be written as E[Ψ1(Xt+1)Ψ2(Xt−1)|Xt] −
E[Ψ1(Xt+1)|Xt]E[Ψ2(Xt−1)|Xt] = 0, for any integrable functions Ψ1, Ψ2. These restrictions are not

conditional moment restrictions. The additional assumption of time-homogeneity of the Markov process

might be used to develop an adaptive estimation method. This extension is out of the scope of our paper.
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larger than 4000 contracts (see Section 2.1). The OptionMetrics database contains daily

data, where the trades of an option with given time-to-maturity and strike are aggregated

within the day. Even if the high frequency trading option prices are not available, this

database provides the closing bid/ask quotes. For a given day, these two quotes are rather

close to each other, and to trading prices, for options with trading volume larger than 4000

contracts. The average of the closing bid/ask quotes is retained in the empirical analysis as

a proxy for the trading price at the end of the day.

i) Cross-sectional calibration

The cross-sectional calibration is based on a parametric stochastic volatility model for

the risk-neutral distribution Q. We assume that under Q the S&P 500 return is such that:

rt = rf,t − 1

2
σ2

t + σtε
∗
t , (2.15)

where rf,t is the riskfree rate between t − 1 and t, process (ε∗t ) is a standard Gaussian

white noise and σ2
t denotes the volatility. The short-term riskfree rate rf,t is assumed de-

terministic. The volatility (σ2
t ) is stochastic, independent of shocks (ε∗t ) on returns and fol-

lows an Autoregressive Gamma (ARG) process [Gouriéroux and Jasiak (2006), Darolles,

Gouriéroux and Jasiak (2006)], which is a discrete time Cox, Ingersoll and Ross (CIR) pro-

cess [Cox, Ingersoll and Ross (1985)]. Hence, the joint model for (rt, σ
2
t ) is a discrete time

analogue of the Heston model [Heston (1993)]. The risk-neutral transition distribution of

the stochastic volatility is noncentral gamma and is more conveniently defined through its

conditional Laplace transform:

EQ
[
exp

(−uσ2
t+1

) | σ2
t

]
= exp

[−a∗(u)σ2
t − b∗(u)

]
, u ≥ 0, (2.16)

where EQ[.] denotes the expectation under Q, and functions a∗, b∗ are defined by a∗(u) =

ρ∗u/(1 + c∗u) and b∗(u) = δ∗ log(1 + c∗u). Parameter ρ∗, ρ∗ > 0, is the risk-neutral

first-order autocorrelation of volatility process (σ2
t ); parameter δ∗, δ∗ ≥ 0 , describes its

(conditional) risk-neutral over-/under-dispersion; parameter c∗, c∗ > 0, is a scale parameter.

The conditional Laplace transform (2.16) is exponential affine in the lagged observation

and the ARG process is discrete-time affine. We refer to Gouriéroux and Jasiak (2006) for

an in-depth discussion of the properties of the ARG process.
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The relative option prices are function of the current value of volatility σ2
t and of the

three parameters θ = (c∗, δ∗, ρ∗), that is, ct(h, k) = c (h, k; θ, σ2
t ), say. Function c is com-

puted by Fourier Transform methods as in Carr and Madan (1999) by exploiting the affine

property of the joint process of excess returns and stochastic volatility. 8 The volatility σ2
t

is calibrated daily jointly with θ by minimizing the mean square errors as in (2.1) 9. The

calibrated parameter θ̂t0 and volatility σ̂t0 for the first ten trading days of June 2005 are

displayed in Table I.

[Insert Table I : Calibrated parameters (cross-sectional approach)

for the S&P 500 options in June, 2005]

We also report the Root Mean Squared Errors RMSEt0 =
{

1
nt0

∑nt0
j=1

[
c
(
hj, kj; θ̂t0 , σ̂

2
t0

)

−ct0(hj, kj)]
2}1/2

as goodness of fit measure. We observe that the calibrated parameters

δ̂∗t0 , ρ̂∗t0 and ĉ∗t0 , and the goodness of fit measure vary in time and are quite erratic. The

variation of the goodness of fit is due to a large extent to the small and time-varying number

of derivative prices used in the calibration.

ii) XMM estimation

In the XMM estimation we consider the bivariate vector of state variables:

Xt = (r̃t, σ
2
t )
′, (2.17)

where r̃t := rt − rf,t is the daily logarithmic return from the S&P 500 index in excess

of the riskfree rate, and σ2
t is an observable volatility factor. More specifically, σ2

t is the

one-scale realized volatility computed from 30-minute S&P 500 returns [e.g., Andersen et

al. (2003)]. The parameterized sdf is exponential affine:

Mt,t+1(θ) = e−rf,t+1 exp
(−θ1 − θ2σ

2
t+1 − θ3σ

2
t − θ4r̃t+1

)
, (2.18)

8Equations (5)-(6) in Carr, Madan (1999) are used to compute the option price as a function of time-to-

maturity h and discounted moneyness B(t, t + h)k (see Appendix B in the Supplemental Material). The

term structure of riskfree bond prices is assumed exogeneous and is estimated at date t0 by cubic spline

interpolation of market yields at available maturities. This motivates our preference for a specification with

time-varying deterministic interest rate compared to one with constant interest rate.
9It would also be possible to replace σ2

t by the observed realized volatility and calibrate w.r.t. θ only. We

have followed the standard approach which provides smaller pricing errors.
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where θ = (θ1, θ2, θ3, θ4)
′. 10 This specification of the sdf is justified by the fact that the

corresponding semi-parametric model for the risk-neutral distribution nests the parametric

model used for cross-sectional calibration in Section i) above. More precisely, the risk-

neutral stochastic volatility model (2.15)-(2.16) can be derived from an historical stochastic

volatility model of the same type and the exponential affine sdf (2.18) with appropriate

restrictions on parameter θ (see Section 3.2).

For each trading day t0 of June 2005, we estimate by XMM the sdf parameter θ =

(θ1, θ2, θ3, θ4)
′ and 5 option prices ct0(h, k) at a constant time-to-maturity h = 20 days and

moneyness strikes k = .96, .98, 1, 1.02, 1.04. The options are puts for k < 1, and calls for

k ≥ 1. The estimator is defined as in Section 2.5, using the current and previous T = 1000

daily historical observations on the state variables, and the derivative prices of the actively

traded S&P 500 options at t0. We use a product Gaussian kernel and select two bandwidths

for the state variables according to the standard rule of thumb [Silverman (1986)]. The

estimation results for the first ten trading days of June 2005 are displayed in Table II.

[Insert Table II : Estimated sdf parameters and option prices (XMM approach)

for the S&P 500 options in June, 2005]

A direct comparison of the estimated structural parameters given in Tables I and II is dif-

ficult, since the parameters in Table I concern the risk-neutral dynamics whereas those in

Table II concern the sdf. For this reason, we focus in Sections iii) and iv) below on a di-

rect comparison of estimated option prices. Nevertheless, the following two remarks are

interesting. First, the XMM estimated parameters are much more stable over time than

the calibrated parameters, since they use the same historical information on the underlying

asset. Second, from the computational point of view, the calibration method is rather time

consuming since it requires the inversion of the Fourier Transform for all option prices, at

each evaluation of the criterion function and its partial derivatives w.r.t. the parameters, and

at each step of the optimization algorithm. On the contrary, the full XMM estimation takes

about one minute on a standard computer.
10The option prices at time-to-maturity h depend on the pattern of the deterministic short rate between t

and t + h by means of the bond price B(t, t + h) only. The term structure of bond prices is estimated from

market yields as in Section 2.6 i).

13



iii) Static comparison of estimated option prices

In Figure 1 we display the estimated relative prices of S&P 500 options on June, 1

and June 2, 2005, as a function of the discounted moneyness strike k̃ = B(t, t + h)k and

time-to-maturity h.

[Insert Figure 1 : Estimated call and put price functions for the S&P 500 options

in June, 1, and June, 2, 2005]

The results for June, 1 (resp. June, 2) are displayed in the upper (resp. lower) panels. In

the right panels, the solid lines correspond to XMM estimates, and in the left panels to cal-

ibrated estimates. Circles correspond to the observed prices of highly traded options. On

June, 1, there are four highly traded times-to-maturity, which are 12, 57, 77, and 209-day,

respectively. For the longest time-to-maturity h = 209, there is only one actively traded

call option (resp., one put for h = 57 and two calls for h = 77). All remaining highly traded

options correspond to time-to-maturity 12. When both the put and call options with iden-

tical moneyness strike and time-to-maturity are actively traded, we select the put if k̃ < 1,

and the call, otherwise. This is compatible with the procedure suggested by Aı̈t-Sahalia and

Lo (1998). After applying this procedure, we end up with 11 highly traded options in June,

1, and 8 highly traded options for the 3 times-to-maturity in June, 2, 2005. As discussed in

Section 2.2, the calibration approach may produce different values for observed and esti-

mated option prices while, by definition, these prices coincide within the XMM approach.

Both calibration and XMM can also be used for pricing puts and calls that do not corre-

spond to highly traded times-to-maturity and highly traded moneyness strikes. To show

this, Figure 1 includes (dashed lines) the times-to-maturity 120 for June, 1, 2005, and 119

for June, 2, 2005, which are not traded. The calibration method assumes a parametric risk-

neutral model, whereas the XMM risk-neutral model is semiparametric. Any specification

error in the fully parametric pricing model is detrimental for the calibration approach, while

the XMM approach is more flexible. An advantage of XMM is that, by construction, the

estimated derivative prices coincide with the market prices for highly traded options, while

the calibrated prices differ from the observed prices, and these discrepancies can be large.

This is not due to the specific parametric risk-neutral model that was used. It would also
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occur if a more complicated parametric model, or the nonparametric approach proposed in

Aı̈t-Sahalia and Lo (1998), was used. By construction, the specific risk-neutral stochastic

volatility model that underlies the calibration method produces smooth symmetric option

pricing functions w.r.t. the log-moneyness [see Gouriéroux, Jasiak (2001), Chapter 13.1.5],

with similar types of curvature when the time-to-maturity increases. In contrast, the XMM

produces option pricing functions with different skew according to the time-to-maturity,

which means that the method captures the leverage effect and its term structure.

iv) Dynamic comparison of estimated option prices

Let us now consider the dynamics of the option pricing function. In Figure 2 we display

the time series of Black-Scholes implied volatilities at a fixed time-to-maturity h = 20 and

moneyness strikes k = .96, 1, 1.04, 1.06 for all trading days in June, 2005.

[Insert Figure 2: Time series of implied volatilities for S&P 500 options in June, 2005]

The XMM implied volatilities are indicated by circles and the calibrated implied volatilities

are marked by squares. The XMM implied volatilities are more stable over time because

of the use of the historical information on the underlying asset. Since most of the highly

traded options have moneyness strikes close to at-the-money, the calibration approach is

rather sensitive to infrequently observed option prices with extreme strikes.

The sample means of the two time series of implied volatilities in each panel of Figure

2 are different. In particular, for k = .96 and k = 1, the XMM implied volatilities are on

average larger than the calibrated ones, and smaller for k = 1.04 and k = 1.06. The reason

is that the XMM approach captures the smirk, i.e. the skewness, in the implied volatility

curve, while the calibrated model can reproduce either a smile, or a flat pattern only.

2.7 Discussion and possible extensions

We have illustrated above how to implement the XMM estimator for derivative pricing

in a two-factor model with exponential affine sdf. In practice, the econometrician has to

select the set of observable underlying factors and the set of asset prices, including reliable

derivative prices, which are used for defining the uniform and local moment restrictions.
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There exist arguments for introducing more factors. (i) For instance, if the riskfree

interest rate is assumed stochastic, additional factors can be the riskfree rate, its realized

volatility, and the realized covolatility between the index return and the riskfree rate. This

would lead to a 5-factor model. (ii) If the stochastic volatility follows a Markov process of

order q larger than 1, the first-order Markov assumption is recovered by introducing both

the current and lagged volatilities σ2
t and σ2

t−1, · · · , σ2
t−q+1 in the vector Xt. Pragmatic

arguments such as tractability and robustness suggest to limit the number of factors, e.g. to

a number smaller or equal to 3.

