SUPPLEMENTARY MATERIALS

Time-varying risk premium in large cross-sectional equity datasets
Patrick Gagliardini, Elisa Ossola and Olivier Scaillet

These supplementary materials provide the proofs of the technical lemmas used in the paper (Appendix
5) and the results of Monte-Carlo experiments that investigate the finite-sample properties of the estimators
and test statistics (Appendix 6). We also derive inference for the cost of equity and include some empirical
results for Ford Motor, Disney Walt, Motorola and Sony (Appendix 7). Finally, we provide some robustness

checks for the empirical analysis (Appendix 8).

Appendix 5: Proofs of the technical lemmas

A.5.1 Proof of Lemma 1 (iii)

We  have  y—w; =150, —v; )+ (1F —1v;' and o7t -t = v_lv_l(v — ;).

Since wv; is uniformly lower bounded from part (i), we have Z |w; —w;| <

Cc— 1X +C— (1- 1X . The second term in the RHS is o from Lemma 4. To
R e RS DU )

prove that the first term is 0, (1) 1t is sufficient to show:
sup 1X]0; — vi| = 0p(1). (33)
K3

We use Equation (24). Since 7y — v = O,(T~°), for some ¢ > 0 (by repeating the proof of Proposition 2

with known weights equal to 1), 12‘”@;1“ < Cxir 17 < xor,

Sii|| < M, and by using Assumption

C.5, the uniform bound in (33) follows if we prove:

sup 1Y[|Si; — Sill = Op(T7°), (34)
sup 1X|Q 1 — Q. = O,(T™°), (35)
sup 1 |mir —mi| = Op(T7°), (36)



for some ¢ > 0. To prove the uniform bound (34), we use Equation (26). As in the proof of Lemma 1 (i), we
have sup T=Y2||Y; || = Opi0g(T~"?) from Assumption C.1 c), and similarly sup T2\ Wiz + Wa,r| =
Op,iog (ZT_"/Q) and sup T*I/QHW;;J,TH = Op(T*”/Q), from Assumptions C.1 e) Zalnd f), respectively. More-
over, ||Q;42|] <M aznd 1’-‘73- 1 < x2,7- Thus, from Assumption C.5, bound (34) follows. To prove (35)
we use Qm L - Q5 L— TQm 1W,TQx , where W; 7 is defined as in Equation (27) and is such that

sup |Wi,r|l = Op.iog(T™ "/2) from Assumption C.1 b).  Finally, (36) follows from |77 —7i| <
i

1 . 1
T | o Z(Im — ElLizlv))|s 1f7ir < X2, 7o < M and by using sup T Z(Im — E[Li|v))| =
t t t
OpJog(T_"/Q) from Assumption C.1 d).

A.5.2 Proof of Lemma 3
A.5.2.1 Part i)

Let us write [ as:
I = \/15 ZZ: UAJinTQ;% (YirYir — Sir) QE
= \/15;@1751“@;51 YirYir — Sir) Q; ' + — sz TiT (Qx} Q! ) (YirY/r — Sur) Qz'
+\/lﬁ ZMTZTQ;I (YirYir — Sir) (Qxi le)
sz o (Qeh - @) Mir¥ip = Sur) (@} - Q)
=: Qm1I211Q$ + I12Q; " + Qp ' Iy + Inns.

We control the terms separately.

1
Proofthat 311 = ﬁ Z w;T} (Yz’,TYz‘/,T - Sii,T) + Opog(v/1/T) = Op(1) + Op 1og(v/T). Weuse



a decomposition similar to term I1; in the proof of Lemma 2:
1
I = 7n zz: wit? (YirYir — Siir) Z 1¥ — Dwir? (YirYir — Sur)
+ﬁ Z 1w (Tz%T —17) (YirY!r — Sir)
i

1 . _
+ﬁ Z 1X (0,1 — v Y 2 (YirYir — Sir) =: Ip111 + o112 + L2113 + I2114-
i

To prove I>111 = Op(1), take k,1 = 1,..., K, and consider (7 := \FZwl YikrYiir — Sii ki)

Then:

EGrrlor, Ir, {vi}] = szw] Zeov (YiprYiam, YikorYiur

xT, 117 Vi, ’Y])

= nTQ § § wleT T cov (5i7t15i,t275j7t3€j7t4’xl7 7i77j) Tty Lito Ljts L s Tty ot 10t kTt -
4,J t1,t2,l3,ta

From Assumptions A.1 ¢), C.3 b) and C.4, it follows E| flT} = O(1). Hence, ¢, = Op(1) and Ip111 =
O,p(1). We can prove that o112 = 0p(1) and I>113 = 0,(1) by using arguments similar to terms 112 and
I113 in the proof of Lemma 2. Finally, let us prove that Io114 = Op jog(v/n/T'). Similarly to I114 in the

proof of Lemma 2, we use

ot — ot = 02 (0 — vi) + 07t 2 (0 — vi)?, 37)
and Equation (24). We focus on term:
Iyn =—— Z 1fv Tcule i ( Sii — Sn’) Q;;Cf/l (YirY{r — Sur)

the other contributions to I2114 can be controlled similarly. Now, we use Equation (26) and treat z; as a



scalar to ease notation. We have:

~2_4
Iy = Z 1Xv; TCl,lQ WirQ; ! iCin (YirY{r — Sur)
—— ) 1% w Y 7Yy — S
TchQJZ"L 277'7TQ$ iCon ( o, T 4T m,T)
275 A1 A1 A1
+27 Z v e, Qp i WairQy i YirQyico, (YirYir — Siir)

-1 I A—2 !
E 1} TculQ ZQin,TY;,TQI,iCm (YirY!r — Sir)
=: —691(1211411 + Ip11412 + Io11413 + I211414)C0) -

Let us focus on term I511411 and prove that it is O, jo4(v/12/T)). We have:

v 02 .
'Wl,i,TSii,T =: Io114111 + I2114112.

Io11411 = \/72 _2 4 2T/V“T ZT \/72

Term 721147111 18 such that:

X1 TX2 T

|E[I2114111|$Z, 127 {’.Y’L}” >~ \/>T2 Z Z 771,t1€i,t25i,t3’3327 71”7
1 t1,12,t3

and

4 .8
CXLTXQ,T

Vibiainler, Ir, {vi}] < T

D7D 1cov(minEitaCitss MjaaEitsEits T Vi V)]
3, t1,..,t6

From Assumptions C.2, C.3 f) and C.5, we get E[I>114111] = Ojog(v/n/T') and V [I2114111] = o(1), which

implies Io114111 = n/T). The other terms making I5114 can be controlled similarly, and we get
implies [: Op.log(v/1/T). The oth king I b lled similarly, and g

Ipi11a = Opog(v/n/T).
Proof that 1212 = 0,(1). We have:

1 _
1212 = % Z ]_i(’U,L 1TZT < Qm ) ( Y Sii,T)
i
1 o _ A AL
+% Z (o — o, 1)TZT (Qxi - Q:pl) (YirY{r — Sur) = Ioi21 + I2122.
i
We focus on term 2127, use Equation (27) and treat z; as a scalar to ease notation. We have:

I = le‘ i 3TQ$§WzTQ (YirY!r — Sur)

—l—— Z Lo 720 Qo iWr Q. (YirYi e — Siir) = (Ioi2nn + Io1212) Q5 '



Let us focus on I21911. We have:

9 CX%,TXS,T
El|[Iai2u1|l*|zr, IT, {7i}] < TZ > w;,

0,j t1,..ta

. ll|cov(€inEitas €.t 4|2, i V1)
By the Cauchy-Schwarz inequality, we get:

E[| Lo |{n}] < CX%,TX%,T Sup E||W;, iH?

1/2
nT2 > D [[cov(€ityEityr EjtsEitalmrs ¥ Vi) Pl i)
1,j t1,t2,l3,ta

From Assumptions C.1 b), C.3b), C.4 a), and C.5, we deduce E[||I21211]|?|] = o(1), which implies I51211 =
op(1). Similar argument can be used to prove that the other terms making I>1 are o,(1).

Proof that 1213 = op(1). This step uses arguments similar as for I5;.

A.5.2.2 Part (ii)

1 A A
We have [po = — Z wiTzTQ;ZlWU,TQ;%, where W1 ; 7 is as in Equation (26). Write:
vnT -
1 o _ A A
Iy = \ﬁ Z Voo 72 Qu iWir @yt + —— N Z X0 — oy D7 Qu i Wiir Qi = Taor + Tazo.
nT <=
(]

Let us first consider I29;. We have:

1
2 4 4
Bl Ple Ir, ) < X i 30 X ol 26y
1,] l1,l2

From Assumptions C.3 a) and C.5, it follows E[||I222]|2] = Oj0(1/T), and thus 292 = Oy 104(1/VT).
Let us now consider term I220. We use Equation (37), and plug in the decompositions (24) and (26). We

focus on term cgl 15997 of the resulting expansion, where:
I . 1 1X —2 4 A —4w2
2221 = —W Z 2,3 "V 1,4,T
i
The other terms can be treated similarly. We have:

Ellyo |2z, I, {7:}] < Cxi TXQTITQ D leov(ely, i ler, i),

1 1,02



and

1
V{21 |z, IT, {7i}] < CX%TX%,TW Z Z |cov (it Mi o Mjits M 21T Vir V5]
1,J t1,t2,l3,l4

From Assumptions C.3 a) and C.5, it follows E[l2221] = Ojoq(+/n/T). By Assumptions C.3 d) and C.5 we
can prove that V[Iz291] = o(1), and it follows Iz221 = Op(v/n/T).

