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Abstract

We provide a convenient econometric framework for the analysis of nonlinear dependence in financial

applications. We introduce models with constrained nonparametric dependence, which specify the con-

ditional distribution or the copula in terms of a one-dimensional functional parameter. Our approach is

intermediate between standard parametric specifications (which are in general too restrictive) and the

fully unrestricted approach (which suffers from the curse of dimensionality). We introduce a nonpara-

metric estimator defined by minimizing a chi-square distance between the constrained densities in the

family and an unconstrained kernel estimator of the density. We derive the nonparametric efficiency

bound for linear forms and show that the minimum chi-square estimator is nonparametrically efficient

for linear forms.
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1 Introduction

Recent developments in risk management emphasize the need to carefully assess nonlinear dependence be-

tween risks. Typical examples are the dependence:

i) between the default risk of different firms to capture the so-called default correlation, that is some

clustering in corporate failure (see Duffie and Singleton, 1999; Li, 2000; Schönbucher and Schubert, 2001;

Gouriéroux and Monfort, 2002a), and more generally the joint migration between rating categories (Gagliar-

dini and Gouriéroux, 2005);

ii) between the extreme risks in different budget lines of a bank’s balance sheet, in order to aggregate

the Value at Risk (VaR), and the required capital, computed per line (Embrechts et al., 2003);

iii) between intertrade durations to detect clustering effects in trading activity and analyse the liquidity

risk (Engle and Russell, 1998; Ghysels et al., 2004).

In most of these problems the nonlinear dependence relates to the whole joint distribution of the variables

(not only the first conditional moments) and the main concern is often about the tail of the joint distribution,

as when the required capital is introduced to hedge extreme risks. Moreover, these problems generally involve

a rather large number of variables. Indeed in example i) above the number of firms may run well over hundred,

and in example ii) the number of budget lines is typically between ten and twenty.

Different approaches have been proposed in the econometric and statistical literature to describe nonlinear

dependence. A considerable attention has been recently devoted to methods based on the joint distribution of

the risk variables, such as copulas (see Nelsen, 1999, for a textbook introduction and Chen and Fan, 2003, for

a recent application in time series modeling), especially in the framework of financial risk management. In this

context parametric specifications are typically adopted. However, the dependence between financial variables

such as times to default, returns, or intertrade durations is not well-captured by the standard parametric

families of densities proposed in the literature (see Joe, 1997, for a survey). Indeed, these parametric

specifications are often excessively constrained (implying a poor data fit) and not very appropriate for a

separate analysis of dependence distinguishing between the risks at low, medium and high level [as required

in example ii)]. Finally, their parameters often do not admit a clear structural interpretation for financial

applications.

The alternative approach for modeling nonlinear dependence consists in estimating nonparametrically

the unrestricted joint density; see Silverman (1986) and Scott (1992) for surveys on density estimation and

Deheuvels (1981) and Fermanian and Scaillet (2003) for bivariate copulas. The weakness of this approach

is that the absence of any structure complicates the interpretation of the patterns of nonlinear dependence,

especially when more than 2 variables are considered, since the joint density is hard to visualize. Moreover
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this approach suffers from the curse of dimensionality when the number of variables of interest is larger than

4 or 5. Finally, even in the bivariate case, it can provide very inaccurate and erratic results for the VaR [see

example ii)], which is evaluated by considering the rather extreme observations.

In this paper we explore the intermediate approach in which the joint density is constrained and depends

on a small number of one-dimensional functional parameters, that is to say functions of one variable. In

this case the density is parameterized by means of a (vector-valued) function A defined on a subset of R.

The aim of this paper is to provide efficient nonparametric estimators for the one-dimensional functional

parameters A that characterize nonlinear dependence.

Such a constrained nonparametric approach has three major advantages for modeling nonlinear depen-

dence. First, by using functional parameters instead of scalar parameters, we achieve a higher flexibility and

a better data fit. A clear structural interpretation of nonlinear dependence is maintained, since in applied

examples the functional parameters generally correspond to the distribution of a random variable such as a

latent factor, an omitted heterogeneity, or an innovation, or they represent for instance the response func-

tion of a lagged variable. Second, the graphical representation of the one-dimensional functional parameters

highlights the patterns of nonlinear dependence. To give an example, in the case of dynamic proportional

hazard models used for the analysis of liquidity risk [see example iii) above, and example iii) in Section

2.2], the serial dependence in the whole sample depends on the elasticity of the functional parameter, while

tail dependence is revealed by its behaviour close to the boundary points of its support. Thus, compared

to the fully unrestricted approach, the interpretation of nonlinear dependence is made easier. At the same

time, functional parameters allow for a much richer description of nonlinear dependence compared to stan-

dard finite-dimensional parameters. Finally, as a third advantage, we show in the paper that the rate of

convergence of appropriate estimators, both for functional parameters and joint density, is the standard

one-dimensional nonparametric rate, and is independent of the number of underlying variables of interest.

Constrained nonparametric densities have already been analyzed in the literature, under various re-

strictions. A typical example is the transformation model, in which an unknown transformation of the

endogenous variable satisfies a linear regression model with iid errors (see Han, 1987a, b; Horowitz, 1996),

or the location-scale model in which the mean and the volatility are unrestricted functions of a set of re-

gressors (Härdle and Tsybakov, 1997). To avoid the curse of dimensionality when the number of regressors

is high, these models typically adopt additivity assumptions (see Hastie and Tibshirani, 1990), or assume

an index structure (see Powell et al., 1989; Ichimura, 1993). These constrained nonparametric regressions

are suitable for describing dependence between an endogenous variable and a set of regressors, but not for

modeling dependence between several endogenous variables, such as times to default for several borrowers

[as in example i)]. Moreover, they have been introduced as extensions of the standard linear model, which
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explains the form of the index function, which is often linear and neglects cross effects. Finally they assume

that the same index matters for the extreme and standard values of the endogenous variable. Our purpose

is to consider other types of nonparametric constraints better suited for financial or duration analysis, and

admitting structural interpretations, for instance in terms of factors, or omitted heterogeneity.