The XMM approach can be easily extended to account for a finite number of cross-

sections of reliable observed derivative prices, e.g. the last 10 trading days 11. This is

achieved by including in criterion (2.9) a local KLIC component for each cross-section.

However, there is no a-priori reason to overlook any reliable prices data. Thus, we could

propose to consider the prices of actively traded derivatives for all previous dates and not

only for a finite number of dates. By using this additional information one may expect to

improve the convergence rate of the sdf parameters that are not identifiable from the uni-

form restrictions (2.3), and possibly achieve the parametric convergence rate for more θ

parameters, although not necessarily for all of them. For instance, when the sdf involves

risk premium parameters for extreme risk, the associated estimators could admit a smaller

rate, since the derivatives with large strike are very unfrequently traded. In any case, the es-

timated option prices themselves will still have a nonparametric rate of convergence since

the pricing model is semi-parametric. When an infinite number of local conditional mo-

ment restrictions corresponding to the sparse characteristics of traded derivatives are con-

sidered, we might aggregate the local moment restrictions to get the uniform restriction
∑

h∈H

∑

k∈K
It(h, k)E

[
Mt,t+h(θ) (exp Rt,h − k)+ − ct(h, k)|Xt

]
= 0, where It(h, k) is the ac-

tivity indicator that is equal to 1 if option (h, k) is actively traded at date t, and equal to

0, otherwise, and the sums are over some sets H of times-to-maturity and K of moneyness

strikes. The analysis of the statistical properties of the associated estimators will heavily

depend on the choice of sets H and K, and on the assumptions concerning the trading

activity. A model for trading activity would have to account for the effect of periodic issu-

11Or the 10 past trading days with the values of the state variable closest to x0.
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ing of options by the CBOE, the observed activity clustering, the activity due to dynamic

arbitrage strategies applied by some investors and the activity when some investors use

the options as standard insurance products. The introduction of a realistic trading activity

model would lead to a joint estimation of pricing and activity parameters, provide estimated

option prices, and allow for the prediction of future activity. Accounting for the option data

at all dates is an important extension of our work which is left for future research.

Let us finally discuss the central question of identification. We have pointed out in

Section 2.4 that some sdf parameters may be unidentifiable, when the uniform moment

restrictions (2.3) for the underlying asset and the riskfree asset only are considered. Intu-

itively, a lack of identification has to be expected, whenever the returns of the underlying

asset and the riskfree asset do not span the set of state variables, and there are at least

as many unknown sdf parameters as state variables. In such a framework, there may exist

some directions of change in parameter θ that produce a change in the sdf Mt,t+1(θ) orthog-

onal to the underlying asset and riskfree asset gross returns. In Section 3.2 we formalize

this intuitive argument for the specific stochastic volatility Data Generating Process (DGP)

used in the application and prove lack of identification from uniform moment conditions.

It could be proposed to introduce parameter restrictions to solve the identification prob-

lem. For instance, the restriction θ3 = 0 in the sdf (2.18) yields identification of the full

sdf parameter vector from the uniform moment conditions (2.3). From the analysis in Sec-

tion 3.2 such a restriction is equivalent to imposing an a-priori level of the risk premium

parameter θ2 for stochastic volatility. In this case, the local moment restrictions from the

derivative prices are noninformative for the estimation of θ, but still contribute to efficient

estimation of the derivative prices. While imposing identifying restrictions simplifies the

estimation problem, such an approach has some limitations. First, the degree and the di-

rections of underidentification are not known a-priori since they depend on the unknown

DGP. Second, an ad-hoc parametric restriction is likely misspecified and can lead to mis-

pricing. Under the maintained hypothesis that the researcher knows the correct degree of

underidentification, the validity of the selected identifying restrictions can be tested by a

standard specification test for conditional moment restrictions. The difficulties in selecting

the correct identifying restrictions are overcome by the XMM estimator, which is robust to
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the lack of identification from the uniform moment restrictions.

3 Theoretical properties of XMM

Let us now examine the theoretical properties of the XMM estimator introduced in Sec-

tion 2 for derivative pricing. First we discuss the parameter of interest and the moment

restrictions. Next we derive the identification conditions and explain how they differ from

the standard GMM conditions. Then, we introduce instruments, define a convenient notion

of efficiency, called kernel nonparametric efficiency, and derive the optimal instruments.

Finally, we prove the kernel nonparametric efficiency of the XMM estimator.

3.1 The parameter of interest

Let us consider a semi-parametric estimation of the conditional moments:

E0 [a(Y ; θ0)|X = x0] , (3.1)

subject to the uniform and local conditional moment restrictions:

E0 [g(Y ; θ0)|X = x] = 0, ∀x ∈ X , P0-a.s., (3.2)

E0 [g̃(Y ; θ0)|X = x0] = 0, (3.3)

where θ0 is the true parameter value and E0[.] denotes the expectation under the true

DGP P0. The unknown parameter value θ0 is in set Θ ⊂ Rp, variables (X,Y ) are in

X × Y ⊂ Rd × Rd̃, and x0 is a given value in X . The moment functions g and g̃ are

given vector-valued functions on Y × Θ. Function a on Y × Θ has dimension L. In the

derivative pricing application in Section 2, vector a(Y ; θ) is the product of sdf Mt,t+h(θ)

and payoff (exp Rt,h − k)+ on the L derivatives of interest. Vector functions g and g̃ define

the uniform moment restrictions on the riskfree asset and underlying asset, and the local

moment restrictions on observed derivative prices [see (2.5) and (2.6)].

The conditional moment of interest (3.1) can be viewed as an additional parameter β0

in B ⊂ RL identified by the local conditional moment restrictions:

E0 [a(Y ; θ0)− β0|X = x0] = 0. (3.4)
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Thus, all parameters to be estimated are in the extended vector θ∗0 =
(
θ
′
0, β

′
0

)′
that satisfies

the extended set of uniform and local moment restrictions (3.2), (3.3), (3.4) [see Back,

Brown (1992) for a similar extension of the parameter vector]. In this interpretation, β0 is

the parameter of interest while θ0 is a nuisance parameter.

3.2 Identification

Let us now consider the semi-parametric identification of extended parameter θ∗0. From

moment restriction (3.4), it follows that β0 is identified if θ0 is identified. Thus, we can

restrict the analysis to the identification of θ0.

i) The identification assumption

Assumption a.1: The true value of parameter θ0 is globally semi-parametrically identified:




E0 [g(Y ; θ)|X = x] = 0, ∀x ∈ X , P0-a.s.

E0 [g̃(Y ; θ)|X = x0] = 0
, θ ∈ Θ ⇒ θ = θ0.

Assumption a.2: The true value of parameter θ0 is locally semi-parametrically identified:




E0

[
∂g

∂θ′
(Y ; θ0)|X = x

]
α = 0, ∀x ∈ X , P0-a.s.

E0

[
∂g̃

∂θ′
(Y ; θ0)|X = x0

]
α = 0

, α ∈ Rp ⇒ α = 0.

We need to distinguish the linear transformations of θ0, α′θ0, say, where α ∈ Rp, that are

identifiable from the uniform moment restrictions (3.2) alone, from the linear transforma-

tions of θ0 that are identifiable only from both uniform and local moment restrictions (3.2)

and (3.3). The former transformations are called full-information identifiable, while the

latter ones are called full-information unidentifiable. Let us consider the linear space:

J ∗ =

{
α ∈ Rp : E0

[
∂g

∂θ′
(Y ; θ0)|X = x

]
α = 0, ∀x ∈ X , P0-a.s.

}
,

of dimension s∗, say, 0 ≤ s∗ ≤ p. The full-information identified transformations are α′θ0

with α ∈ (J ∗)⊥, while the full-information unidentifiable transformations are α′θ0 with

α ∈ Rp \ (J ∗)⊥. There exist parameterizations of the moment functions such that p − s∗
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components of the parameter vector are full-information identifiable, and s∗ components

are full-information unidentifiable. Indeed, let us consider a linear change of parameter:

η∗ =


 η∗1

η∗2


 =


 R′

1θ

R′
2θ


 , (3.5)

where R∗ = [R1, R2] is an orthogonal (p, p) matrix, R1 is a (p, p − s∗) matrix whose

columns span (J ∗)⊥, and R2 is a (p, s∗) matrix whose columns span J ∗. The matrices

R1 and R2 depend on the DGP P0. The subvectors η∗1 ∈ Rp−s∗ and η∗2 ∈ Rs∗ are full-

information identifiable, and full-information underidentified, respectively. Assumption a.2

is equivalent to matrix E0

[
∂g̃

∂θ′
(Y ; θ0)|X = x0

]
R2 having full column rank. Thus, a nec-

essary order condition for local identification is that the number of local moment restric-

tions is larger than or equal to s∗, i.e. the dimension of the linear space J ∗ characterizing

the full-information unidentifiable parameters.

The standard GMM considers uniform moment restrictions only, and assumes full-

information identification for the full vector θ0 under the DGP P0. To illustrate the dif-

ference with our setting, let us assume that the DGP P0 is in the parametric stochastic

volatility model which is compatible with the parametric risk-neutral specification of Sec-

tion 2.6 i) and the semi-parametric model of Section 2.6 ii). Specifically, the true historical

distribution of Xt = (r̃t, σ
2
t )
′ is such that:

r̃t = γ0σ
2
t + σtεt, (3.6)

where r̃t = rt−rf,t is the underlying asset return in excess of the deterministic riskfree rate,

the shocks (εt) are IIN(0, 1) and the volatility (σ2
t ) follows an ARG process independent

of (εt) with parameters ρ0 ∈ [0, 1), δ0 > 0 and c0 > 0. The transition of (σ2
t ) is character-

ized by the conditional Laplace transform E0

[
exp(−uσ2

t+1)|σ2
t

]
= exp [−a0(u)σ2

t − b0(u)] ,

u ≥ 0, where a0(u) = ρ0u/(1 + c0u) and b0(u) = δ0 log(1 + c0u). The sdf is given by:

Mt,t+1(θ) = e−rf,t+1 exp
(−θ1 − θ2σ

2
t+1 − θ3σ

2
t − θ4r̃t+1

)
, (3.7)

with true parameter value θ0 = (θ0
1, θ

0
2, θ

0
3, θ

0
4)
′. Then, the true risk-neutral distribution Q is :

r̃t = −1

2
σ2

t + σtε
∗
t , (3.8)

where ε∗t ∼ IIN(0, 1) and (σ2
t ) follows an ARG process independent of (ε∗t ) with parame-
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ters ρ∗0, δ∗0 and c∗0, that are functions of ρ0, δ0, c0 and θ0 given in (A.24). The no-arbitrage re-

strictions (2.3) written under the DGP P0 are satisfied for the true value of the sdf parameter

θ0 if, and only if (see Appendix A.3.1):

θ0
1 = −b0

(
λ0

2

)
, θ0

3 = −a0

(
λ0

2

)
, θ0

4 = γ0 + 1/2, (3.9)

where λ0
2 = θ0

2+γ2
0/2−1/8. The restrictions on θ0

1 and θ0
3 fix the predetermined component

of the sdf, while the last equality in (3.9) relates θ0
4 with the volatility-in-mean parameter

γ0. Parameter θ0
2 is unrestricted.

The econometrician adopts a semiparametric framework with parametric sdf (3.7) and

uses the uniform and local moment restrictions (2.2) and (2.3) to identify θ0. From equa-

tions (3.9), parameter θ0
4 is full-information identified, while parameters θ0

1, θ0
2 and θ0

3 are

full-information unidentifiable. Thus, the uniform moment restrictions (2.3) on the riskfree

asset and the underlying asset are insufficient to identify the full parameter vector θ0. The

linear space defining the full-information identifiable transformations is characterized next.