A.5.2.3 Part (iii)

We have Io3 = — fT Z W;T; TQx ZW3 iTYir —l— Z W;T; TQI ‘ZLQ 4)YZ “r» where W3 ; 1 and ngz

are as in Equation (26) and we treat x; as a scalar to ease notatlon By similar arguments as in part (ii) we
can prove that Io3 = Oy 104(v/1/T).

A.5.2.4 Part (iv)

The statement follows from Lemma 1 (ii)-(iii), 1}7; 7 < x2,7, 1?‘”@;1]\ < Cx1,7, bound (34), ||Si;|| < M
and Assumption C.5.

A.5.2.5 Part (v)

The statement follows from Equation (21), Lemma 1 (iv), I; = Op(1) and — Z Wy, TEQQ 1YZ TY; TQ;% =

Op,log ( 1) .

A.5.3 Proof of Lemma 4
We have P[1X¥ =0] < P[rip > xo7] + P {CN (Q“) > Xl,T} =: Piyr + P . Let us first control

1
Py 7. We have Py ,7 <P [ E Iy < X1 Ll <P T E (Ii,t — Ti_l) < Xz_lT — M1] , where we use
i

7; < M for all ¢ (Assumption C.4 c)). Then, for0 < § < M_1/2 and 7" large such that M1 —x;} > 0, we

1

T Z (Iz t — )
t

1

T > Tiy — E[Ligln])

t

get the upper bound Pi,r <P

FE (-

t

>0 By using that

> w” <

-1

; E[l;it|vi] and P >0l =F|P

\]
I




Z L))

t

sup P
~v€[0,1]

b> 0.

> 5] , from Assumption C.1 d) it follows P; ,,7 = O(T*i’), for any

Let us now consider P ,,7. By using HQMH < M (Assumption C.4 a)), we get eigmam(Qz,i) < M, and
thus CN (Qm) < M2 [ezgmm(Qm)} 71/2. Hence P, ,7 <P [eigmm(Qm) < M/X%,T}' By using that
€igmin(Qu,i) > €igmin(Qz) — |Qui — Qull, We get Py <P [||Qx,i — Q2| > €igmin(Qz) — M/X%T]
Now, let 0 < 0 < €igmin(Qx)/2 and T large such that eigy,in(Qs) — M/X%,T > §. Then, by using

P |:”Qx,z - Q:EH 2 5:| S P [ ;;Ii,t(l'tl't - Qz)

>Vo|+P[rir 2 V0| we gt Ppar <

1 _
TZIi,t(:vtxt—Qm) >0 —|—O(T_b). The first term in the RHS is O(T~%) by using

Zfzt (2t — Qu) > /6| and Assumption C.1b).

Then, P27nT =0(T~ ), for any b > 0.

>\f] < sup IP’” ZIt (i — Qx)

~v€[0,1]

A.5.4 Proof of Lemma 5

1
Let Wr(y) := TZ(It(’y) — E[Li()]) and rp := T~* for 0 < a < n/2. Since |Wp(y)| < 1 for all
t
€ [0, 1], we have:

1 1
sup E[[Wr(v)[*] < sup E[[Wr(y)|] = sup / P[[Wr(v)| > 6]dd <77+ sup / P[Wr ()| = 6]do
~v€[0,1] ~v€[0,1] ~v€[0,1] J 0O ~vel0,1] Jrp

1 1
< rpr+ ClT/ exp {—CgéQT"} dé + C3exp {—C4T’7} %dé
rT T
< rp+ C1Texp {—CordT"} + Csexp {—C4T"} log(1/r7) = o(1),

from Assumption C.1 d).



A.5.5 Proof of Lemma 6

By definition of S'ij, we have

2|8
2y

Sig {18, |2} ~ S

ij — Sij

Sigl{||8,||2x} ~ SiaLilsis12n

1 ~
oM
2,]

1’7]
>
n —

1’7]

< SijL{|isi;l2R} ~
=: I3 + I32.
By Assumption A.4,
I3 = ZHSZ]H Ls;|<ny < maXZHS 196179 < k' (n) = O, (’fl_qn5>7 (38)
7‘7
where cy(n) = maxz 1Si;117 = Op(n°).

Let us now cons1der I39:

>n|Sill<s} T Z 1951 L1505 <l 12}

)

I3; =

|| {18512 ls 0120}

+Z(

ij —

>k, Sy ll<n} T maXZ 153511 L1185 | <mlisisl1=m)

<
ij
+m2 ’ i3 S| L 2nisi 2y = 33+ Taa+ T
From Assumption A.4, we have:
Ig5 < II}E;X S’ij - Sij mlaxz ”SZ]Hq k9= Op (wnTCO (n) Iiiq) . (39)
’ J

Let us study Is3:

133 < maxz ’ S
J

5 S| L)y sy an) T %D 1850 Lisiytny = o+ o
J

By Assumption A.4,
I3y < k' (n) . (40)



Now take v € (0, 1) . Let V; (6) = Z 1{||§ij—sz‘j||>6}’ for € > 0, then
J

Is = max Y |8 = S| Ly, omisyicon +me D[S = S| Lgs, smancis,icn
J J
< max‘ Sii — Sij|| max N; (1 — v) &) 4+ max ||Sij — Si;{| co (n) (v&) 7.
,J ? 2¥)

Moreover, by the Chebyschev inequality, for any positive sequence 2,7 we have:

2

P [max]\fi(e) > RnT} < nP[N;(e) > Ryr] < i E[N;(e)] < max P H Sij — Sij|| > e] ,
? nT nT ©J
which implies max V; (€) = O, <n2 max [P H S’ij - Sij|| = e}) . Thus,
7 ]
I3 = O, (wnTnQ\I/nT (1 =) k) + PYpreo () (U/i>_q) . 41
Finally, we consider I34. We have
B max 3 ([18 = S+ [18u])) 1 s, hentsizn)
J
< max \ Sij — Sij mgXZ L{isis1>my + *”vm?XZ L{jisi;1>w}
J J
= Op (Ynrco (n) K™%+ co (n) K179). (42)

Combining (38)-(42) the result follows.

A.5.6 Proof of Lemma 7
A « 1
By using ;¢ = €, — (Bi — ﬁi) and S?j =7 Z I;j €0 42,1042}, we have:
Zj t

~

N . 1 A 1
Sy = Sp- T > Ljeci (ﬂj - /Bj) T4y — T > Lijigj, (@‘ - 51‘) 1)
gy Yot

1 N ! A
to § Lijt (/Bi - 51‘) 4Ty (5]' - 5j> T4y
ij

=1 5) — Ay — Bij + Cjj,



+ 1 Asll -+ 1Bl + (1G5l We

A~

< ‘S%*Sij

where A;; = Bj;. Then, for any 1, j, we have ‘

getforany ¢ > 0 :
$0 gl >S s s 8
Vo (§) < maxP | |IS;; — Sij|| = 7| + maxP |[|[Ay]] > = | +maxP ||| Byl > <
] J 2,] 4 1,7 4
b (0] 2 §| = W (€/0) + 2PLr 0+ P (€/0). @)

> f]’ Py 7 (£/4) := max P [HA”H > zﬂ’ and
i

8% — Sy

where T (£/4) := max P U
irj

Py (€£/4) := max P [HCU | > i] . Let us bound the three terms in the RHS of Inequality (43).
Z?]

A 1
a) Bound of W0, (£/4). We use that S?j — S = 7 Zfijvt (eipej 2] — Sij)
T

1
= TUvTT Z Il'jﬂg (81‘7156]'7155615:6; —F [61'7,56]'7,51‘,533“’}/{)/]']) and Tij < M. Then:
t

1
T Z Liji (gigejpmiay — E [5i,t5j,txtx:£|%7j])H
¢

15 = Syl < M

1
‘HTij,T - Tz‘j\ T Z Lijt (5i7t5j7txtx;t - F [5i,t€j,t$tx£hi7j] ) H .
t

forsmall §. Weuse P3,,7 < sup P
7:7'€[0,1]

and Assumption C.1 e) to get Pz ,,7 < C1T exp {—C§§2T"} + 3¢ exp {—C’4Tﬁ}, for some constants
7'751] <

We deduce:
Vor (£/4)
< maxP |2 ZIW (sipejpmay — E [eigej ey yivi]) || = = | + maxP ||rr — 5] > ¢
i,j - ) ’ ’ I I —_— 8M l,j ’ - 8
+ max P 1 Liju (eigejpwery — B [eigejpmrivivg]) || > .
0. T4 8
< 2maxP 1 Z Iij, (5i,t5j,txt$:f -E [5i,t5j,txt$:t|’7i’7j}) > — | +maxP [0 — 75| = §
i, T ; 8 i, 8
=: 2P3,7 + Pypr,
l I I / / !/ E / / > i
T > LWL (e(Ve(y ) lee(Vec(y )] ) || > S
t

C1,C5,C5,Cy > 0. To bound Py,7, we use 7;; < M and |77 — 75| < TijTij7T|Tl-;’,1T -

10



|Tz]T ij
Tij =1 | —1

7-2] Tz] T Tz]

2 1 i |1 -1 _
<2M ”T—Tij |, if |rp — 75 < M 1/2. Thus, we have Py,r <

. 1 L 1 .
2mz;x]P’ |TUT -j1| > e \/E] , for small £. By using Tijéw =7 Zfij,t and Tijl = E[Lij |7, vj),
¢

from Assumption C.1 d) we get:
_ _ 1 /¢ 1 INES

Pl — 3 > \[ < ]P’—E:I L(v) — E[L()LA))D| > \/>
rr;g’x [|TZJ7T Tz] | - 2M2 8] — 77/5/21[.371] [ T - ( t(’y) t(ly ) [ t(’Y) t(’y )])| - 2M2 8

C1T exp {—C3€T"} + C5¢ 2 exp {~CyT"} .