Proposition 1. When the DGP P0 is compatible with (3.6)-(3.8):

(i) The full-information identifiable transformations are θ′0α with α ∈ (J ∗)⊥, where:

J ∗ =



α ∈ R4 : EQ

0





 exp rf,t+1

exp rt+1


 ξ′t+1α|Xt = x


 = 0 ,∀x ∈ X



 ,

and ξt+1 = (1, σ2
t+1, σ

2
t , r̃t+1)

′. The linear space J ∗ has dimension s∗ = 1 and is spanned

by vector r2 =

(
−db0

du
(λ0

2), 1,−
da0

du
(λ0

2), 0

)′
=

(
− δ0c0

1 + c0λ0
2

, 1,− ρ0

(1 + c0λ0
2)

2 , 0

)′

.

(ii) The elements of the (n, 1) vector E0 [∂g̃(Y ; θ0)/∂θ′|X = x0] r2 are given by:

(1−ρ∗0)CovQ
0

(
σ2

t,t+hj
, BS(kj, σ

2
t,t+hj

)|Xt = x0

)
+ρ∗0CovQ

0

(
σ2

t+hj
, BS(kj, σ

2
t,t+hj

)|Xt = x0

)
,

for j = 1, · · · , n, where σ2
t,t+h = σ2

t+1 + · · ·+σ2
t+h is the integrated volatility between t and

t + h, and BS(k, σ2) is the Black-Scholes price of a call option with time-to-maturity 1,

moneyness strike k and volatility σ2. Hence, the true value of the sdf parameter θ0 is locally

semi-parametrically identified by the conditional moment restrictions (2.2) and (2.3).

The characterization of linear space J ∗ in Proposition 1 (i) formalizes the intuitive

spanning argument given in Section 2.7 to explain the lack of identification. Since ξ′t+1r2 =

σ2
t+1 − EQ

0 [σ2
t+1|σ2

t ] (see A.27), the linear combination of state variables that is unspanned
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by the returns of the underlying asset and the riskfree asset, is the risk-neutral unexpected

volatility. The dimension of the subspace of vectors α ∈ R4 associated with the full-

information identifiable transformations α′θ0 is 3, while a full-information unidentifiable

transformation is η∗2 = R′
2θ0, where R2 = r2/‖r2‖. Since the Black-Scholes price is an

increasing function of volatility, and the integrated volatility is stochastically increasing

w.r.t. the spot volatility under Q conditionally on Xt = x0 (see Lemma A.4 in Appendix

A.3), from Proposition 1 (ii) the vector E0

[
∂g̃

∂θ′
(Y ; θ0)|X = x0

]
R2 has strictly positive

elements. Thus, the full vector of parameters θ becomes identifiable when the local moment

restrictions (2.2) from the observed derivative prices are taken into account.

ii) Admissible instrumental variables

It is also useful to discuss a weaker notion of identification, based on a given matrix of

instruments Z = H(X). The uniform conditional moment restrictions (3.2) imply the un-

conditional moment restrictions E0 [Z · g(Y ; θ0)] =: E0 [g1(X, Y ; θ0)] = 0. Let us denote

the whole set of local conditional moment restrictions at x0 as E0 [g2(Y ; θ0)|X = x0] = 0 ,

where g2 = (g′, g̃′)′. Thus, parameter θ∗0 =
(
θ
′
0, β

′
0

)′
satisfies the moment restrictions:

E0 [g1(X, Y ; θ0)] = 0, (3.10)

E0 [g2 (Y ; θ0) | X = x0] = 0, (3.11)

E0 [a (Y ; θ0)− β0 | X = x0] = 0. (3.12)

Definition 3: The instrument Z is admissible if the true value of the parameter θ0 is globally

semi-parametrically identified by the moment restrictions (3.10)-(3.11) and locally semi-

parametrically identified by their differential counterparts.

Let us introduce the linear change of parameter:

η =


 η1

η2


 =


 R′

1Zθ

R′
2Zθ


 , (3.13)

where R = [R1,Z , R2Z ] is an orthogonal (p, p) matrix, and R2Z is a (p, sZ) matrix whose

columns span the null space JZ = Ker E0

[
∂g1

∂θ′ (X,Y ; θ0)
]
. The subvector of parameters η1

is locally identified by the unconditional moment restrictions (3.10), whereas the subvector

of parameters η2 is identifiable only from both sets of restrictions (3.10) and (3.11).
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3.3 Kernel moment estimators

Let Z be a given admissible instrument. Let us introduce a GMM-type estimator of θ∗0

that is obtained by minimizing a quadratic form of sample counterparts of moments (3.10)-

(3.12). The kernel density estimator f̂(y|x) in (2.8) is used to estimate the conditional

moments in (3.11) and (3.12):

Ê [g2(Y ; θ)|x0] :=

∫
g2(y; θ)f̂(y|x0)dy '

T∑
t=1

g2(yt; θ)K

(
xt − x0

hT

)
/

T∑
t=1

K

(
xt − x0

hT

)
,

and similarly for E0 [a(Y ; θ)− β|X = x0].

Definition 4: A kernel moment estimator θ̂∗T =
(
θ̂
′
T , β̂

′
T

)′
of parameter θ∗0 = (θ′0, β

′
0)
′

based on instrument Z is defined by:

θ̂∗T = arg min
θ∗=(θ′ ,β′)

′
∈Θ×B

QT (θ∗), QT (θ∗) = ĝT (θ∗)
′

Ω ĝT (θ∗) ,

where

ĝT (θ∗) =

(√
TÊ [g1(X, Y ; θ)]

′
,
√

Thd
T Ê [g2(Y ; θ)|x0]

′
,
√

Thd
T Ê [a (Y ; θ)− β|x0]

′
)′

,

Ê[.] and Ê [.|x0] denote an historical sample average and a kernel estimator of the condi-

tional moment, respectively, and Ω is a positive definite weighting matrix.

The empirical moments in ĝT (θ∗) have different rates of convergence, that are para-

metric and nonparametric. This explains why the asymptotic analysis is different from the

standard GMM. To derive the large sample properties of the kernel moment estimator θ̂∗T ,

we prove the weak convergence of a suitable empirical process derived from sample mo-

ments ĝT (θ∗) (see Lemma A.1 in Appendix A.1.2). The definition of the empirical process

is in the spirit of Stock, Wright (2000), but the choice of weak instruments is different. 12

The various rates of convergence in ĝT (θ∗) can be disentangled by using the transformed

parameters (η′1, η
′
2)
′ defined in (3.13).

12The local moment restrictions (3.11) can be approximately written as E0 [g2 (Y ; θ0) | X = x0] '
E0 [ZT g2 (Y ; θ0)] = 0, where ZT = K

(
X−x0

hT

)
/

[
hd

T fX(x0)
]

and fX denotes the unconditional pdf of

X . The “instrument” ZT is weak in the sense of Stock, Wright (2000). However, it depends on T , and the

rates of convergence of the estimators differ from the rates of convergence in Stock, Wright (2000).
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Proposition 2. Under Assumptions A.1-A.24 in Appendix A.1, the kernel moment estimator

θ̂∗T based on instrument Z is consistent and asymptotically normal:



√
T (η̂1,T − η1,0)√

Thd
T (η̂2,T − η2,0)√

Thd
T

(
β̂T − β0

)




d−→ N

(
B∞,

(
J
′
0ΩJ0

)−1

J
′
0ΩV0ΩJ0

(
J
′
0ΩJ0

)−1
)

,

as T → ∞, where (η′1,0, η
′
2,0)

′ is the true value of the transformed structural parameter,

the bias is B∞ = −√c̄
(
J
′
0ΩJ0

)−1
J
′
0Ωb0, with c̄ := lim Thd+2m

T ∈ [0,∞) and m ≥ 2 the

order of differentiability of the pdf fX of X , and matrices J0, V0, and vector b0 are given in

(A.2) and (A.4) in Appendix A.1, and depend on kernel K and instrument Z.

3.4 Kernel nonparametric efficiency bound

The class of kernel moment estimators helps us define a convenient notion of efficiency for

estimating β0 = E0(a|x0) := E0 [a(Y ; θ0)|X = x0]. Let us consider a scalar parameter

β0 and derive the optimal weighting matrix, admissible instruments and bandwidth. We

assume that kernel K is a product kernel K(u) =
d∏

i=1

κ(ui) of order m.

i) Efficiency bound with optimal rate of convergence

Let us consider a bandwidth sequence hT = cT− 1
2m+d , where c > 0 is a constant. From

Proposition 2, it follows that estimator β̂T achieves the optimal d-dimensional nonpara-

metric rate of convergence T− m
2m+d , and its asymptotic Mean Square Error (MSE) constant

M(Ω, Z, c, a) > 0 depends on the weighting matrix Ω, instrument Z, bandwidth constant

c and moment function a.

Definition 5: The kernel nonparametric efficiency bound M(x0, a) for estimating β0 =

E0 (a|x0) is the smallest possible value of M(Ω, Z, c, a) corresponding to the optimal

choice of weighting matrix Ω, admissible instrument Z and bandwidth constant c.

Proposition 3. Let Assumptions a.1, a.2 and A.1-A.25 in Appendix A.1 hold. (i) There exist

an optimal weighting matrix Ω∗(a) and an optimal bandwidth constant c∗(a). They are

given in (A.9) and (A.10) in Appendix A.1.6. (ii) Any instrument:

Z∗ = E0

(
∂g

′

∂θ
(Y ; θ0) |X

)
W (X) , (3.14)
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where W (X) is a positive definite matrix, P0-a.s., is optimal, independent of a.

It is easily verified that JZ∗ = J ∗ for any instrument Z∗ in (3.14).

Corollary 4. An admissible instrument Z is optimal if and only if the corresponding un-

conditional moment restrictions (3.10) identify all full-information identifiable parameters.

The set of optimal instruments is independent of the selected kernel.

Since we focus on the estimation of local conditional moment β0, the set of opti-

mal instruments is larger than the standard set of instruments for efficient estimation of

a structural parameter θ0 identified by (3.2). While in the standard framework W (X) =

V0 [g(Y ; θ0)|X]−1 is the efficient weighting matrix for conditionally heteroskedastic mo-

ment restrictions [e.g., Chamberlain (1987)], any choice of a positive definite matrix W (X)

is asymptotically equivalent for estimating β0
13.

The expression of the kernel nonparametric efficiency bound is easily written in terms

of the transformed parameters (η∗1, η
∗
2)
′ defined in (3.5).

Proposition 5. Under Assumptions a.1, a.2 and A.1-A.25 in Appendix A.1, the kernel non-

parametric efficiency bound M(a, x0) is given by the lower-right element of the matrix
(

J∗
′

0

(
1

c∗d
w2

fX(x0)
Σ0 + c∗2mw2

mb(x0)b(x0)
′
)−1

J∗0

)−1

, (3.15)

where w2 =
∫
Rd K(u)2du, wm =

∫
R vmκ(v)dv, c∗ = c∗(a) is the optimal bandwidth

constant given in (A.9) in Appendix A.1.6,

J∗0 =


 E0

(
∂g2

∂η∗′2
|x0

)
0

E0

(
∂a

∂η∗′2
|x0

)
−1


 , Σ0 =


 V0(g2|x0) Cov0(g2, a|x0)

Cov0(a, g2|x0) V0(a|x0)


 ,

and

b(x) =
1

m!

1

fX(x)


 ∆m (E0(g2|x)fX(x))− E0(g2|x)∆mfX(x)

∆m (E0(a|x)fX(x))− E0(a|x)∆mfX(x)


 ,

with ∆m :=
∑d

i=1 ∂m/∂xm
i and all functions evaluated at θ0.

13In the application to derivative pricing, the state variables process is Markov. The instrument in

(3.14) is optimal not only in the class of instruments written on Xt, but also in the class of instruments

Zt = H(Xt, Xt−1, · · · ) written on the current and lagged values of the state variables, since the past is not

informative once the present is taken into account.
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The matrix in (3.15) resembles the GMM efficiency bound for estimating parame-

ters (η∗2, β)′ from orthogonality conditions based on function
(
g
′
2, a− β

)′
, with η∗1 known.

Since moment restrictions (3.11)-(3.12) are conditional on X = x0, the variance of the or-

thogonality conditions is replaced by the asymptotic MSE matrix 1
c∗d

w2

fX(x0)
Σ0+c∗2mw2

mb(x0)b(x0)
′

of the kernel regression estimator at x0 (up to a scale factor), and the expectations in the

Jacobian matrix J∗0 are conditional on X = x0. In particular, the efficiency bound depends

on the likelihood of observing the conditioning variable close to x0 by means of fX(x0).

The estimation of the full-information identified parameter η∗1 is irrelevant for the efficiency

bound of β since the estimation of η∗1 achieves a faster parametric rate of convergence.

ii) Bias-free kernel nonparametric efficiency bound

If we restrict ourselves to asymptotically unbiased estimators for practical purposes, the

bandwidth sequence has to be such that c̄ = lim Th2m+d
T = 0. When c̄ = 0 in Proposition

2, the asymptotic variance of
√

Thd
T

(
β̂T − β0

)
can be written as w2V (Z, Ω, a), where

V (Z, Ω, a) is independent of the selected kernel K and bandwidth hT .

Definition 6: The bias-free kernel nonparametric efficiency bound B(a, x0) is the small-

est asymptotic variance V (Z, Ω, a) corresponding to the optimal choice of the weighting

matrix Ω and of the instrument Z.

Corollary 6. (i) There exists an optimal choice of the weighting matrix Ω and of the instru-

ments Z. The optimal instruments are given in (3.14) and the optimal weighting matrix in

Appendix A.1.7. (ii) The bias-free kernel non-parametric efficiency bound B(x0, a) is:

B (x0, a) = 1
fX(x0)

{V0(a)− Cov0(a, g2)V0(g2)
−1Cov0(g2, a)

+
[
E0

(
∂a
∂θ
′

)
R2 − Cov0(a, g2)V0(g2)

−1E0

(
∂g2

∂θ
′

)
R2

] [
R
′
2E0

(
∂g
′
2

∂θ

)
V0(g2)

−1E0

(
∂g2

∂θ
′

)
R2

]−1

[
R
′
2E0

(
∂a
′

∂θ

)
−R

′
2E0

(
∂g
′
2

∂θ

)
V0(g2)

−1Cov0(g2, a)
]}

,

where all moments are conditional on X = x0 and evaluated at θ0.

Since the expression of B(x0, a) is a quadratic function of a, this formula holds for

vector moment functions a, as well. When the parameter θ0 itself is full-information iden-

26



tifiable, the bias-free kernel nonparametric efficiency bound becomes:

B(x0, a) =
1

fX(x0)

{
V0(a|x0)− Cov0(a, g2|x0)V0(g2|x0)

−1 Cov0(g2, a|x0)
}

. (3.16)

Since the conditional moment of interest is also equal to E0 (a|x0) = E0[a(Y ; θ0) −
Cov0 (a, g2|x0) V0 (g2|x0)

−1 g2(Y ; θ0) | x0], the bound (3.16) is simply the variance-covariance

matrix of the residual term in the affine regression of a on g2 performed conditional on x0.

A similar interpretation has already been given by Back and Brown (1993) in an uncondi-

tional setting [see also Brown and Newey (1998)], and extended to a conditional framework

by Antoine, Bonnal and Renault (2007). In the general case, the efficiency bound B(x0, a)

balances the gain in information from the local conditional moment restrictions and the

efficiency cost due to full-information underidentification of θ0.

iii) Illustration with S&P 500 options

Let us derive the bias-free kernel nonparametric efficiency bounds for derivative prices

estimation when the DGP P0 is the stochastic volatility model (3.6)-(3.7) with parameters

given by γ0 = 0.360, ρ0 = 0.960, δ0 = 1.047, c0 = 3.65 · 10−6, θ0
1 = .460 · 10−6, θ0

2 =

−0.060, θ0
3 = 0.115 and θ0

4 = 0.860. The riskfree term structure is as in Section 2.6 i)-ii).

The ARG parameters ρ0, δ0, c0 are set to match the stationary mean, variance and first-order

autocorrelation of the realized volatility σ2
t of the S&P 500 index in the period from June,

1, 2001 to Mai, 31, 2005. The risk premia parameters θ0
2 and θ0

4 for stochastic volatility and

underlying asset return, respectively, correspond to the XMM estimates obtained in Section

2.6 ii) for the S&P 500 options in June, 1, 2005 (see Table II). Parameters γ0, θ0
1, θ0

3 are

then fixed by the no-arbitrage restrictions (3.9). At a current date t0, the prices of n = 11

actively traded call options are observed, with the same times-to-maturity and moneyness

strikes as the S&P 500 put and call options with daily traded volume larger than 4000

contracts in June, 1, 2005 [see Section 2.6 iii)]. The current values of the state variables are

the return and the realized volatility of the S&P 500 index on June, 1, 2005.

Let us focus on the time-to-maturity h = 77 days. The bias-free kernel nonparametric

efficiency bound on the call option prices is displayed in Figure 3.

[Insert Figure 3: Bias-free kernel nonparametric efficiency bound, time-to-maturity 77-day]
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The dashed line represents the theoretical call prices E (a(k)|xt0) computed under the DGP

P0, and the dashed lines represents 95% asymptotic confidence intervals E (a(k)|xt0) ±
1.96 w√

Th2
T

B(xt0 , k)1/2, as a function of moneyness k. The circles indicate the theoretical

prices of the observed derivatives at time-to-maturity 77-day. In order to better visualize

the pattern of the kernel nonparametric efficiency bound as a function of the moneyness

strike,
√

w2/Th2
T is set ten times larger than the value implied by the sample size and the

bandwidths used in the empirical application. 14 The width of the confidence interval for

derivative price E (a(k)|xt0) depends on moneyness strike k. This width is zero when k

corresponds to the moneyness strikes of the two observed calls at time-to-maturity h =

77. The width of the confidence interval is close to zero when the derivative is deep in-

the-money, or deep out-of-the-money. Indeed, for moneyness strikes approaching zero or

infinity, the kernel nonparametric efficiency bound goes to zero, since the option price has

to be equal to the underlying asset price or equal to zero, respectively, by the no-arbitrage

condition. 15 The confidence intervals in Figure 3 are generally larger for moneyness

values k < 1 compared to k > 1. This is due to the different informational content of the

set of observed option prices for the different moneyness strikes at the time-to-maturity of

interest. Finally note that, when the confidence intervals and the bid-ask intervals don’t

intersect, some mispricing by the intermediaries, or the model, exists.

3.5 Asymptotic normality and efficiency of the XMM estimator

When the optimal instruments and optimal weighting matrix are used, the kernel moment

estimator of β0 in Definition 4 is kernel nonparametrically efficient. However, in appli-

cation to derivative pricing this estimator does not ensure a positive estimated state price

14For expository purpose we consider symmetric confidence bands. These bands have to be truncated at

zero to account for the positivity of derivative prices and get asymmetric bands. However, with the correct

standardization, the truncation effect is negligible and arises only for large strikes. Moreover, the bands in

Figure 3 are pointwise bands. Corollary 6 can be used to get ellipsoidal confidence sets for joint estimation

of several derivative prices. It could also be possible to derive functional confidence sets for the entire pricing

schedule as a function of moneyness strike k and for given time-to-maturity h, by considering ĉt0(h, k) as a

stochastic process indexed by k. These developments are out of the scope of the paper.
15However, the relative accuracy can be poor in these moneyness regions.
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density. This is a consequence of the quadratic GMM-type nature of the kernel moment

estimators. The positivity of the estimated state price density is achieved by considering

the information based XMM estimator defined in Section 2.5. In the general setting, the

XMM estimator of β0 is:

Ê∗(a|x0) =

∫
a(y; θ̂)f̂ ∗(y|x0)dy,

where θ̂ is defined in (2.11)-(2.12) and f̂ ∗(y|x0) is defined in (2.13).

The large sample properties of the XMM estimator of β0 are given in Proposition 7

below, for a bandwidth sequence that eliminates the asymptotic bias.

Proposition 7. Suppose the bandwidth is such that c̄ = lim Thd+2m
T = 0. Then the XMM

estimator Ê∗ (a|x0) is consistent, converges at rate
√

Thd
T , is asymptotically normal and

bias-free kernel nonparametrically efficient:
√

Thd
T

w
(Ê∗ (a|x0)− E0(a|x0))

d→ N(0,B(x0, a)).

The XMM estimator of β0 is asymptotically equivalent to the best kernel moment esti-

mator of β0 with optimal instruments and weighting matrix. By considering the constrained

optimization of an information criterion (see Definition 1), the XMM estimator can be com-

puted without making explicit the optimal instruments and weighting matrix.

The asymptotic distribution of the XMM estimator of θ0 is given for the transformed

parameter
(
η∗
′

1 , η∗
′

2

)′
in (3.5).

Corollary 8. Suppose the bandwidth is such that c̄ = lim Thd+2m
T = 0. The XMM estima-

tors η̂∗1 and η̂∗2 are asymptotically equivalent to the kernel moment estimators with optimal

weighting matrix and instrument Z as in (3.14) with W (X) = V0 [g(Y ; θ0)|X]−1.

In particular, the rates of convergence for the full-information identifiable parameter η∗1

and the full-information unidentifiable parameter η∗2 are
√

T and
√

Thd
T , respectively. The

different rates of convergence of full-information identifiable and full-information unidenti-

fiable parameters are reflected in the empirical results on the S&P 500 option data displayed

in Table II in Section 2.6. If the DGP P0 is the stochastic volatility model (3.6)-(3.7), pa-

rameter θ0
4 is full-information identifiable (see Section 3.2) and its estimates are very stable
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over time, whereas the estimates of the full-information unidentifiable parameters θ0
1, θ0

2,

θ0
3 feature a larger time variability. Proposition 7 and Corollary 8 extend the first-order

asymptotic equivalence between information based and quadratic GMM estimators [see

Kitamura, Tripathi, Ahn (2004), Kitamura (2007)] to a setting including local conditional

moment restrictions and allowing for full-information unidentifiable parameters.

4 Concluding remarks

The literature on joint estimation of historical and risk-neutral parameters is generally based

on either Maximum Likelihood (ML), or GMM, type of methods. A part of this literature

relies on uniform moment restrictions from a time series of spot prices only, and implic-

itly assumes that the risk premia parameters are full-information identified [e.g., Bansal,

Viswanathan (1993), Hansen, Jagannathan (1997), Stock, Wright (2000)]. This assump-

tion is not valid when some risk premia parameters can be identified only from option data.

Another part of the literature exploits time series of both spot and option prices [e.g., Duan

(1994), Chernov, Ghysels (2000), Pan (2002), Eraker (2004)]. However the activity on

derivative markets is rather weak, and these approaches typically rely either on artificial

option series which are approximately near-the-money and at short time-to-maturity, or on

option quotes of both actively and less actively traded options, or on ad-hoc assumptions

on time-varying options characteristics.

In this paper we introduce a new XMM estimator of derivative prices using jointly a

time series of spot returns and a few cross-sections of derivative prices. We argue that

these two types of data imply different types of conditional moment restrictions, that are

uniform and local, respectively. First, the XMM approach allows for consistent estima-

tion of the sdf parameters θ even if they are full-information unidentifiable. Second, the

XMM estimator of the pricing operator at a given date is consistent for a fixed number of

cross-sectionally observed derivative prices. Third, the XMM estimator is asymptotically

efficient. These results are due to both the parametric sdf and the deterministic relationships

between derivative prices that hold in a no-arbitrage pricing model with a finite number of

state variables. The application to the S&P 500 options shows that the new XMM-based
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calibration approach outperforms the traditional cross-sectional calibration approach while

being easy to implement. In particular, the XMM estimated option prices are compatible

with the observed option prices for highly traded derivatives, and are more stable over time.

Finally, the asymptotic results that have been derived for the XMM estimator can be used to

develop test procedures. Tests of correct specification of the parametric sdf can be based on

the minimized XMM objective function. Overidentification tests could also be defined by

increasing the number of local restrictions, that is the number of observed option prices in

the application to derivative pricing, and comparing the XMM estimators with and without

additional local restrictions. This would extend the standard overidentification tests intro-

duced by Hansen (1982) and Szroeter (1983) for full-information identifiable parameters.