IN

‘We deduce:
ot (6/4) < CIT exp {=C36°T"} + C3¢ exp {~CyT"} . (44)

b) Bound of Py 1 (£/4) . For some constant C, we have

-3,

1
|Aij|| < Crijrmax|— Y 1iji€i 1% kTt 1 Ttm
klm |T -

Let x3,7 = (logT')?, for a > 0. From a similar argument as in the proof of Lemma 4, and Assumption C.1

d), we have max P [1;; 7 > x37| = O(T_B), for any b > 0. Thus,
Z7j

Prr (€/4)
Ly~ A S £

< H}%XP Tig T WA |7 Zt: Gt Cit TR T Tem | || B — Bl = Yol
< IlrlaLxIP[TZ T>X3T]+maxIP’ max Zli-tsita:thtlxtm > § and 7,7 < x3.1
— i, ,] i,j k,‘,l7m - Js El ’ 9y I — 4X37TC .77 — ’

+ max P HB—BJH> 3 and 75,7 < Xx3,1

i ! —\ 4xs1rC T
< (K +1)* maxmaxP lZ:I Eit Tt kTt [ Ttm| = ¢
_ g kdm T - ig,teitbt kLt iltm| = 4X3,TC
Bi — B H > and 7.7 < x37| + O(T7). 45)
+P |||3; - 8 4X3T0 J (")
By Assumption C.1 f),
1 £ Cs€
Pll=Y I > < CiT — 2>
m,%x g,llf,ir))i [ T ; 1§ tEit Lt kLt 1Tt m| = 4X3,TC > 1 exp{ X3.1 }

(46)

+cp XzT

11



Let us now focus on P HB} — BjH > L and 77 < x3,7 |. By using
4x317C

1
T D Lwey
t

HB] - ﬁj“ < xar ||Q2 |

o Q) - Q:

1
T D Lwey
t

when 7; 7 < x3 7, we get

[Hﬂg ﬁg“ \/ 4X3TC and 757 < X3,T]

1 L) & 11—

le',txtejyt = 5 1, C’ 3THQ H
P
1 1 / ¢
~-N"I. . -5

+P |||oz) - a

1 _
< th:f,t:ﬂtej,t 16X3 c HQQEIH
1/4 T 1/4
4P HQ —Q; ‘ _& P lZL sl >[5
v 16x3 ,C T PR = 16X O
1 ] 1/4
< wll S nnnd = g ot o2 -0 (g) |

for small £. From Assumption C.1c), the first probability in the RHS of Inequality (47) is such that:
! 3¢ X3 1
72 Lieweeje| > Q' < O Texp{ ——25T7 % 4+ 5[ =2
T - J J 16X3 C H H Xg’T 3 5

To bound the second probability in the RHS of Inequality (47) we use the next Lemma.

(48)

1
Lemma 12 For any two non-singular matrices A and B such that | A — B|| < 3 |A7Y|~! we have:

1B~ — A7 < 2 A7H?)A - B

12



From Lemma 12, we get:

1/4 ¢ 1/4
N —1)]—-2
P{)Qx,; (16ng ) ] < {Qm Qu _2(16X§T0) 1@ ]
+2 [0y - @] 2 g0 17
¢ 1/4
—1)—-2
< 2P [HQM Qz|| > 2 (W> Q% ] )

for small & > 0. From Assumption C.1b),

¢ 1/4 :
> | ——=— | Q| < CiTexpl —Cj,|—=—T"
2 (16X§7Tc> 2 X%T

3\ 1/4
+20% (XZ’T> exp {—CyT"} . (49)

{@w Qu

Then, from (45)-(49) we get:

.. 3/2

C B _
Pror (€/4) < CT exp {~CReTxd 1} + 3553” exp {~CuT"} + O(T), (50)

for small £ > 0 and some constants C7, C5, C3,Cy > 0.

¢) Bound of P 1 (€/4) . We have from Assumption C.4

Icsl < |&

o ||

— B

-

E Izg tLt kLt 1Tt mTLtp
k,,m,p

IN

— B

o -5

Thus, we have:

— Bi

7

¢ 1/2
|=(e) |

Py (€/4) < max]P’[ (

[ 5] 8] <or | -

By the same arguments as above, we get:

. 3/2
3X3,T 7

~exp {—CyT"} | (5D
v

Poyr (£/4) < CIT exp {~C3€T" X3} +
for small { > 0 and some constants C7, C5,C3,Cy > 0.

13



d) Conclusion. From inequalities (43), (44), (50) and (51) we deduce:
c3
W (&) < CiTexp {— C'QfTT"}—i- exp{ C4T"} + O(T )

where {7 := min{¢, 5/X§,T}’ for small £ > 0 and constants C, C5,C5,Cy > 0. For { = (1 —v) x and

logn
TN

n2 [T
n*W,r (1 —v)k) < CanTeXp{ CyM? (1 —v)? logn C3M exp{ CiT"}

+On* T =0(1),

k=M , we get & = (1 — v) & for large T" and

for b and M sufficiently large, when n, T — oo such that n = O (T"7) for 7 > 0.

1
Finally, let us prove that ¢,z = O, ( ?ﬁ”) .Lete > 0. Then,
logn - logn
P lwnT > T € < n? H}%X]P) [’ Sij — Sij|| = T €

= 20, (\/k;%:%) <V, (1 —v)k) =0 (1),

for large e. The conclusion follows.

A.5.7 Proof of Lemma 8§

Under the null hypothesis Hg, and by definition of the fitted residual é;, we have

& = a;— 1/+c (BZ 51’)
= ai— Y+, (B 6) ~ (- ) (52)
- éﬁ,(@—ﬂi)—b;(ﬁ—y).

By definition of Q.., it follows
G = e (Bi-p)] —20- Zw (B — 1) et (=)~ 3 b (9
e n - (2 1 (2 1 A% (2 v n - 1YYy
1 T (4 2
=: nzl:wi [CV </3i_6i>] — 2171 + Ira.

14



Let us study the second term in the RHS:

1,1 ) L 1 )
In = T (v —v) Jn zi:wiTi,Tbi}/i/,TQz,icu =: ﬁ(l/ —v) In1éy,

where I711 = Op(1) by the same arguments used to control term I; in the proof of Proposition 3. We have

1 1 1
p—v =0 —_— + = dé, =0, (1) by L 3 (v). Thus, I71 = O — — | .
U—v p,log<\/n—T+T> and ¢, » (1) by Lemma 3 (v). Thus, I7; oilog (nT+T nT)
1

1
Let us now consider I72. From Lemma 1 (ii)-(iii) and Lemma 3 (v), we have I72 = O, 104 T + T2> .
n

The conclusion follows.

A.5.8 Proof of Lemma 9

Under H1, and using Equation (52), we have é; = ¢; + ¢, (Bz — ﬁi) — b, (7 — v) . By definition of Q.. it

follows:
Q. = lzdj.e?+212w,é’ (B—ﬁ) e-—2(ﬁ—u),lzw-b'e-
e n i 1€ n i iCp 3 % i n : 101€4
S [ (B 8)| 20— vy S b (B 8) e+ (00 S bt (7~ )
n Z 7 v T 3 n l (Al 7 K3 14 n Z 1YY
=: Ig1 + Igo + Ig3 + Igq + Ig5 + Igg. (53)

1
From Equations (24) and (26) and similar arguments as in Section A.2.3 c), we have Ig; = — E wie?—i—
n =
7

1

Op,log (\/T) By similar arguments as for term [; in the proof of Proposition 3, we have
1 1 . ;oA 1) . 1 ) 1 . 1

Igo = 7@ % EZ wZ‘Ti7T61‘Y;-7TQm7Z» ¢, =0, 7TZT . By using - Ez w;bie; = - EZ w;ib;e;+

1 1 1 . 1 1
Op,iog (\/T) =0, (ﬁ) + Op,iog <\/T) and 7 — Voo = Op 1og <\/ﬁ + T)’ we get
1 1 1 .. 1 1
_[83 = Op,log (n + ﬁ + \/? . Similar as for 182 we have _[85 = 0p7l0g (TL\/T + m) .
1 1 1

1
U — Voo = Opog <\/ﬁ + > we have Igg = O) 109 < + T2> . The conclusion follows.

From

T n
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A.5.9 Proof of Lemma 10

By applying MN Theorem 2 p.35, Theorem 10 p. 55 and using W,, 1 = I,,, we have

Ab =vec(Ab) = (V' ® A)vec(Iy)

= wec [(b/ ® A) vec (In)]

® In) (In @ Wi 1 @ Iy,) (vec (V) @ vec (A))
® I) (In ® In,) vec (vec (A) V)
® In)

vec (vec (A) V') .