The XMM approach can be applied to other financial markets with heterogenous trad-

ing activity. The T-bond market, for instance, has similar features as the index derivatives

market: regular issuing of standardized products, and small number of times-to-maturity

which are highly traded daily. The XMM approach allows for a first correction of alterna-

tive estimation and pricing methods that assume a high activity for all assets proposed on

the markets. It will have to be completed by a model describing the activity on financial

markets, which is a challenging topic for future research.
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Figure 1: Estimated call and put prices for S&P 500 options at June, 1, and June, 2, 2005.
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Calibrated option prices, June, 1, 2005
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XMM estimated option prices, June, 1, 2005
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Calibrated option prices, June, 2, 2005
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XMM estimated option prices, June, 2, 2005

In the upper right Panel, the solid lines correspond to estimated relative option prices as a function of dis-
counted moneyness strike B(t, t+ h)k for the highly traded times-to-maturity h = 12, 57, 77, 209 at June, 1,
2005, obtained by XMM. The dashed line corresponds to XMM estimated prices for the non-traded time-to-
maturity h = 120. The price curves correspond to puts if B(t, t+h)k < 1, to calls otherwise. In the upper left
Panel, the solid and dashed lines are the price curves obtained by the parametric pricing model (2.14)-(2.15)
with the calibrated parameters in Table 1 for times-to-maturity h = 12, 57, 77, 209, and h = 120, respec-
tively. In both Panels, circles correspond to observed S&P 500 option prices with daily trading volume larger
than 4000 contracts. The two lower Panels correspond to June, 2, 2005 with highly traded times-to-maturity
h = 11, 31, 208, and non-traded time-to-maturity h = 119.
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Figure 2: Time series of implied volatilities of S&P 500 options in June, 2005.
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In Panels 1-4, annualized implied volatilities at time-to-maturity h = 20 and moneyness strike k =
.96, 1, 1.04, 1.06, respectively, are displayed for each trading day in June 2005. Circles are implied volatili-
ties computed from option prices estimated by the XMM approach, squares are implied volatilities from the
cross-sectional calibration approach. The ticks on the horizontal axis correspond to Mondays.

Figure 3: Bias-free kernel nonparametric efficiency bound at June, 1, 2005, time-to-
maturity 77.
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The dashed line corresponds to the relative call price E (a(k)|xt0) at time-to-maturity h = 77, the solid
lines to pointwise 95% symmetric confidence intervals E (a(k)|xt0)± 1.96 w√

Th2
T

B(xt0 , k)1/2. The value of
√

w2/Th2
T is set 10 times larger than in the empirical application.
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Table I: Calibrated parameters (cross-sectional approach) for the S&P 500 options in June,
2005.

Day Calibrated parameters Goodness of fit
t0 δ̂∗t0 ρ̂∗t0 ĉ∗t0 (×10−7) σ̂t0 RMSEt0

1.6.05 24.7303 0.47588 9.59115 0.00347 0.00161
2.6.05 0.05400 0.99994 94.2208 0.00670 0.00219
3.6.05 87.7199 0.99999 0.09906 0.00480 0.00114
6.6.05 1.68952 0.99625 6.57284 0.00519 0.00194
7.6.05 0.41250 0.99998 41.2201 0.00563 0.00071
8.6.05 10.8766 0.81153 12.5623 0.00102 0.00061
9.6.05 2.26166 0.99106 6.58317 0.00501 0.00191

10.6.05 3.15278 0.96637 6.79999 0.00499 0.00032
13.6.05 0.21085 0.99909 8.84000 0.00555 0.00035
14.6.05 0.02125 0.99999 101.489 0.00874 0.00267
Calibrated parameter θ̂t0 , volatility σ̂t0 and goodness of fit measure RMSEt0 for the
first ten trading days t0 of June 2005. The calibration is performed using a Fourier
Transform approach to compute option prices. At each day t0, the sample consists
of the derivative prices at t0 of S&P 500 options with daily volume larger than 4000
contracts.

Table II: Estimated sdf parameters and option prices (XMM approach) for the S&P 500
options in June, 2005.

Day Sdf parameters Option prices (×10−2)

t0 θ̂1 (×10−6) θ̂2 θ̂3 θ̂4 k = .96 k = .98 k = 1 k = 1.02 k = 1.04

1.6.05 .910 −.059 .121 .860 .269 .631 1.356 .651 .162
2.6.05 .897 −.057 .118 .860 .215 .584 1.342 .686 .204
3.6.05 .900 −.054 .115 .860 .229 .539 1.282 .637 .169
6.6.05 .892 −.056 .118 .860 .155 .496 1.270 .622 .210
7.6.05 .888 −.056 .117 .860 .218 .550 1.227 .514 .147
8.6.05 .891 −.063 .124 .860 .164 .531 1.288 .628 .186
9.6.05 .890 −.063 .124 .860 .223 .574 1.280 .607 .220
10.6.05 .878 −.063 .125 .860 .110 .495 1.326 .701 .233
13.6.05 .864 −.063 .124 .860 .206 .553 1.253 .593 .193
14.6.05 .851 −.063 .125 .860 .250 .588 1.295 .580 .133
Estimated sdf parameter θ̂ and relative option prices ĉt0(h, k) at time-to-maturity h = 20 for the first ten
trading days t0 of June 2005. The option prices correspond to puts for k < 1, and to calls for k ≥ 1.
The estimation is performed using XMM. At each day t0, the sample consists of the current and previous
T = 1000 observations on the state variables, and the derivative prices at t0 of S&P 500 options with daily
volume larger than 4000 contracts.
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APPENDIX A: Proofs

In this Appendix we give the proofs of Propositions 2, 3 and 5 (Section A.1), Proposition 7
(Section A.2), and Proposition 1, as well as of other results of Section 3.2 concerning the parametric
stochastic volatility model (Section A.3).

A.1 Asymptotic properties of kernel moment estimators

We use the following notation. Symbol =) denotes weak convergence in the space of bounded
real functions on set � � Rp, equipped with the uniform metric [see e.g. Andrews (1994)]. The

Frobenius norm of matrix A is kAk =
h
Tr
�
AA

0
�i1=2

: For a multi-index � = (�1; :::; �d) 2 Nd and
vector x 2 Rd, we set j�j :=

Pd
i=1 �i, x

� := x�11 � ::: � x�dd , and @j�jf=@x� := @j�jf=@x�11 :::@x�dd :
Symbol kfk1 denotes the sup-norm kfk1 = supx2X kf(x)k of a continuous function f de�ned on
set X : We denote by Cm (X ) the space of functions f on X that are continuously di¤erentiable up
to order m 2 N, kDmfk1 :=

P
j�j=m



@j�jf=@x�

1 ; and �mf :=
Pd

i=1 @
mf=@xmi . Furthermore,

L2(FY ) denotes the Hilbert space of real-valued functions, which are square integrable w.r.t. the
distribution FY of r.v. Y , and k:kL2(FY ) is the corresponding L

2-norm. Linear space Lp (X ), p > 0,
of p-integrable functions w.r.t. Lebesgue measure on set X is de�ned similarly. We denote by g�2 the

function de�ned by g�2(y; �) =
�
g2(y; �)

0
; a(y; �)

0
�0
. Finally, all functions of � are evaluated at �0,

when the argument is not explicit, and the expectation E[:] is w.r.t. the DGP P0.

A.1.1 Regularity assumptions

Let us introduce the following set of regularity conditions:

Assumption A.1: The instrument Z is given by Z = H(X), where H is a matrix function de�ned
on X and is continuous at x = x0:

Assumption A.2: The true value of the parameter �0 2 Rp is globally identi�ed with instrument
Z, that is, �

E [g1(X;Y ; �)]
0
; E [g2(Y ; �) j X = x0]

0�0
= 0, � 2 � =) � = �0;

where g1(X;Y ; �) = Z � g (Y ; �).

Assumption A.3: The true value of the parameter �0 is locally identi�ed with instrument Z, that
is, the matrix 0@ E

h
@g1
@�

0 (X;Y ; �0)
i

E
h
@g2
@�

0 (Y ; �0) j X = x0

i 1A
has full column-rank.

Assumption A.4: The parameter sets � � Rp and B � RL are compact and the true parameter

��0 =
�
�
0

0; �
0

0

�0
is in the interior of ��B, where �0 = E [a(Y ; �0)jX = x0].

Assumption A.5: The process
��

X
0

t ; Y
0

t

�0
: t 2 N

�
on X � Y � Rd�R ~d is strictly stationary and

geometrically strongly mixing.
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Assumption A.6: The stationary density fX of Xt is in class Cm (X ) for some m 2 N, m � 2,
and is such that kfXk1 <1 and kDmfXk1 <1.

Assumption A.7: For t1 < t2, the stationary density ft1;t2 of (Xt1 ; Xt2) is such that
supt1<t2 kft1;t2k1 < 1: Moreover, for t1 < t2 < t3 < t4; the stationary density ft1;t2;t3;t4 of
(Xt1 ; Xt2 ; Xt3 ; Xt4) is such that:

sup
t1<t2<t3<t4

kft1;t2;t3;t4k1 <1:

Assumption A.8: The product kernel K(u) =
dQ
i=1

�(ui), u 2 Rd; is such that: i)
R
Rd K(u)du = 1;

ii) K is bounded, limkuk!1 kukdK(u) = 0,
R
Rd jK(u)j du <1 and w2 :=

R
Rd K(u)

2du <1;
iii)

R
R v

l�(v)dv = 0 for any l 2 N such that l < m, and
R
R �(v) jvj

m
dv <1:

Assumption A.9: The bandwidth hT is such that T 1=2hdT ! 1 and Thd+2mT ! �c 2 [0;1); as
T !1:

Assumption A.10: The matrices:

S0 = V [g1 (Xt; Yt; �0)] , �0 = V [g�2 (Yt; �0)jXt = x0] ;

exist and are positive de�nite.

Assumption A.11: For any � 2 �: E
h
kg1 (Xt; Yt; �)k4

i
<1 ; E

h
kg�2 (Yt; �)k

4
i
<1:

Assumption A.12: For any � 2 �, the function x 7�! '(x; �) = E [g�2(Yt; �)jXt = x] fX (x) is
in class Cm (X ), such that sup�2� kDm' (:; �)k1 < 1 and @j�j'=@x� is uniformly continuous on
X �� for any � 2 Nd with j�j = m:

Assumption A.13: For any �; � 2 �, the function E
h
g�2(Yt; �)g

�
2(Yt; �)

0 jXt = :
i
fX (:) is continu-

ous at x = x0:

Assumption A.14: For any � 2 �, supt1<t2 kE
�
kg�2(Yt1 ; �)k2jXt1 = :; Xt2 = :

�
ft1;t2 (:; :) k1 <1 .

Assumption A.15: For any � 2 �,

sup
t1�t2�t3�t4

kE [ kg�2(Yt1 ; �)k kg�2(Yt2 ; �)k kg�2(Yt3 ; �)k kg�2(Yt4 ; �)k

j Xt1 = :; Xt2 = :; Xt3 = :; Xt4 = :] ft1;t2;t3;t4 (:; :; :; :)k1 <1:

Assumption A.16: There exists a basis of functions
�
 j : j 2 N

	
in L2 (FY ), where FY is the

stationary cdf of Yt; such that


 j

L2(FY ) = 1, j 2 N; and:
g�2 (y; �) =

1X
j=1

cj (�) j(y); y 2 Y;

for any � 2 �, where fcj (�) : j 2 Ng is a sequence of coe¢ cient vectors. Moreover, there exist
r > 2 and a sequence f�j > 0 : j 2 Ng, such that

P1
j=1 �j <1, and:

1X
j=1

�j

�
E
�

Zt j(Yt)

r�2=r + E h j (Yt)2 jXt = x0

i�
<1; lim

J!1
sup
�2�

1X
j=J

1

�j
kcj (�)k2 = 0:
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Assumption A.17: The function x 7�! 'j (x) = E
�
 j(Yt)

2jXt = x
�
fX (x) is in class C2 (X ), for

any j 2 N, such that supj2N


'j

1 <1 and supj2N



D2'j



1 <1.

Assumption A.18: The functions  j are such that supj2NE
h�� j(Yt)���ri <1; for �r > 2, and:

sup
j2N

sup
t1<t2

kE
�
 j(Yt1) j(Yt2)kXt1 = :; Xt2 = :

�
ft1;t2(:; :)k1 <1:

Assumption A.19: The moment function � 7�!
�
E [g1 (Xt; Yt; �)]

0
; E [g�2 (Yt; �) jXt = x0]

0�0
is

continuous on �.

Assumption A.20: The weighting matrix 
 is positive de�nite:

Assumption A.21: Function g�2 (y; �) is twice continuously di¤erentiable w.r.t. (y; �) 2 Y ��.

Assumption A.22: There exist 
1; 
2 > 1 and � > 2; such that:

E

�



@g1@�
0 (Xt; Yt; �0)





�� <1 , E

�
sup
�2�





@g1@�
0 (Xt; Yt; �)






1� < 1;

E

�
sup
�2�





 @2g1
@�i@�j

(Xt; Yt; �)






2� <1 , i; j = 1; :::; p:

Assumption A.23: The function E
�
@g�2
@�

0 (Yt; �0)jXt = :

�
fX (:) is continuous at x0, and:

E

"



@g�2@�
0 (Yt; �0)





�
#
<1;

for � > 2. Moreover, the functions:

E

�
sup
�2�





 @2g�2
@�i@�j

(Yt; �)





 jXt = :

�
fX (:) , i; j = 1; :::; p;

are bounded.

Assumption A.24: The functions:

� 7�!
 
E

"
@g

0

1

@�
(Xt; Yt; �)

#
; E

"
@g�

0

2

@�
(Yt; �) jXt = x0

#!
;

� 7�! E

�
@2g1
@�i@�j

(Xt; Yt; �)

�
; i; j = 1; :::; p;

are continuous on �.

Assumption A.25: The matrix Z� = E
�
@g

0

@� (Y ; �0) jX
�
W (X) ; where W (X) is a positive de�nite

matrix P0-a.s., is an instrument satisfying Assumptions A.1, A.10, A.11, A.16, A.19, A.22 and
A.24.
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Due to the di¤erent rates of convergence of the empirical moments in bgT (��) in De�nition 4, it
is not possible to follow the standard approach for the GMM framework to derive the asymptotic
properties of b��T . In particular, to prove consistency, we cannot rely on the uniform a.s. convergence
of the criterion QT to a limit deterministic function. Indeed, after dividing QT by T , the part of
the criterion involving the local conditional moment restrictions is asymptotically negligible. The
corresponding limiting criterion is not uniquely minimized at �0 in the full-information underidenti-
�ed case. To prove consistency and asymptotic normality of b��T , we follow an alternative approach
relying on empirical process methods [see Stock, Wright (2000) for a similar approach].
The empirical process of the sample moment restrictions is:

	T (�) = bgT (��)�mT (�
�) =: T�1=2

TX
t=1

gt;T (�); � 2 �; (A.1)

where:

mT (�
�) =

�p
TE [g1(X;Y ; �)]

0
;
q
ThdTE [g2(Y ; �)jx0]

0
;
q
ThdTE [a (Y ; �)� �jx0]

0
�0

:

Due to the linearity of bgT and mT w.r.t. �, the empirical process 	T is function of parameter �,
but not of parameter �. Moreover, the triangular array gtT (�) is not zero-mean, because of the bias
term in the nonparametric component. Assumptions A.1 and A.4-A.19 are used to prove the weak
convergence of the empirical process 	T to a Gaussian stochastic process on � (see Lemma A.1 in
Section A.1.2). In particular, Assumption A.5 on weak serial dependence, Assumptions A.6-A.7 on
the smoothness of the stationary density of (Xt), Assumptions A.8 and A.9 on the kernel and the
bandwidth, and Assumptions A.10-A.15 on the moment functions, yield the asymptotic normality
of the �nite-dimensional distributions of process 	T . Assumption A.16 disentangles the dependence
of g�2(y; �) on y and �. It is used, together with Assumptions A.17 and A.18, to prove the stochastic
equicontinuity of process 	T along the lines of Andrews (1991). The weak convergence of empirical
process 	T is combined with Assumption A.2 on global identi�cation, Assumption A.19 on the
continuity of the moment functions and Assumption A.20 on the weighting matrix, to prove the
consistency of kernel moment estimator b��T (see Section A.1.3).
Assumptions A.21-A.24 concern the �rst- and second-order derivatives of the moment functions

w.r.t. the parameter �. These assumptions are used, together with the local identi�cation Assump-
tion A.3 and Assumption A.4 of interior true parameter value, to derive an asymptotic expansion forb��T in terms of 	T (�0). From the asymptotic normality of 	T (�0) (Lemma A.1) we deduce the as-
ymptotic normality of kernel moment estimator b��T (see Section A.1.4). Finally, Assumption A.25 is
used to establish the asymptotic results for the kernel moment estimators with optimal instruments
(see Section A.1.6).
Let us now discuss the bandwidth conditions in Assumption A.9. The condition Thd+2mT !

�c 2 [0;1) is standard in nonparametric regression analysis. When �c > 0; the bandwidth features
the optimal d-dimensional rate of convergence, whereas when �c = 0 the asymptotic bias becomes
negligible. Condition T 1=2hdT ! 1 is stronger than the standard condition ThdT ! 1. Such a
stronger bandwidth condition is necessary to ensure negligible second-order terms in the asymptotic
expansion of the kernel moment estimator. Indeed, in the full-information underidenti�ed case,

some linear combinations of parameter �0 are estimated at a nonparametric rate
q
ThdT , whereas

other linear combinations are estimated at a parametric rate
p
T . Thus, we need to ensure that

the second-order term with smallest rate of convergence is negligible w.r.t. the �rst-order term with
largest rate of convergence:�

1=
q
ThdT

�2
= o(1=

p
T )() T 1=2hdT !1.
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The bandwidth conditions in Assumption A.9 can be satis�ed when d < 2m. In particular, a kernel
of order m = 2 is su¢ cient when the dimension d < 4.

A.1.2 Asymptotic distribution of the empirical process

The asymptotic distribution of the empirical process 	T is given in Lemma A.1 below, which is
proved in Appendix B in the Supplemental Material. The proof uses consistency and asymptotic
normality of kernel estimators [e.g. Bosq (1998)], the Liapunov CLT [Billingsley (1965)], results on
kernel M-estimators [Tenreiro (1995)], weak convergence of empirical processes [Pollard (1990)], and
a proof of stochastic equicontinuity similar to Andrews (1991).

Lemma A.1: Under Assumptions A.1, A.4-A.19: 	T =) b+	; where 	(�), � 2 �, denotes the
zero-mean Gaussian stochastic process on � with covariance function given by:

V0 (�; �) = E
h
	(�)	(�)

0
i
=

�
S0 (�; �) 0
0 w2�0 (�; �) =fX(x0)

�
; for �; � 2 �;

with:

S0 (�; �) =
1X

k=�1
Cov [g1 (Xt; Yt; �) ; g1 (Xt�k; Yt�k; �)] ; �0 (�; �) = Cov [g�2 (Yt; �) ; g

�
2 (Yt; �) jXt = x0] ;

and continuous function b is given by

b (�) =

q
limThd+2mT

m!
wm

1

fX(x0)

 
0

�m'(x0; �)� '(x0;�)
fX(x0)

�mfX(x0)

!
; � 2 �;

with '(x; �) := E [g�2(Yt; �)jXt = x] fX(x), wm :=
R
R v

m�(v)dv. In particular 	T (�0)
d�! N(

p
�c b0; V0)

where

b0 =
wm
m!

1

fX(x0)

 
0

�m'(x0; �0)� '(x0;�0)
fX(x0)

�mfX(x0)

!
; V0 =

�
S0 0
0 w2�0=fX(x0)

�
; (A.2)

matrices S0, �0 are de�ned in Assumption A.10, and �c := limTh
d+2m
T .

The block diagonal elements of matrix V0 are the standard asymptotic variance-covariance ma-
trices of sample average and kernel regression estimators, respectively. The bias function b (�) is
zero for the unconditional moments, and is equal to the kernel regression bias for the conditional
moments. Lemma A.1 implies that unconditional and conditional empirical moment restrictions are
asymptotically independent, and that the convergence is uniform w.r.t. � 2 �.

A.1.3 Consistency of kernel moment estimators

By using the weak convergence of process 	T (�) from Lemma A.1, the Continuous Mapping The-
orem, and Assumptions A.4 and A.19, we get QT (�

�) = mT (�
�)

0

mT (�

�) +Op(
p
T ), uniformly in

�� 2 � � B. From global identi�cation Assumption A.2, and Assumption A.20 on the weighting
matrix, we have:

inf
��2��B:k�����0k�"

mT (�
�)

0

mT (�

�) � CThdT ;

for any " > 0 and a constant C = C" > 0. Then, by using
p
T = o

�
ThdT

�
from Assumption A.9,

we get inf
��2��B:k�����0k�"

QT (�
�) � 1

2
CThdT with probability approaching 1. Since Th

d
T ! 1 from

Assumption A.9, we conclude that the minimizer b��T of QT is such that P h


b��T � ��0


 � "
i
! 0 as

T !1, for any " > 0 (see Appendix B in the Supplemental Material for a detailed derivation).
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A.1.4 Asymptotic distribution of kernel moment estimators

From the �rst-order condition @QT
�b��T� =@�� = 0 and a mean-value expansion we have:

@bg0T
@��

�b��T�
bgT (��0) + @bg0T
@��

�b��T�
 @bgT
@��

0

�e��T��b��T � ��0� = 0; (A.3)

where e��T is between b��T and ��0 componentwise. Compared to the standard GMM framework, we
have to disentangle the linear transformations of �0 with parametric and nonparametric convergence
rates. Let us introduce the invertible (p+ L; p+ L) matrix:

RT =

 
T�1=2R1;Z

�
ThdT

��1=2
R2;Z 0

0 0
�
ThdT

��1=2
IdL

!
;

where the matrices R1;Z and R2;Z are de�ned by the linear change of parameter from � to � =
(�01; �

0
2)
0 in (3.13). By pre-multiplying equation (A.3) by matrix R

0

T we get:

R
0

T

@bg0T
@��

�b��T�
bgT (��0) +R0

T

@bg0T
@��

�b��T�
 @bgT
@��

0

�e��T�RT
0BB@

p
T
�b�1;T � �1;0�q

ThdT
�b�2;T � �2;0�q

ThdT

�b�T � �0�
1CCA = 0:

We have the following Lemma A.2, proved in Appendix B in the Supplemental Material using the
ULLN and the CLT for mixing processes in Potscher, Prucha (1989), and Herrndorf (1984), respec-
tively.

Lemma A.2: Under Assumptions A.1-A.24 we have plimT!1
@bgT
@��

0

�b��T�RT = plimT!1
@bgT
@��

0

�e��T�RT =
J0, where matrix J0 is given by:

J0 =

0BBB@
E
�
@g1
@�

0

�
R1;Z 0 0

0 E
�
@g2
@�

0 jx0
�
R2;Z 0

0 E
�
@a
@�

0 jx0
�
R2;Z �IdL

1CCCA =

0BBB@
E
�
@g1
@�

0
1

�
0 0

0 E
�
@g2
@�

0
2

jx0
�

0

0 E
�
@a
@�

0
2

jx0
�

�IdL

1CCCA :

(A.4)

From the local identi�cation Assumption A.3, matrix J0 is full rank. Thus:�p
T
�b�1;T � �1;0�0 ;qThdT �b�2;T � �2;0�0 ;qThdT �b�T � �0�0�0

= �
�
J
0

0
J0

��1
J
0

0
bgT (��0)+op(1):
(A.5)

Since bgT (��0) = 	T (�0) d�! N
�p
c b0; V0

�
from Lemma A.1, Proposition 2 follows.