A.5.10 Proof of Lemma 11
A.5.10.1 Assumption APR.4 (i)

We use that eigmax(A4) < ax E |a; ;| for any matrix A = [aj;]; j=1,...n. Then, for any sequence (7;)
i=1,...,n 4
Jj=1

in [0, 1] we have:

n n
€igmax(¥e,1,n) < if;axnz |Covle(n),ee(y)]] <€ max Y 1y €} (54)
AR j:l Ty nj:1

where C' := sup E[e4(v)?]. Define:
v€[0,1]

J = {(%) :mff?.}.fJnrlLZl{% €I} :0(1)}.

i=1

Then Assumption APR.4 (i) holds if ur (J) = 1. From Theorem 2.1.1 in Stout (1974), it is enough to show

oo n
1
that — H~; € 1, f . N i B,, = o1
a nglup (miIllaXJnn El {vi € I} >5> < oo, for any ¢ > 0. Now, since mznll,a“}.(,Jn m = o(1),
= =
1 n
E§ 1{7iefm}_Bm

i=1

1 n
we have ur ( max EZ Wy € Iy} > 5) < ur ( max

m=1,...,Jn ‘ m=1,...,Jn
=1

> 8/2), for

>5/2>,

large n. Thus, we get:

1 & 1 &
— H~; € 1 < J — H~;el,} — B
Ur <mmaXJ nz {vi € I} >5> < ”mffaXJ Ur <|nz {vi € In} m

:1»"'7 20ty .
=1 " i=1

16



for large n. To bound the probability in the RHS, we use |1{~; € I,,} — B,,| < 1 and the Hoeffding’s
inequality (see Bosq (1998), Theorem 1.2) to get:

1 n
ur (‘nzl{')@ € Im} _Bm

=1

> 5/2) < 2exp (—ne?/8).

Then, since J,, < n, we get:
(0.] 1 n o0
2
E:I,UF (m:rrllaXJn - z; Wy € Iy} > a) < QE:Inexp (—ne /8) < 00,
n= 1= n=

and the conclusion follows.

A.5.10.2 Assumption A.1

Conditions a) and b) are clearly satisfied under BD.1, BD.3 and BD.4. Let us now consider condition ¢). We

have 05+ = Eles(vi)ee(v4) |, vj] =: 0i; independent of ¢. Thus, E[UZ?].J’%.’ 7],]1/2 =o0;;. By BD.1,BD4
Jn Jn

and the Cauchy-Schwarz inequality o;; = Z i, vj € ImYEec(vi)ee(v5)vi, 73] < C Z i, vj € Im}s

m=1 m=1
where C' = sup FEl[e;(7)?]. Hence, we get:
'76[071]
1 1 1 &
Bl > Elodviul'?| < - YY) E{vieln} + - Y By, € In})
ij i m=1 i#j m=1
Jn JIn Jn
= CZBm+C(n—1)ZBEn—o<1+nZB;>.

m=1 m=1 m=1

From BD.2, the RHS is O(1), and condition c) in Assumption A.1 follows.

A.5.10.3 Assumption A.2

Let us consider condition a). Under BD.l1 and BD.3, we have S;; = 0@, and
. 1 TiTj / U .
Sy = lim F | — E wiw;—=04(Qr ® bibj) . This limit is finite (if it exists), since from BD.4 we have

1 TiT; 1 1 )
- Zwiwj#mj(@x @ bib)|| < Cﬁ Z |oi |, and E - Z loijl| = O(1) from Assumption A.I.
irj

Y] ]

17



Moreover:

n

E w;Ti zt fEt@b 5'Lt
t:l =1

nt7

Mﬂ
||M%

1 n
—= Z wiT Y ® b =
v

1 n
where &, ; = 7 Z w;Til; (¢ @ b;) €;4. The triangular array (&, ;) is a martingale difference sequence
n-

1=
w.rt. the sigma-field F,,; = {f:,€it, 7,7 = 1,...,n}. From a multivariate version of Corollary 5.26 in

White (2001), the CLT in condition a) follows if we show:

T
1 /
(i) T 221 E[fn,tfn,t] — S,

(i Z (6nt8 = Blénen ) = 0p(1),

=1

(iii) sup E[||&n.]|*™] = O(1), for some & > 0.
t

=1,...,

Moreover, we prove the alternative characterization of the asymptotic variance-covariance matrix:

(iv) S, = a.s. —nhn(r)lo - z]:wzw] - U,](Qx ® b; b’)

Let us check these conditions. (i) Let G,, = {v;,7 = 1, ...,n}. We have:
1 / ! !
T > EBlénibnslGn] = Z Z ww;TiT; B [ t1t (xtxt ® bibj> EitE4,t1Vis ’Yg}
t
= Zzwzijsz zt—[] th/zyf)/]] (E[IIZtLE;] ® bzb;) E[Ei,tgj,t‘7i7’7j]

_ —Z UU(Qx®bb>

By taking expectation on both sides, condition (i) follows.

Let us now consider condition (ii). Define (, 7 = T Z (ntiéntl — Eléntk&ntil), where &, ¢ is
t

the k-th element of &, ;. Since E[(, 7] = 0, it is enough to show V[(, 7] = o(1), for any k,I. We show

this for k£ = [, the proof for k # [ is similar. For expository purpose we omit the index k, and we write

2 — .2 .
xy ), = xi. We have:

Vignr] = ngvgm QZOOU (Eréns)s (55)
t#s
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where:

1
2 § : 2
n,t = E wiijﬂin,th,txt bibjei,tej,t-

i?j

o Consider first the terms Cov(ﬁ,%ht, 57%75) for t # s. By the variance decomposition formula:
Oov(ég,tv £T2L,S) =F [Cov(gg,ta gg,s’gn)] + Cov [E(gi,t’gn)a E(&?L,s|gn)] .

We have Couv(&? ;, €2 (|Gn) = 0 from the i.i.d. assumption over time. Moreover:

JIn

T3 1
E[&,1Gn] = szw] T(?ngijbibj = Z Zaijo'ijl{%,')/j € I},

Y m=1 1,j

where a;; = wiwj@biijx and Q, = E[z?]. Thus:

Tij
1 &
Cov [E(& 41Gn), E(&; 41Gn)] = 2 > > Cov (oo {vi, 75 € I}y amow {7y, € Ip}) .
m’pzl i7j7k7l

In the above sum, the terms such that sets {7, j} and {k, [} do not have a common element, vanish.
Consider now the sum of the terms such that ¢ = k (terms such that¢ = [, or j = k, or j = [ are

symmetric). Therefore, let us focus on the sum

Jn
1
Sp = 2 5 1 'gz Cov (oo {7, V5 € Im}s aaoal{vi, i € Ip})
m7p: Z7]7

J,
1 n
= 3 g E Cov (aijoij1{vi,vj € Im}, caoul{vi,m € Im})
m=1 4,5,

J
1 n
) § § Ea;joij1{7i,vj € Im}) E [oigoul{vi, v € L,}].
m,p=1,m#p 1,5,

1 n
From BD.4, we have a;; < C'and 0;; < C. Thus, we getS,, = O | — E g Ell{vi,vj,n € Im}] | +
n
m=1 4,75,

J,
1 u .
Ol.3 > D By € I} E[1{yiw € L} | Byusingthat >~ E[1{~i,7j,m € Im}] =
m?p:]"m#p i7j7l i7j7l
O (nBp +n°By +n°B})  and Y E[1{yi,7 € In} E[{yi,m € ,}] = O (nBpnBy+
i?jil

19



m=1 m=1 m=1

2
n*(B2,B, + Bme,) + n3B,2an,)), wegetS, =0 | 1/n+ i B2 +n i B} +n <§: B;)
The RHS is o(1) from BD.2. Thus, we have shown that:
Cov(&r - &ns) = o(1), (56)
uniformly in t # s.

Consider now V[f,%yt]. By the variance decomposition formula:

V[fi,t] =FE [V(ﬁgﬂgn)] +V [E(fgz,t|gn)] .
By similar arguments as above, we have V [E (&2 ;|G,)] = o(1) uniformly in ¢. Consider now term
E [V (&2 ,1Gn)]. We have:

1

2 § :

V(§n7tlgn) = 7712 w,;ijkmekaleibjbkbl
ivj’k’l

2 2
-Cov (Iipljpaieises, ealiprien e i v Vi 1) -

Moreover:

2 2
Cov (I Ijsxiei ijp, Tnadiien i vis vis Yo )

= E L iy e elvi, vjs s ) E (€48 080080 1%i0 Vi Voo ) El2f] — UijUszingk_llE[m?}Z-

From the block dependence structure in BD.1, the expectation E [; 1€ 1€k 1€1.4|Vi, Vi Vi, Vi) is dif-
ferent from zero only if a pair of indices are in a same block I,,, and the other pair is also in
a same block I, say, possibly with m = p. Similarly, o;;0y, is different from zero only if -;

and v, are in the same block and ~; and ; are in the same block. From BD.4, we deduce that

J,
1 n
V(E2,1G) < C— E E {7, vj € Im}1{vk, 7 € Ip}, where in the double sum the elements
’ n
i,5,k,l m,p=1

with m # p are not zero only if the pairs (y;,7;) and (7, ;) have no element in common. Thus:

JIn
E[V(lG.)] = O % S By, 75 e € In}]

0,4,k m=1

JIn
1
R4 =Y > El{ni € I EL{wm € L]
1,7,k iF#k, i £kl m,p=1:m#p

20



In JIn
By using Z Z El1{vi,vjs v € Im}] = O (Z (nBy, +n*B2 +n3B3, + n4Bfn)> and

i,5,k,0 m=1 m=1
Jn Jn
S El{yiv € InIEMym € LY =0 Y. (n*BnB,+n*BB, +n'B.B}) | we
,7,k,l m,p=1 m,p=1

get:
Jn Jn
B[V(E,16.)] - (1+n232 zBmunzzB;;).
m=1 m=1

By BD.2,n _max B2 = 0O(1), and we get E [V(£n7t|gn)] =0(1).

=1,...,n

Thus, we have shown:

V(&) =0(), (57)

uniformly in ¢.

From (55), (56) and (57), we get V[(,r] = o(1), and condition (ii) follows. From (57) and by using
ElgZ,] = O(1), condition (iii) follows for § = 2. Finally, condition (iv) follows from
1 TiTj / / o1 1 o
— Wi —=0;:b;b, = (1 4+ X A — — :
LS i Tt~ 1 XV LY

pp—
ij K g WUt

bib; and the next Lemma 13.

1 1
Lemma 13 Under Assumptions BD.1-BD.4: — E - T b; b’ — L, P-a.s., where:
n 4= Tij 0ii0jj

1 1 L In
L= lim F fzf Tid_py, :/ w(y)dy + lim nZ/ / w(v,7")dydy,
n— 00 n Tij 0405 0 n— 00 o1 I I,

with w(v,7) == E[L(M (7| gy b(1)b(y) and w(7) = w(7,7).

Then, we have proved part a). Part b) follows by a standard CLT.

A.5.10.4 Assumption A.3

Assumption A.3 is satisfied since the errors are i.i.d. and have zero third moment (Assumption BD.1).
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A.5.10.5 Assumption A .4

We have to show that max; 3, [|S;[|? = Op(n?), for any g € (0,1) and § > 1/2. From S;; = 0;;Q,, and

an argument similar to (54):

n

Bm+0m311,a_§J Z[l{yj € I} — By,

n

n
m?xz [19:;119 < Cmfll,a..}.(,Jn Z H{y; €In} < Cnm:max >
J j=

Ly
]:1 n

for any ¢ > 0. Let us derive (probability) bounds for the two terms in the RHS. From BD.2:

1/2
nm£x|Bm] <\/ﬁ<nZ]Bm|2> =0 (Vn).

Let e, := n%, with § > 1/2. Then:

n n

P| max | [1{y; €Ln}—Bul|>en| < Jo max P ||> [1{y; € Ln} — Bu]| > cn

m=1,....Jn m=1,...,Jn

j=1 j=1

< 2J,exp(—e2/(2n)) = o(1),

from the Hoeffding’s inequality (see Bosq (1998), Theorem 1.2), and J,, < n. Thus, we have shown that

n

max Z[l{fyj € I} — Bm]| = 0,(n?), and the conclusion follows.
m=1,...,Jn =

A.5.10.6 Assumption A.5

We have Sii,T = Uz‘z‘@:p,i and Sij = UijQz. Let us denote by7—l =0 ((ft), (It(’y)), A [0, 1],%,7: = 1, 2, )
the information in the factor path, the indicators paths and the individual random effects. The proof is in
two steps.

STEP 1: We first show that conditional on H we have

1 -
Y,r = % Zwﬂf [Yi,T QYT — Sii,T] = N(0,92), n,T— oo, (58)
2.2
~ ~ . 1 TETS
P-as., where S;; 1 = ojvec(Qg,i) and Q = nh_)ngo FE - Z wiw;j %afj Qe ®Qr + (Qz ® Qz) Wiki1].
i,J R

For this purpose, we apply the Lyapunov CLT for heterogenous independent arrays (see Davidson (1994),

22



Theorem 23.11). Write

1 &
1{ i € Im}wz [ 3T & Y; Sii, } = Wm,n )
;"LZI Yi T T — T \/Tn n; T

where
[J -
Wm,nT = ;n Z 1{'71’ S Im}wiTz‘2 |:}/i,T & Y;,T — Sii,T} .
i

Conditional on H, the variables W,,, ,7, form = 1, ..., J,, are independent, with zero mean. The conclusion

follows if we prove:

@) hm - Z V Winr|H] = Q, P-as, and

(i1) 17171;1 W ; E {HWm,nTHS \7—[} =0, P-as..

To show (1), we use:

J,
\% [WmmT‘H] = ;n Z wiijiQTJ-QCov [Yi,T (0%9) Yi,Tv Yj,T ® Yj,T|H]
4,5€Im
J,
— f > wiwrT] {E [(Yz‘,T ® Yir) (YVir ® Yir) \7—[] Si; TS'j,T} ’
1,7€Im

where Z denotes double sum over all 7,j = 1,...,n such that ~;,v; € I,,. Now, we have by the
4,J€Im
independence property over time:

E|(Yir @ Yir) (Vir @ Yia) [H]
1 ! I
= 3 Z Z Z Z E[eieipe)sial (ft) Vi Vi) LiaLipljsljg (fvtﬂfs ® ﬂfpﬂcq)

= F [ zt%t’%a% T2 ZI”IN (actxt ® azt:zct) + O'ZJ T2 Z Z Liji1ij p <xtxt ® TpT,, )
t

p#£t
Tii JJ T2 Z ZL t1j,s (mtx & T ) + a” T2 Z ZLJ tlij.s (Sﬂtl’ & a:sznt)
t s#t t
= E[ ztgjt’7277]] A1T+0' A2T+O'“ ]JA3T+O' A4T
M _ Ty Lijit _ 2\ . .
oreover, Ay = T T z1, @ mxy ) = O (T;;/T%) = O(1/T), uniformly in . Let us de-
t i
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1

fine Qx,ij = T Iij,tl‘tﬁg, then
ij
1 / / 1 N N
A = =2 ; ; LijiLijp (xtmt ® :Upfvp) —Air = TZQJ—T (Q:}c,ij ® Qm,ij) +0(1/T),

/

Asp = % SN L (a:ta:'s ® a:t:r;> — Ayr = vee (sz) vec (Qw,j) +01/T),
t s
and
Ay = % Z Z Lij 15 s (wtﬂﬁ; ® ZBSJS;) — A7
t s
— % Z Zlij’tfijﬁ (2t @ 15) (15 ® xt)/ — A7
t s

1 '
= Z Z Lijilijs (xe @ xg) (2s @ xg) Wiy — Arp
t s

1 R R
- 2 (Qx,z'j ® Qx,ij) Wk +0(1/T).
Tij T
Then, it follows that:
JIn 7'227']-2 5 [ A . A R
|4 [Wm,nT|/H] = ; Z W;W; TTUij (Qx,ij & Qx,ij + Qx,ij (%) Qw,ijWKJrl)
1,j€Im 15, T

In 1
2_2
+0 WT g wiw;T; T |
1,j€Im

where the O term is uniform w.r.t. . Thus, we get:

TET

2,2
1 1 t g 2

ij

1 2.2 92 11 9 9
+;Z > wiwyri Tl + O ﬂZ > ww T |

m 1,5€Im m 1,5€Im

L/ A A A 1
where the aij; = — <Qx,ij ® Quij + Qzij ® Q:c,ijWK—i—l) ) (Qr ®Qy+ Qr ® Q:Wiky1)areo(1)

7—ij,T T’Lj
. . T i1y 27T i int i
uniformly in 4,j, and wyw;—5=0j; = (1+XNE;"A)""—~———.  Then, point i) follows from
Tij Tij Oii%5j
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2 2

1 T O . 1 TiT; Oij L. .

— E Z—;i — L, P-as., where L = lim F | — g =27 J_ | which is proved by similar ar-
n Tij 04033 n—00 n < 0430344

guments as Lemma 13.

2
g

Z?]

Let us now prove point ii). We have:

3
3
< # Z <Z ’LUiTi2> <sng {IIYi,T ® Yi,TH?’ \7—[] V3 + SLilp ’ §“TH>3

m i€Lm

Now,

BWireYirl' ] < B[l 4] = B | (virYir) ' 1]
1

— ﬁ Z Ii,t1-~-Ii,t6E [Ei,tl--fi,teh/i} (x%lea) ($23$t4) ($25$t6) .

t1,...,te

By the independence property, the non-zero terms E [€; ¢, ...€; 4| 7;] involve at most 3 different time indices,

which implies together with BD.4 that sup F [HY,T ® Yir|? \7—[] = 0(1), P-a.s. Similarly sup ‘ §”TH =0(1),
i i

P-as. Thus, we get:

In I 3
57 2 B [IWnsr 1] < O3 (z 1o € Im}> .
no m=l m=1 i

Then, point ii) follows from the next Lemma 14.

7. 3
1 n
Lemma 14 Under Assumptions BD.1-BD.4: 7 Z (Z 1{v; € Im}> — 0, P-a.s.

m=1 7

STEP 2: We show that (58) implies the asymptotic normality condition in Assumption A.4. Indeed,

from (58) we have:

. , < _ z
o P oy < 2[H) = @ <m)

for any o € R2(K+1) and for any z € R, and P-a.s. We now apply the Lebesgue dominated convergence the-
orem, by using that the sequence of random variables P [o/Y,,p < z|H] are such that P [o/ Y7 < z|H] <

1, uniformly in n and T'. We conclude that, for any o € R2(K H), z € R:

lim P[o/Thr <zl = lim E(P[a/Tyr <z|H]) =@ ( : > :

n,T—00 n,T—ro0 vVa'Qo
. ~ - . . .
since ¢ ( m) is independent of the information set H. The conclusion follows.
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A.5.11 Proof Lemma 12

Write:
_ -1 -1 -1 -1 -1 -1 -1
—At = (A - AT A-B)] T - aT = {T- AT (A= BT - AT
and use that, for a square matrix C' such that ||C]| < 1, we have

I-C)y'=1+Cc+C*+C%+

and
_ c
la-o=1| <ici+icr+.. _]fu@ﬂ
Thus, we get:
1 . AtA-B| |,
B l_A 1 < H A 1
H H = 1- A T(A-B)| H H
[ ]

<
= I— A A= B]|
2)|A~t|* 14 - B,

IN

) 1.
if 4 - Bl < 54747

A.5.12 Proof of Lemma 13

1 oy 1
Let us denote &; j = — —2—b;b); = We have — i+ — ;- By the LLN
et us denote 517] Tij 0405 w (’727 7]) € have Z 5273 Z gu + n Z 5@,] y the
0] i#]
1
we get - Z i = — w(v) — / ~v)d~y, P-a.s.. Let us now consider the double sum — Z &i,j- The
(2

"
proof proceeds in three steps.