A.1.5 Optimal weighting matrix for given instrument and bandwidth

When the bandwidth is such that hT = cT�1=(2m+d), for some constant c > 0, from Proposition 2 the

asymptotic MSE of
�p

T
�b�1;T � �1;0�0 ;qThdT �b�2;T � �2;0�0 ;qThdT �b�T � �0�0�0

is
�
J
0

0
J0

��1
J
0

0
M0
J0

�
J
0

0
J0

��1
, where M0 := V0 + c2m+db0b

0

0. The optimal weighting matrix for given

instrument Z and bandwidth constant c is:


 =M�1
0 =

�
V0 + c

2m+db0b
0

0

��1
: (A.6)
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The corresponding minimal MSE is
�
J
0

0M
�1
0 J0

��1
: Since M0 and J0 are block diagonal w.r.t. �1

and
�
�
0

2; �
0
�0
, the associated asymptotic MSE of the estimator of � is:

M (Z; c; a) = e
0

 
J 00;Z

�
w2

cdfX(x0)
�0 + c

2mw2mb(x0)b(x0)
0
��1

J0;Z

!�1
e; (A.7)

where e = ( 0
L�sZ

; IdL)
0
, b (x) = 1

m!

�
�m'(x;�0)
fX(x)

� '(x;�0)
fX(x)2

�mfX(x)
�
and

J0;Z =:

0@ E
�
@g2
@�

0 jx0
�
R2;Z 0

E
�
@a
@�

0 jx0
�
R2;Z �IdL

1A =

0@ E
�
@g2
@�

0
2

jx0
�

0

E
�
@a
@�

0
2

jx0
�

�IdL

1A :

A.1.6 Proof of Propositions 3 and 5

The optimal instrument Z� and bandwidth constant c� are derived by minimizing functionM (Z; c; a)
in (A.7) w.r.t. Z and c. In the standard GMM framework with full-information identi�ed parameter
�0, the matrix R2;Z is empty, and M (Z; c; a) is independent of Z. Any admissible instrument is op-
timal for estimating the conditional moment �, and c� corresponds to the usual optimal bandwidth
constant for kernel regression estimation [e.g., Silverman (1986)]. In the full-information underi-
denti�ed case, the optimal instrument and bandwidth selection problems are nonstandard, as seen
below.

i) Optimal instruments
Let us �rst prove that instrument Z� in (3.14) is admissible, that is, satis�es Assumptions A.2 and
A.3. We have, for any vector � 2 Rp:

E

�
@g1

@�
0 (X;Y ; �0)

�
� = 0() E

"
E

 
@g

0

@�
(Y ; �0) jX

!
W (X)E

�
@g

@�
0 (Y ; �0) jX

�
�

#
= 0

() �
0
E

 
@g

0

@�
(Y ; �0) jX

!
W (X)E

�
@g

@�
0 (Y ; �0) jX

�
� = 0; P0-a.s.,

() E

�
@g

@�
0 (Y ; �0) jX

�
� = 0; P0-a.s.. (A.8)

Thus, Assumption A.3 follows from Assumption a.2 in the text. Then, Assumption A.2 is also
satis�ed if � is taken small enough, which is su¢ cient for the validity of the asymptotic results.
From Assumption A.25, the asymptotic properties in Proposition 2 apply for the kernel moment
estimators with instrument Z�:
Let us now prove that instrument Z� is optimal. In the expression ofM (Z; c; a) in (A.7), instru-

ment Z a¤ects matrix J0;Z only, and the matrix J0;Z depends on Z through JZ = Ker E
h
@g1 (X;Y ; �0) =@�

0
i
,

only. If Z and eZ are two admissible instruments such that JZ � JeZ , thenM (Z; c; a) �M
� eZ; c; a�.

Since J � � JZ for any admissible instrument Z, Z� is an optimal instrument if J � = JZ� . The
latter equality follows from (A.8).
Since J � = JZ� , the ranges of matrix R2 de�ned in (3.5) and matrix R2;Z� coincide. From (A.7),

the asymptotic MSE for (any) optimal instrument Z� becomes

M(c; a) = e
0

 
J�

0

0

�
1

cd
w2

fX(x0)
�0 + c

2mw2mb(x0)b(x0)
0
��1

J�0

!�1
e;
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where J�0 =

0@ E
�
@g2
@��

0
2

jx0
�

0

E
�

@a
@��

0
2

jx0
�

�IdL

1A :

ii) Optimal bandwidth
In the rest of this proof we assume L = dim(a) = 1. Then, function M(c; a) is scalar, and the

�rst-order condition for minimizing M(c; a) w.r.t. c is given by:

@M(c; a)

@c
= e

0
��
J�

0

0
~��1J�0

��1
J�

0

0
~��1

�
� d

cd+1
w2

fX(x0)
�0 + 2mc

2m�1w2mb(x0)b(x0)
0
�
~��1J�0

�
J�

0

0
~��1J�0

��1�
e = 0

with ~� := 1
cd

w2

fX(x0)
�0 + c2mw2mb(x0)

0
b(x0) and e = (0

0
; 1)

0 2 Rs� � R. The solution c�(a) is

c�(a) = �1=(2m+d) where � = �(a) satis�es the equation:

� =
w2d

2mw2mfX(x0)

e
0
��
J�

0

0 A (�)
�1
J�0

��1
J�

0

0 A (�)
�1
�0A (�)

�1
J�0

�
J�

0

0 A (�)
�1
J�0

��1�
e

e0
��
J�

0
0 A (�)

�1
J�0

��1
J�

0
0 A (�)

�1
b(x0)b(x0)

0A (�)
�1
J�0

�
J�

0
0 A (�)

�1
J�0

��1�
e

;

(A.9)

where A (�) := w2

fX(x0)
�0+ �b(x0)b(x0)

0
. The optimal bandwidth sequence is hT = c�(a)T�1=(2m+d).

Then, from (A.6) the optimal weighting matrix becomes:


�(a) =
�
V0 + c

�2m+db0b
0

0

��1
; (A.10)

where V0 is de�ned in (A.2) with optimal instrument Z�. This concludes the proof of Proposition 3.

iii) Kernel nonparametric e¢ ciency bound
The kernel nonparametric e¢ ciency bound isM(c�(a); a) and is equal toM(x0; a) in Proposition 5.

A.1.7 Proof of Corollary 6

The proof of Corollary 6 is similar to the proof of Propositions 3 and 5, and is given in Appendix B
in the Supplemental Material. In particular, the optimal weighting matrix is 
 = V �10 :

A.2 Asymptotic properties of the XMM estimator

A.2.1 Concentration with respect to the functional parameters

We �rst concentrate the estimation criterion in De�nition 1 w.r.t. the functional parameters. Let
us introduce the Lagrange multipliers �; �; �t; �t, t = 1; :::; T . The Lagrangian function is given by:

LT =
1

T

TX
t=1

Z h bf(yjxt)� ft (y)i2bf(yjxt) dy + hdT

Z
log
h
f0(y)= bf(yjx0)i f0(y)dy

�2 1
T

TX
t=1

�t

�Z
ft (y) dy � 1

�
� hdT�

�Z
f0(y)dy � 1

�

�2 1
T

TX
t=1

�
0

t

Z
g(y; �)ft (y) dy � hdT�

0
Z
g2(y; �)f0(y)dy: (A.11)
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The �rst-order conditions w.r.t. the functional parameters ft, t = 1; :::; T , and f0 yield:

ft (y) = bf(yjxt) + �t bf(yjxt) + �0tg(y; �) bf(yjxt); t = 1; :::; T; (A.12)

f0(y) = bf(yjx0) exp��0g2(y; �) + �� 1� : (A.13)

The Lagrange multipliers �t; �t, t = 1; :::; T , and � can be deduced from the constraints. We get:

�t = �bV (g(�)jxt)�1 bE (g(�)jxt) , �t = ��0t bE (g(�)jxt) , exp(1� �) = bE hexp��0g2(�)� jx0i ,
(A.14)

where bE(:jx) and bV (:jx) denote the conditional expectation and the conditional variance w.r.t. the
kernel density estimator bf(:jxt), respectively. By replacing (A.14) into (A.12)-(A.13) we get the
concentrated functional parameters:

ft (y; �) = bf(yjxt)� bE (g(�)jxt)0 bV (g(�)jxt)�1 hg(y; �)� bE (g(�)jxt)i bf(yjxt); t = 1; :::; T;
f0 (y; �; �) =

exp
�
�
0
g2(y; �)

�
bE hexp��0g2(�)� jx0i bf(yjx0): (A.15)

The concentrated Lagrangian becomes:

LcT (�; �) =
1

T

TX
t=1

bE (g(�)jxt)0 bV (g(�)jxt)�1 bE (g(�)jxt)� hdT log bE �exp��0g2(�)� jx0� : (A.16)

The XMM estimator b�T is the minimizer of LcT (�) = LcT (�; � (�)), where � (�) = argmax� LcT (�; �) is
as such that bE hg2(�) exp�� (�)0 g2(�)� jx0i = 0 for any � [see (2.11)-(2.12)]. The estimator bf�(:jx0)
of f(:jx0) is obtained from (A.15) by replacing � by b�T ; and � by b�T = �

�b�T� [see (2.13)].
A.2.2 Asymptotic expansions

i) Asymptotic expansion of estimator b�T and Lagrange multiplier b�T
The asymptotic expansion of estimator b�T and Lagrange multiplier b�T is derived by expanding the

criterion (A.16) around � = �0 and � = 0. We have to distinguish between the linear combinations ofb�T converging at a parametric rate and those converging at a nonparametric rate. For this purpose,
we use the change of parameterization in (3.5) from � to �� = (��01 ; �

�0
2 )

0
: The asymptotic expansion

for the estimators of the transformed parameters b��1;T , b��2;T and the Lagrange multiplier b�T are given
in Lemma A.3 below.

Lemma A.3: (i) The asymptotic expansions of b��1;T and b��2;T are given by:
p
T
�b��1;T � ��1;0� ' �
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"
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@�
jX
!
V (gjX)�1E
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R01E
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jxt

!
V (gjxt)�1 g(yt; �0);

and: q
ThdT

�b��2;T � ��2;0� ' �
"
R02E

 
@g

0
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@�
jx0

!
V (g2jx0)�1E

�
@g2

@�
0 jx0

�
R2

#�1

�R02E
 
@g

0

2

@�
jx0

!
V (g2jx0)�1

q
ThdT

Z
g2(y; �0) bf(yjx0)dy; (A.17)
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respectively. (ii) The asymptotic expansion of b�T is:
b�T ' �V (g2jx0)�1 (Id�M)Z g2(y; �0) bf(yjx0)dy; (A.18)

where M is the orthogonal projection matrix on the column space of E
�
@g2

@�
0 jx0

�
R2 for the inner

product de�ned by V (g2jx0)�1:

M = E

�
@g2

@�
0 jx0

�
R2

"
R02E

 
@g

0

2

@�
jx0

!
V (g2jx0)�1E

�
@g2

@�
0 jx0

�
R2

#�1
R02E

 
@g

0

2

@�
jx0

!
V (g2jx0)�1 :

(A.19)

The asymptotic expansion of b��1;T comes from the part of the criterion (A.16) involving the
uniform moment restrictions, since the part involving the local moment restrictions is asymptot-
ically negligible for b��1;T . The asymptotic expansion of b��2;T involves the local moment restric-
tions only, since the uniform moment restrictions are not informative for parameter �2. The term

log bE �exp��0g2(�)� jx0� in (A.16) is induced by the KLIC component and has a weighting factor
hdT (see De�nition 1). This weighting factor ensures that the contribution of the discrepancy mea-
sure associated with the local restrictions at x0 is asymptotically the same as for a kernel moment
estimator with optimal weighting matrix and instruments.

ii) Asymptotic expansion of bf�(:jx0)
Using bf�(yjx0) = f0(y;b�T ; b�T ), from (A.15) we have:

bf�(yjx0) '
1 + b�0T g2 �y;b�T�

1 + b�0T bE �g2(b�T )jx0� bf(yjx0) '
�
1 + b�0T �g2 �y;b�T�� bE �g2(b�T )jx0��� bf(yjx0)

' bf(yjx0) + b�0T g2(y; �0)f(yjx0):
Then, from (A.18) we get:

bf�(yjx0) ' bf(yjx0)� f(yjx0)g2(y; �0)0V (g2jx0)�1 (Id�M)Z g2(y; �0) bf(yjx0)dy: (A.20)

iii) Asymptotic expansion of bE�(ajx0)
We have:

bE�(ajx0) =

Z
a(y;b�T ) bf�(yjx0)dy

'
Z
a(y; �0)f(yjx0)dy +

Z
@a

@�
0 (y; �0)f(yjx0)dy

�b�T � �0�+ Z a(y; �0)
h bf�(yjx0)� f(yjx0)i dy

' E(ajx0) + E
�
@a

@�
0 jx0

�
R2
�b��2;T � ��2;0�

+

Z
a(y; �0)

n bf(yjx0)� f(yjx0)� f(yjx0)g2(y; �0)0V (g2jx0)�1 (Id�M)Z g2(y; �0) bf(yjx0)dy� dy;
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where the last asymptotic equivalence comes from (A.20) and the fact that the contribution ofb��1;T � ��1;0 is asymptotically negligible. Then, from (A.17) we get:

bE�(ajx0) ' E(ajx0)� E
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+

Z
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h bf(yjx0)� f(yjx0)i dy � Cov (a; g2jx0)V (g2jx0)�1 (Id�M)Z g2(y; �0) bf(yjx0)dy:
We deduce the asymptotic expansion:
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Z
g2(y; �0)� bf(yjx0)dy;

(A.21)

where � bf(yjx0) := bf(yjx0)� f(yjx0).
A.2.3 Asymptotic distribution of the XMM estimator (Proofs of Proposi-
tion 7 and Corollary 8)

Let us derive the asymptotic distribution of the estimator bE�(ajx0). In the asymptotic expansion
(A.21), the �rst two terms in the RHS correspond to the residual of the regression of

R
a(y; �0)� bf(yjx0)dy

on
R
g2(y; �0)� bf(yjx0)dy. This residual is asymptotically independent of the third term in the RHS.