1
STEP 1: We first prove that — me =L+ 0y(1), where L' := lim n Z / / w(v,7")dydy'.
n Im J I,

— n—oo
i#]

J,
. .1 = 1 .
For this purpose, write - E ‘ &= E X, where X, := - § : w(vi,vj)1{vi,vj € Im}, by using block-
7] m=1 7]
dependence. Then, we have:
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E[X,,] = i;E[w(%,’yj)l{%,fyj elpntl=mn-1) /Im /Im w(y, 7 )dydy =: (n — 1),

which implies:

JIn
1
) EE fi,j :(nfl) E @m—)L/.
m=1

i#]
Moreover:
1
ViXm] = — DO E (i )wtm W16 v Yo i € I} = E[Xom)?
i#] k£l
= [nln = 1)~ 20— 3)&3, + 0P BY) + O B2)] — (n — 1),
= O(nBy,) +O(nBj},) + O(By,),
and:
1
COU(va Xp) = ? Z Z E [W(%?%)W(%’ ’71)1{717 v € Im}l{’}/ka RS Ip}] - E[Xm]E[Xp]
i#j k#l
1 . R
= 3 [n(n —1)(n —2)(n — 3)@mwp] — (n — 1)*0nw, = O(nBEnBz),

for m # p, which implies:

In JIn,
1% %ng = Y VIXul+ ). Cov(Xpm, Xp) =o(1),
m=1

i#£] m,p=1,m#p
from BD.2. Then, Step 1 follows.
- 1 -
STEP 2: There exists a random variable L such that — Z &i,j — L, P-as.. To show this statement, we
n
) i
use that the event in which series — Z & ; converges is a tail event for the i.i.d. sequence (7;). Indeed,
n
i#]
1 ) L1 .
we have that — Z &i,j converges if, and only if, — Z &i,j converges, for any integer N. Then, by the
> N it
1
Kolmogorov zero-one law, the event in which series — Z &;,j converges has probability either 1 or 0. The
n

i#]
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1
latter case however is excluded by Step 1. Therefore, the sequence — g &i,j converges with probability 1,
n
i#j
and Step 2 follows.

- 1
STEP 3: We have L = L/, with probability 1. Indeed, by Steps 1 and 2 it follows — Z & — L =o0,(1)
i
and — Z & i — L = 0p(1). These equations imply that L — L’ = 0,,(1), which holds if and only if L = L

#J
with probability 1 (since L and L’ are independent of n).

A.5.13 Proof of Lemma 14

The proof is similar to the one of Lemma 13 and we give only the main steps. First, we prove that
J"

3
3/2 Z (Z v € Im}> = 0p(1). Indeed, we have:
n ,

In 3
n;/?mz::1 (2@_:1{%' EI’”}) - n3/2 ZZE 13,555 e € L] ( i ZB?)> =

m=11.k

In 3
1
from Assumption BD.2, and we can show V' 37 Z (Z IREVRS Im}> = o(1). Second, by us-
oo
ing the monotone convergence theorem and the Kolmogorov zero-one law, we can show that sequence

3
3 /2 Z (Z v € Im}> converges with probability 1. Third, we conclude that the limit is 0 with
n

probablhty 1.

Appendix 6: Monte-Carlo experiments

In this section, we perform simulation exercises on balanced and unbalanced panels in order to study the
properties of our estimation and testing approaches. We pay particular attention to the interaction between
panel dimensions n and 7 in finite samples since we face conditions like n = o(T®) for inference with
U, and n = o(T?) for inference with Q. and Q,, in the theoretical results. The simulation design mimics
the empirical features of our data. The balanced case serves as benchmark to understand when 7" is not
sufficiently large w.r.t. n to apply the theory. The unbalanced case shows that we can exploit the guidelines

found for the balanced case when we substitute the average of the sample sizes of the individual assets, i.e.,
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a kind of operative sample size, for 7'. To summarize our Monte Carlo findings, we do not face any finite
sample distortions for the inference with # when n = 1,000 and 7' = 150, and with Qe and Qa when
n = 1,000 and 7" = 350. In light of these results, we do not expect to face significant inference bias in our

empirical application.

A.6.1 Balanced panel

We simulate S datasets of excess returns from an unconditional one-factor model (CAPM), we estimate the
parameter v, and compute the test statistics. A simulated dataset includes: a vector of intercepts a® € R"”,
a vector of factor loadings b° € R"™, and a variance-covariance matrix 2° € R™*". At each simulation s =
1,...,.5, we randomly draw n < 9,904 assets from the empirical sample that comprises 9, 904 individual
stocks. The assets are listed by industrial sectors. We use the classification proposed by Ferson and Harvey
(1999). The vector b® is composed by the estimated factor loadings for the n randomly chosen assets.
At each simulation, we build a block diagonal matrix 2° with blocks matching industrial sectors. The n
elements of the main diagonal of Q2° correspond to the variances of the estimated residuals of the individual
assets. The off-diagonal elements of {2° are covariances computed by fixing correlations within a block
equal to the average correlation of the industrial sector computed from the 9,904 x 9,904 thresholded
variance-covariance matrix of estimated residuals. Hence we get a setting in line with the block dependence
case developed in Appendix 4.

In order to study the size and power properties of our procedure, we set the values of the intercepts aj

according to four data generating processes:

DGP1: The true parameter is vy = 0.00% and the af are generated under the null hypothesis Ho : a; = 0;

)

DGP2: The true parameter is the empirical estimate of v, vy = 2.57%, and the a; are generated under the

null hypothesis Ho : a] = bjvp;

DGP3: The af are generated under the alternative hypothesis H, : ai = (0.5b] + 0.5) v, where vy =
2.57%;

DGP4: The aj are generated under the three-factor alternative hypothesis: H, : aj = bf’(S)yo,(g) where

bj 3) € R? and vy (3) = [2.92%, —0.63%, —9.96%]’ are estimates for the Fama-French model on the
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CRSP dataset.

DGP1 and DGP2 match two different null hypotheses. The null hypothesis for DGP1 assumes that the factor
comes from a tradable asset, and for DGP2 that it does not. DGP3 and DGP4 match two different alternative
hypotheses as suggested by MacKinlay (1995). DGP3 is a “non risk-based alternative”. It represents a
deviation from CAPM, which is unrelated to risk: we take the one-factor model calibrated on the data with
intercepts deviating from the no arbitrage restriction. DGP4 is a “risk-based alternative”. It represents a
deviation from CAPM, which comes from missing risk factors: we take intercepts from a three-factor model
calibrated on the data, and then we estimate a one-factor model.

Let us define the simulated excess returns R7, of asset ¢ at time ¢ as follows
te=a; +bfi+eiy, fori=1,...,n,andt =1,...,T, (59)

where f; is the market excess return and &7, is the error term. The n x 1 error vectors &f are independent
across time and Gaussian with mean zero and variance-covariance matrix €2°. We apply our estimation
approach on every simulated dataset of excess returns. We estimate the parameter v and we compute the
statistics described in Section 2.5 of the paper. Since the panel is balanced, we do not need to fix x2.7.
We only use x1,7 = 15. However, this trimming level does not affect the number of assets 7 in the simu-
lations. In order to compute the thresholded estimator of the variance-covariance matrix of 7, namely 3,
(see Proposition 4 in the paper), and the thresholded variance estimator f)g for the test statistics, we fix the
parameter M equal to 0.0780, that is used in the empirical application. We define the parameter M using
a cross-validation method as proposed in Bickel and Levina (2008). We build random subsamples from
the CRSP sample. For each subsample, we minimize a risk function that exploits the difference between
a thresholded variance-covariance matrix and a target variance-covariance matrix (see Bickel and Levina
(2008) for details).

In order to understand how our estimation approach works for different finite samples, we perform
exercises combining different values of the cross-sectional dimension n and the time dimension 7. Table
5 reports estimation results for estimator 7, and for the bias-adjusted estimator ¥, under DGP 1 and 2.
The results include the bias of both estimators, the variance and the Root Mean Square Error (RMSE) of

estimator g, and the coverage of the 95% confidence interval for parameter v based on Proposition 4. The
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bias of estimator ¥ is decreasing in absolute value with time series size 7" and is rather stable w.r.t. cross-
sectional size n. The analytical bias correction is rather effective, and the bias of estimator ©p is small. For
instance, for sample sizes 7' = 150 and n = 1000, under DGP 2 the bias of estimator 5 is equal to —0.03,
which in absolute value is about 1% of the true value of the parameter v = 2.57. The variance of estimator
Up is decreasing w.r.t. both time-series and cross-sectional sample sizes 7" and n. These features reflect the
large sample distribution of the estimators derived in Proposition 3. The coverage of the confidence intervals
is close to the nominal level 95% across the considered designs and sample sizes.

In Table 6, we display the rejection rates for the test of the null hypothesis v = 0 (tradable factor). This
null hypothesis is satisfied in DGP 1, and the rejection rates are rather close to the nominal size 5% of the
test, with a slight overrejection. In DGP 2, parameter v is different from zero, and the test features a power
equal to 100%.

Tables 7 and 8 report the results for the tests of the null hypotheses Hy : a(y) = 0 and Ho : a(v) =
b (7)' v, respectively. The test statistics are based on Q. and Q. as defined in Proposition 5. DGP 1 satisfies
the null hypothesis for both tests. For 7" = 150, we observe an oversize, that is increasing w.r.t. cross-
sectional size n. The time series dimension 7' = 150 is likely too small compared to cross-sectional size
n = 1000 and this combination does not reflect the condition n = o(7?) for the validity of the asymptotic
Gaussian approximation of the statistics. For 7' = 500 instead, the rejection rates of the tests are quite
close to the nominal size. DGP 2 satisfies the null hypothesis of the test based on Qe, but corresponds to an
alternative hypothesis for the test based on Q.. The former statistic features a similar behaviour as under
DGP 1, while the power of the latter statistic is increasing w.r.t. n. Finally, the power of both statistics under
the "non risk-based"” and "risk-based" alternatives in DGP 3 and DGP 4 is very large, with rejection rates

close to 100% for all considered combinations of sample sizes n and 7.
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Table 5: Estimation of 1/, balanced case

T =150 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.0742  -0.0567 -0.0585 -0.0586 | -0.1630 -0.1472 -0.1484 -0.1493
Bias(¥p) -0.0244  -0.0063 -0.0082 -0.0083 | -0.0319 -0.0156 -0.0169 -0.0178
Var(2g) 0.1167  0.0394  0.0179  0.0121 0.1140  0.0401 0.0189  0.0121
RMSE(Pg) | 0.3423  0.1985 0.1340  0.1102 | 0.3390  0.2007 0.1383  0.1114
Coverage 0.9320 0.9290 0.9350 0.9370 | 0.9370 0.9290 09320 0.9360
T =500 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias (©) -0.0587 -0.0640 -0.0687 -0.0654 | -0.0847 -0.0926 -0.0972 -0.0937
Bias(¥p) -0.0002  -0.0063 -0.0110 -0.0077 | -0.0025 -0.0074 -0.0120 -0.0085
Var(0g) 0.0343 0.0113 0.0060 0.0040 0.0341 0.0114 0.0061 0.0041
RMSE(?g) | 0.1851 0.1066  0.0781 0.0634 | 0.1846  0.1068  0.0788  0.0642
Coverage 0.9370 0.9340 09370 0.9390 | 0.9430 09370 0.9360  0.9320
Table 6: Test of v = 0, balanced case
T =150 DGP1 DGP2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0680 0.0710 0.0650 0.0630 | 1.0000 1.0000 1.0000  1.0000
T =500 DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejection rate | 0.0630 0.0660 0.0630 0.0610 | 1.0000 1.0000 1.0000 1.0000
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Table 7: Test of the null hypothesis 74 : a () = 0, balanced case

T = 150 DGP 1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.1180 0.1400 0.1500 | 0.3850 0.5720 0.7170 | 1.0000 1.0000 1.0000 | 1.0000 1.0000  1.0000

T =500 DGP 1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 | 500 1,000 1,500 | 500 1,000 1,500 | 500 1,000 1,500
Size/Power | 0.0730 0.0610 0.0740 | 0.9240 0.9920 0.9970 | 0.9990 1.0000 1.0000 | 0.9990 1.0000 1.0000

Table 8: Test of the null hypothesis H, : a (v) = b(Y) v, balanced case

T =150 DGP1 DGP 2 DGP3 DGP 4
n 500 1,000 1,500 | 500 1,000 1,500 | 500 1,000 1,500 | 500 1,000 1,500
Size/Power | 0.1110 0.1340 0.1460 | 0.1070 0.1360 0.1420 | 0.9970 1.0000 1.0000 | 1.0000 1.0000 1.0000

T =500 DGP1 DGP 2 DGP 3 DGP 4
n 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500 500 1,000 1,500
Size/Power | 0.0710 0.0570 0.0730 | 0.0730 0.0690 0.0750 | 0.9990 1.0000 1.0000 | 0.9990 1.0000 1.0000

A.6.2 Unbalanced panel

Let us repeat similar exercises as in the previous section, but with unbalanced characteristics for the simu-

lated datasets. We introduce these characteristics through a matrix of observability indicators I¢ € R"*T"

The matrix gathers the indicator vectors for the n randomly chosen assets. We fix the maximal sample size

T = 546 as in the empirical application. In the unbalanced setting, the excess returns R, of asset ¢ at time

tis:

R}y =aj +bifi+e,, if [y =1, fori=1,..,n, andt =1,..,T,

where I}, is the observability indicator of asset ¢ at time ¢.
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In Tables 9 and 10, we provide the operative cross-sectional and time-series sample sizes in the Monte-
Carlo repetitions for trimming x17 = 15 and four different levels of trimming 2 7. More precisely, in
Table 9 we report the average number nX of retained assets across simulations, as well as the minimum
min(nX) and the maximum max(nX) across simulations. For the lowest level of trimming y2 7 = 7'/12, all
assets are kept in all simulations, while for the level of trimming 2 7 = 7'/60 on average we keep about two
thirds of the assets. In Table 10, we report the average across assets of the T}, that are the average time-series
size T; for asset i across simulations, as well as the min and the max of the 7. Since the distribution of 7}
for an asset ¢ is right-skewed, we also report the average across assets of the median 7;. For trimming level
x2,7 = T'/60, the average mean time-series size is about 180 months, while the average median time-series
size is 140 months.

In Table 11, we display the results for estimators © and 7. The bias adjustment reduces substantially
the bias for estimation of parameter v. For trimming level xo 7 = 7'/60, the coverage of the confidence
interval is close to the nominal size 95% for all considered cross-sectional sizes, while for xo 7 = 7'/12 the
coverage deteriorates with increasing cross-sectional size. In comparison with Table 5, the bias and variance
of estimator U are larger than the ones obtained in the balanced case with time-series size 7' = 500.
However, for trimming level x2 7 = 7'/60, the results are similar to the ones with 7" = 150 in Table 5. In
fact, this time-series size of the balanced panel reflects the operative sample sizes for that trimming level
observed in Table 10. Similar comments apply for Table 12, where we report the results for the test of the
hypothesis » = 0. For trimming level x2 7 = 7'/60, the size of the test is close to the nominal level 5%
under DGP 1, and the the power is 100% under DGP 2.

In Tables 13 and 14, we display the results for the tests based on Qa and Qe, respectively. For trimming
level xo 7 = T/120, we observe an oversize, that increases with the cross-sectional dimension. We get a
similar behaviour with more severe oversize with lower trimming levels (not reported). We expect these
findings from the results in the previous section. Indeed, for trimming level xo 7 = 7'/120, the operative
time-series sample size in Table 10 is around 200 months, and in Tables 7 and 8, for a balanced panel with
T = 150, the statistics are oversized. For trimming level xo 7 = T'/240 with operative size of about 350
months, the oversize of the statistics is moderate. Finally, the power of the statistics is very large also in the

unbalanced case, and close to 100%.
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Table 9: Operative cross-sectional sample size

trimming level X2,7 = % X2,T = %
n 1,000 3,000 6,000 9,000 | 1,000 3,000 6,000 9,000
nx 1,000 3,000 6,000 9,000 | 660 2,000 4,000 6,000
min (nX) 1,000 3,000 6,000 9,000 | 600 1,900 3,900 5,900
max (nX) 1,000 3,000 6,000 9,000 | 700 2,100 4,100 6,100
trimming level X2, T = % X2, T = KTO
n 1,000 3,000 6,000 9,000 | 1,000 3,000 6,000 9,000
nx 400 1,250 2,400 3,600 | 140 430 850 1,250
min (nX) 350 1,100 2,300 3,500 | 100 370 800 1,200
max (nX) 440 1,300 2,500 3,650 | 170 470 900 1,300
Table 10: Operative time-series sample size
trimming level XoT =5 Xel = a5 XaT = 155 X2l = 5o5
mean (Tz) 130 180 240 360
min (7;) 110 160 210 350
max (7;) 140 190 260 380
mean(median (7;)) 90 140 197 330
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Table 11: Estimation of », unbalanced case

trimming level: x2,r = 135

T

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.3059 -0.3119 -0.3047 -0.3021 | -0.4211 -0.4324 -0.4202 -0.4201
Bias(Ug) -0.0893  -0.0954 -0.0880 -0.0854 | -0.1127 -0.1233 -0.1113  -0.1113
Var(0p) 0.1207  0.0409  0.0214 0.0124 | 0.1222  0.0405 0.0218  0.0124
RMSE(?g) | 03586 0.2235 0.1706  0.1402 | 0.3671 02360 0.1848  0.1574
Coverage 0.9230 09010 0.8740 0.8750 | 0.9180  0.8880  0.8410  0.8320
trimming level: 2,7 = %
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Bias(?) -0.1703  -0.1738 -0.1675 -0.1596 | -0.2454 -0.2478 -0.0411 -0.2329
Bias(¥p) -0.0349  -0.0381 -0.0318 -0.0238 | -0.0453 -0.0474 -0.0411 -0.0325
Var(2g) 0.1294  0.0436  0.0231  0.0141 | 0.1281  0.0438  0.0232  0.0144
RMSE(¢g) | 03613 0.2122  0.1551  0.1212 | 03606 0.2145 0.1578  0.1241
Coverage 0.9360  0.9310 0.9240 0.9350 | 0.9430 0.9310 0.9200  0.9300
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Table 12: Test of v = 0, unbalanced case

trimming level: x2 7 =

e
12

DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0770  0.0990 0.1260 0.1250 | 1.0000 1.0000 1.0000  1.0000
trimming level: x2. 7 = GT—O
DGP1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Rejectionrate | 0.0640  0.0690 0.0760 0.0650 | 1.0000 1.0000 1.0000  1.0000