Thus, from the asymptotic normality of integrals of kernel estimators, we getp
ThdT
w

h bE�(ajx0)� E(ajx0)i d�! N(0;B (x0; a)); where B (x0; a) is given in Corollary 6. This proves
Proposition 7. Corollary 8 is proved by checking that the asymptotic expansion for the XMM estima-
tor �̂T in Lemma A.3 (i) corresponds to the asymptotic expansion for the kernel moment estimator

in (A.5) with �c = limThd+2mT = 0, 
 = V �10 and Z = E

�
@g0

@�
(Y ; �0)jX

�
V [g(Y ; �0)jX]�1. The

details of the derivation are given in Appendix B in the Supplemental Material.

A.3 A parametric stochastic volatility model

In this Appendix we consider the parametric stochastic volatility model introduced in Section 3.2.
We �rst derive equations (3.9) from the no-arbitrage conditions, then we give the dynamics under
the risk-neutral distribution, and �nally we prove Proposition 1.

A.3.1 Proof of equations (3.9)

Let us assume that the DGP P0 is compatible with the historical dynamic of the state variables
Xt = (~rt; �

2
t )
0 given in (3.6) and the sdf (3.7) with true parameter value �0. The restrictions implied

by the no-arbitrage assumption for the riskfree asset and the underlying asset are given by:

E0 [Mt;t+1(�0) exp rf;t+1jxt] = 1; E0 [Mt;t+1(�0) exp rt+1jxt] = 1; 8xt =
�
~rt; �

2
t

�0
; (A.22)

48



respectively. Let us �rst consider the no-arbitrage restriction for the riskfree asset. We have:

E0 [Mt;t+1(�0)e
rf;t+1 jxt] = E0

�
exp

�
��01 � �02�2t+1 � �03�2t � �04~rt+1
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�
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�02 + �

0
4
0 �

(�04)
2

2
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�
�
�
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4
0 �

(�04)
2

2

��
�
�
�03 + a0

�
�02 + �

0
4
0 �

(�04)
2

2

��
�2t

�
;

where we have integrated ~rt+1 conditional on �2t+1 and used the de�nition of the ARG process. Since
the RHS has to be equal to 1 for any admissible value of �2t , we get:

�01 = �b0
�
�02 + �

0
4
0 �

(�04)
2

2

�
; �03 = �a0

�
�02 + �

0
4
0 �

(�04)
2

2

�
: (A.23)

Let us now consider the no-arbitrage restriction for the underlying asset. By using
E0 [Mt;t+1(�0) exp rt+1jxt] = E0

�
exp

�
��01 � �02�2t+1 � �03�2t �

�
�04 � 1

�
~rt+1

�
jxt
�
, we get the same

conditions as in (A.23) by replacing �04 with �
0
4 � 1:
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�
�02 + (�

0
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(�04 � 1)2
2

�
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�
�02 + (�

0
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0 �

(�04 � 1)2
2

�
:

Since functions a0 and b0 are one-to-one, we get �
0
2+
�
�04 � 1

�

0�

(�04�1)
2

2 = �02+ �
0
4
0�

(�04)
2

2 ; that
is, �04 = 
0 +

1
2 : Equations (3.9) follow.

A.3.2 Risk-neutral distribution

The risk-neutral distribution Q is characterized by the conditional Laplace transform of (~rt+1; �2t+1)
0,

which is given by EQ0
�
exp(�u~rt+1 � v�2t+1)jxt

�
= e�rf;t+1E0

�
Mt;t+1(�0) exp(�u~rt+1 � v�2t+1)jxt

�
.

In Appendix B in the Supplemental Material we show that, under the risk-neutral distribution Q,
the underlying asset return follows an ARG stochastic volatility model with adjusted risk premium
parameter 
�0 = �1=2 and volatility parameters:

��0 =
�0�

1 + c0
�
�02 + 


2
0=2� 1=8

��2 ; ��0 = �0; c�0 =
c0

1 + c0
�
�02 + 


2
0=2� 1=8

� : (A.24)

A.3.3 Proof of Proposition 1

Let us consider XMM estimation with parametric sdf Mt;t+1(�) = e�rf;t+1e��1��2�
2
t+1��3�

2
t��4~rt+1 .

This is a well-speci�ed sdf, with true parameter value �0 satisfying the restrictions in equations (3.9).
The econometrician uses the uniform and local conditional moment restrictions (2.2) and (2.3) to
identify �0. We �rst derive subspace J � � R4 and matrix R2

i) Derivation of subspace J � and matrix R2
The null space J � associated with the uniform conditional moment restrictions is the linear space

of vectors � 2 R4 such that:

E0

��
exp rf;t+1
exp rt+1

�
@Mt;t+1

@�
0 (�0) j xt

�
� = 0, 8xt: (A.25)

By using @Mt;t+1(�0)=@�
0 =Mt;t+1(�0)�

0
t+1, we get the characterization of J � given in Proposition

1 (i). Moreover, since �0 satis�es the no-arbitrage restrictions (A.22), we deduce that any vector
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� = �0 + �", where " is small and � satis�es (A.25), is such that E0 [Mt;t+1 (�) exp rf;t+1jxt] = 1
and E0 [Mt;t+1 (�) exp rt+1jxt] = 1, 8xt, at �rst-order in ". Therefore, the vectors in J � are the
directions d� = � � �0 of in�nitesimal parameter changes that are compatible with no-arbitrage.
From Section A.3.1, the parameter vectors � compatible with no-arbitrage are characterized by the
nonlinear restrictions �1 = �b0(�2), �3 = �a0(�2), �4 = 
0 + 1=2, where �2 := �2 + 
20=2 � 1=8.
Thus, the tangent set at �0 is spanned by the vector:

� = (d�1=d�2; d�2=d�2; d�3=d�2; d�4=d�2)
0
j�=�0 =

�
�db0
du
(�02); 1;�

da0
du
(�02); 0

�0
= r02; (A.26)

where �02 := �02 + 
20=2� 1=8. We deduce that the linear space J � has dimension dim(J �) = 1 and
is spanned by the vector r2. The orthogonal matrix R2 is given by R2 = r2= kr2k.

ii) Derivation of vector E0
�
@~g(Y ; �0)=@�

0jX = x0
�
r2 and proof of local identi�cation

The j-th element of the (n; 1) vector E0
�
@~g(Y ; �0)=@�

0jX = x0
�
r2 is given by:

E0

�
@~gj(Y ; �0)

@�0
jX = x0

�
r2 = E0

�
@Mt;t+hj (�0)

@�0

�
eRt;hj � kj

�+
jXt = x0

�
r2; j = 1; � � � ; n:

By using @Mt;t+h(�0)=@�
0 =Mt;t+h(�0)

Ph
l=1 �

0
t+l, r2 = (���0c�0; 1;���0; 0)0 from (A.24), and:

�0t+1r2 = �2t+1 �
�
��0�

2
t + �

�
0c
�
0

�
= �2t+1 � E

Q
0

�
�2t+1j�2t

�
; (A.27)

we get:

E0

�
@~gj(Y ; �0)

@�0
jX = x0

�
r2 =

hjX
l=1

B(t0; t0+hj)E
Q
0

��
�2t+l � E

Q
0 [�

2
t+lj�2t+l�1]

��
eRt;hj � kj

�+
jXt = x0

�
:

By conditioning on the volatility path and using the Hull-White formula [Hull, White (1987)]:

B(t0; t0 + h)E
Q
0

h�
�2t+l � E

Q
0 [�

2
t+lj�2t+l�1]

� �
eRt;h � k

�+ jXt = x0

i
= EQ0

h�
�2t+l � E

Q
0 [�

2
t+lj�2t+l�1]

�
BS(k; �2t;t+h)jXt = x0

i
;

where BS(k; �2) is the Black-Scholes price for time-to-maturity 1 and �2t;t+h is the integrated

volatility between t and t + h. Moreover, since EQ0
h
�2t+l � E

Q
0 [�

2
t+lj�2t+l�1]jXt

i
= EQ0

�
�2t+l�

EQ0 [�
2
t+lj�2t+l�1]jXt+l�1

i
= 0 by iterated expectation and the Markov property under Q, we have:

EQ0

h�
�2t+l � E

Q
0 [�

2
t+lj�2t+l�1]

�
BS(k; �2t;t+h)jXt = x0

i
= CovQ0

h
�2t+l � E

Q
0 [�

2
t+lj�2t+l�1]; BS(k; �2t;t+h)jXt = x0

i
= CovQ0

�
�2t+l � ��0�2t+l�1; BS(k; �2t;t+h)jXt = x0

�
:

Thus, by using
Phj

l=1

�
�2t+l � ��0�2t+l�1

�
= (1� ��0)�2t;t+hj � �

�
0�

2
t + �

�
0�

2
t+hj

, we get:

E0
�
@~gj(Y ; �0)=@�

0jX = x0
�
r2

= (1� ��0)Cov
Q
0

�
�2t;t+hj ; BS(kj ; �

2
t;t+hj )jXt = x0

�
+ ��0Cov

Q
0

�
�2t+hj ; BS(kj ; �

2
t;t+hj )jXt = x0

�
:

Finally, let us prove that E0
�
@~gj(Y ; �0)=@�

0jX = x0
�
R2 > 0, for j = 1; � � � ; n, which implies

the local identi�cation of �0 (Assumption a.2). We have Cov
Q
0

�
�2t;t+h; BS(k; �

2
t;t+h)jXt = x0

�
> 0,

for any h; k > 0, since the Black-Scholes price is strictly increasing w.r.t. the volatility and the
risk-neutral distribution of �2t;t+h given Xt = x0 is non-degenerate. Moreover we have the following
Lemma A.4.
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Lemma A.4: The integrated volatility �2t;t+h is stochastically increasing in the spot volatility �
2
t+h

under the conditional risk-neutral distribution Q given Xt = x0, that is, P
Q
0

h
�2t;t+h � zj�2t+h = s;Xt = x0

i
is increasing w.r.t. s, for any z:

Since BS(k; �2) is an increasing function of �2, Lemma A.4 implies that

EQ0

h
BS(k; �2t;t+h)j�2t+h; Xt = x0

i
is an increasing function of �2t+h. Thus:

CovQ0
�
�2t+h; BS(k; �

2
t;t+h)jXt = x0

�
= CovQ0

�
�2t+h; E

Q
0

�
BS(k; �2t;t+h)j�2t+h; Xt = x0

�
jXt = x0

�
� 0;

for any h; k > 0. The conclusion follows.
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