Table 13: Test of the null hypothesis H : 1 (7) = 0, unbalanced case

trimming level: x2,7 = 1120
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.1180 0.1710 0.2420  0.3030 | 0.6010 0.9410 0.9980  1.000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000  1.0000 | 0.9990 1.0000 1.0000  1.0000
trimming level: x2, 7 = WTO
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 0.0880 0.0860 0.1020  0.1310 | 0.5320 0.8730  0.9920  1.0000
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 1,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000  1.0000 | 0.9740 1.0000 1.0000  1.0000
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Table 14: Test of the null hypothesis H, : (1 (7) = f3 (7) v, unbalanced case

trimming level: x2,7 = T
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 3,000 6,000 9,000
Size/Power | 0.1130  0.1670  0.2370  0.3010 | 0.0940 0.2190 0.2590 0.3740
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 3,000 6,000 9,000
Size/Power | 1.0000 1.0000 1.0000 1.0000 | 0.9990 1.0000 1.0000  1.0000
trimming level: x2,7 = 5=
DGP 1 DGP 2
n 1,000 3,000 6,000 9,000 3,000 6,000 9,000
Size/Power | 0.0800 0.0790  0.1000 0.1290 | 0.0790 0.0870 0.1080  0.1440
DGP 3 DGP 4
n 1,000 3,000 6,000 9,000 3,000 6,000 9,000
Size/Power | 0.9990 1.0000  1.0000 1.0000 | 0.9690 1.0000 1.0000  1.0000

Appendix 7: Cost of equity

We can use the results in Section 3 for estimation and inference on the cost of equity in conditional factor
models. We can estimate the time varying cost of equity CE;; = 7y, + b;t)\t of firm ¢ with CE;; =

ree+ lA)atj\t, where 7 ; is the risk-free rate. We have (see Appendix 7.1)

VT (@zt - CEi,t) = %,tEéﬁ (Bz - @‘)
+(Z1_, @) Wy v/ Tvec [A’ - A’} +op (1), 61)

!/ ~
where ¢; ; = (/\Q R Z,_1, A ® Zzﬂt_l) . Standard results on OLS imply that estimator (3; is asymptotically
normal, /T (BZ - ﬁi> = N (()7 TZ‘Q;’%S@@Q;’%), and independent of estimator A. Then, from Proposition
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9, we deduce that v/T' <C/'E” — C’Ei,t) =N (O, ECEM)’ conditionally on Z;_1, where
YoE, = Ti¢§,tE§Q;%Si¢Q;,%E2¢i,t + (Z{_ @b y) Wy kEaWk p (Z1-1 @ biy) .

Figure 4 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and
Sony. The cost of equity has risen tremendously during the recent subprime crisis.
A.7.1 Proof of Equation (61)
We have:
B A = tr [zt_lzg,lf};f\} i [zt_lzg,t,lé;A} = (Z|_,® Z|_,) vec [B;A] +(Z)_ ® Z},_,) vec [é;A} .
Thus, we get:

VT (CEis— CEyy)
= (Z_,®Z_,) VT <vec [E’;f\} — vec [B;A]) +(Z;_1 ® nytfl) VT (vec {

= (2,22 [(A’ ® Ip) VTvec [B; - Bg] + (I, ® B)) VTvec [A - A”
+(Zi_, ® Z,at,l) [(A’ ® Iq> VTovec [C’,{ — CZ/} + (I, ® C}) VTvec [[\ - AH .

Z’f\} — vec [C{A])

By using that A = A + 0,(1) and vec [A - A} = W, kvec [A' - A’} , Equation (61) follows.
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Appendix 8: Robustness checks

In this section, we perform several checks to evaluate the robustness of the empirical results reported in the
paper. In particular, we estimate the paths of the time-varying risk premia and we compute the test statistics

by:
a. Assuming several asset pricing models as baseline specification;

b. Using several sets of asset-specific instruments Z; ;_1;

o

. Using several sets of common instruments Z;_1;

d. Assuming that the time-varying betas b; ; depend only on the asset-specific instruments.

In Table 15, we provide the details of the conditional specifications for the four exercises. We use the
following abbreviations. For common instruments, we denote by ts; the term spread, ds; the default spread,
and divY, the dividend yield. The dividend yield is provided by CRSP. For asset-specific instruments, we
denote by mc; ; the market capitalization, bm; ; the book-to-market, and ind; ; the return of the correspond-
ing industry portfolio. For each exercise, when not explicitly indicated in Table 15, the specification is the
four-factor model, the vector of common instruments is Z;_1 = [1, ts;_1, dst_l]' and the asset-specific
instrument is the scalar Z; ;_1 = bm; ;1. Table 15 reports the operative trimmed population of individual
stocks and the number of regressors in the first-pass time series regression for each exercise that we imple-
ment. Indeed, the population of individual stocks changes depending on the asset pricing model (Exercise a)
as an effect of the trimming conditions: the number of assets decreases as the number K of factors increases.
Moreover, by using the four-factor model as baseline and modifying the sets of instruments, the number of
assets decreases as the number of regressors in the first pass increases (see Exercise c) .

We first present conditional estimates of risk premia by using several asset pricing models as baseline
(Exercise a). Panel A of Figure 5 compares the estimated time-varying paths of market risk premia when
we assume the four-factor model (shown in Section 4) and the CAPM. Panel B compares the estimates
5\m7t for the four-factor model and the Fama-French model. The paths look very similar. The discrepancy
between the estimates of the CAPM and the four-factor model is explained by the three factors (size, value

and momentum factor) that we introduce in the four-factor model. Figure 6 plots the estimated time-varying
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paths of risk premia for the size and value factors computed on the four-factor model and on the Fama-
French model. The risk premium for the size factor is very similar for the two models. The value risk
premium for the Fama-French model takes slightly smaller values than that for the four-factor model and it
exhibits a counter-cyclical path. Overall, the conditional estimates of the risk premia are stable with respect
to the asset pricing model that is assumed for the excess returns.

Figures 7 and 8 plot the estimates of the risk premia by adopting several sets of asset-specific instruments
Z;+—1 (Exercise b). We do not modify the set of common instruments Z;_; compared to Section 4 of the
paper. In Figure 7, we get the estimates by setting the scalar Z; ;1 equal to the market capitalization of firm
t. In Figure 8, we set Z; ;1 equal to the monthly returns of the industry portfolio for the industry asset i
belongs to. We use the 48 Fama-French industry portfolios. The risk premia paths look very similar to the
results in Section 4. The results for the tests of the asset pricing restrictions for the conditional specifications
in Exercise b are reported in Table 16, upper panel. The test statistics reject the null hypotheses at 5% level.

The time-varying paths of the risk premia showed in Figures 9 and 10 are computed by modifying the set
of common instruments Z;_1 = [1, el J/ (Exercise c). In Figure 9, Z; is a bivariate vector that includes
the default spread and the dividend yield. The paths of the risk premia for market, value and momentum
factors look similar to the results in Section 4. However, the risk premium for the size factor features a very
stable pattern that does not correspond to the unconditional estimate. In Figure 10, vector Z; includes the
term spread, the default spread, and the dividend yield. The paths of the risk premia look similar to the
results in Section 4. Introducing the dividend yield increases the discrepancy between the unconditional
estimates and the average over time of conditional estimates for the size and momentum factors w.r.t. the
results shown in Figure 1. On the contrary, this discrepancy is smaller for the value premium. Moreover, the
risk premium of the momentum factor takes larger values than that in Figure 1. We also notice that including
the dividend yield among the common instruments decreases the number of stocks after trimming. The test
statistics reject the null hypothesis at 5% level (see Table 16), middle panel.

Finally, we consider conditional specifications in which the time-varying betas are linear functions of
asset specific instruments Z; ;1 only (Exercise d). The risk premia are modelled via common instruments
Zi1 =11, tsg1, dst,l]' as usual. In Figure 11, Z; ;_ is a bivariate vector that includes the constant and

the book-to-market equity of firm 7. In Figure 12, vector Z; ;1 includes the constant and the return of the
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industry portfolio as asset-specific instrument. The paths of the risk premia for the four factors in Figure
11 look more volatile w.r.t. the paths in Figure 1. The risk premia for market, size and value factors in
Figure 12 look similar to the results in Section 4. The risk premium for the momentum factor features a
less stable pattern, albeit its confidence intervals look similar to that in Figure 1. In Table 16, lower panel,
the test statistic does not reject the asset pricing restrinction Hy : 31 (7) = B3 () v for the conditional

specification with time-varying betas depending on book-to-market equity.

Table 15: Operative cross-sectional sample size (nX), number of factors (X) and instruments (¢ and

p) and first-pass regressors (d) in the four exercises of robustness checks

nX K p q d nX K p q d
Exercise a. Exercise c.
CAPM 5225 1 3 1 13 | Zi_1 =[1,ds;_1,divY;_4] L1ov 4 3 1 25
Fama-French model 4,545 3 3 1 21 | Z;—1=[1,dsi—1,t8¢—1, dith_l]/ 667 4 4 1 34
Exercise b. Exercise d.
Zit—1 = MCj 11 3835 4 3 1 25 | Ziyq=[l,bmis ] 6208 4 3 2 8
Zit—1 =ind; 11 4748 4 3 1 25 | Zjy1= [1,indi,t_1]/ 6430 4 3 2 8
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Figure 5: Path of estimated annualized risk premia for the market factor

Panel A

Panel B

Panel A plots the paths of estimated annualized market risk premia j\m,t computed by using the four-factor
model (thin red line) and the CAPM (thick blue line). Panel B plot the paths of market risk premia /A\m7t es-
timated by assuming the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Reasearch (NBER).
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Figure 6: Path of estimated annualized risk premia for the size and value factors

Panel A

Panel B

The figure plots the paths of estimated annualized risk premia j\sm@t (Panel A) and j\hml,t (Panel B) com-
puted by using the four-factor model (thin red line) and the Fama-French model (thick blue line). The
pointwise confidence intervals at 95% level are also displayed. The vertical shaded areas denote recessions

determined by the National Bureau of Economic Reasearch (NBER).
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