The paper is organized as follows. In Section 2 we consider the specification of constrained nonparametric

families. In particular, we discuss the approaches where the conditional distribution, or an equivalent

representation of the joint density called copula, is characterized by a one-dimensional functional parameter

A. We provide several examples of constrained nonparametric families which are useful for applications.

In Section 3 we introduce the derivative of the log-density with respect to the functional parameter and

the corresponding information operator. We discuss the choice of functional parameter A to ensure the

one-dimensional nonparametric rate of convergence of appropriate estimators. In Section 4, we consider a

nonparametric estimator of functional parameter A. In a cross-sectional framework the idea is to minimize a

chi-square distance between the constrained densities in the family and an unconstrained kernel estimator of

the density. In a time series framework the transition densities are used. We derive the asymptotic properties

of the estimator and of its linear forms. The nonparametric efficiency of the minimum chi-square estimator

for linear forms is proved in Section 5, where the nonparametric efficiency bounds are derived. In many

examples the functional parameter A is subject to restrictions, which are due either to the natural constraint

on the marginal density to sum up to 1, or to identification restrictions. The extension of the results to these

cases is discussed in Section 6. Section 7 concludes. Proofs are gathered in Appendices and on the website

http://www.istituti.usilu.net/gagliarp/web/proofs.htm.

2 Modeling nonlinear dependence with one-dimensional functional

parameters

Let us consider families of distributions which are parameterized in terms of a one-dimensional functional

parameter A, that is a vector-valued function defined on a subset of R. For expository purpose the results

are presented in a bivariate framework, but the extension to any number d of observed variables is straight-

forward.

Assumption A.1: The distributions of interest are continuous with respect to the Lebesgue measure λ2,

with p.d.f. f(x, y; A), where A is a one-dimensional functional parameter. We denote by PA the distribution

associated with f(x, y; A).

The family of densities f (x, y;A) defines a constrained nonparametric family. We discuss in Section 2.1
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below how constrained nonparametric families can be appropriately specified, and their nonlinear depen-

dence summarized in the functional parameter A. We provide in Section 2.2 several examples of constrained

nonparametric families.

2.1 Characterizations of the joint density

A family of bivariate joint densities can be specified in various ways.

i) Conditional density and marginal density

One possibility is to parameterize the conditional distribution and one marginal distribution. Assume

fX|Y (x | y;A) [resp. fY (y;A)] is a family of conditional densities of X given Y [resp. of marginal den-

sities of Y ], parameterized by function A. A family of bivariate densities is defined by:

f(x, y;A) = fX|Y (x | y; A)fY (y;A).

ii) Copula and marginal distributions

In many applications, however, other equivalent representations of the joint density can be more appropriate

to specify constrained nonparametric families. For instance, the distribution can be parameterized by the

copula (see Nelsen, 1999) and the marginal distributions 1. Let us recall that any joint c.d.f. can be written

as (Sklar, 1959):

F (x, y) = C [FX(x), FY (y)] ,

where FX , FY are the marginal c.d.f. of the variables X and Y, and C is a c.d.f. on [0, 1]2 with uniform mar-

ginal distributions, called copula. Such a decomposition allows to separate the marginal features (included

in FX , FY ) and some dependence features (included in the copula). A family of bivariate densities for (X, Y )

is defined by specifying the copula p.d.f. c(u, v; A) and the marginal distributions fX(x;A), fY (y; A):

f(x, y;A) = c [FX(x;A), FY (y;A); A] fX(x; A)fY (y;A) .

In a cross-sectional framework the functional parameter A is often chosen as:

A = (fX , fY , a)
′
,

1Other approaches based on alternative equivalent representations of the joint density, such as real Laplace transforms, are
discussed in Gagliardini and Gouriéroux (2002a).
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where fX , fY are the unconstrained densities of variables X, Y , and a is a one dimensional functional para-

meter which characterizes the copula. In this case, marginal features are separated from dependence features,

which are summarized by functional parameter a. In a time series framework, such an approach can be used

to study the risk dynamics. If (Xt) is a stationary homogeneous Markov process, the dynamics is fully char-

acterized by the joint bivariate distribution of Xt, Xt−1, whose marginal distributions are identical because

of stationarity. In this case the bivariate distribution f(xt, xt−1;A) is parameterized by two one-dimensional

functional parameters: A = (f, a), where f is the p.d.f. of the stationary distribution and a the functional

parameter which characterizes the copula of Xt, Xt−1, that is nonlinear serial dependence.

2.2 Examples

We consider below different constrained nonparametric families of bivariate densities, and discuss the para-

meterizations of the copula or of the conditional density.

i) Truncated model

Let us consider a latent variable X∗ with p.d.f. f∗, f∗ > 0, and assume that, for any value of Y = y, the

value of X is drawn in the conditional distribution of X∗ given X∗ < y. This situation occurs in truncation

models, where the truncation variable Y is independent of the latent variable X∗ of interest. The parameter

of interest is the latent p.d.f. f∗. The conditional p.d.f. of X given Y is:

f (x | y;A) =
f∗(x)∫ y

−∞ f∗(z)dz
Ix≤y,

where the functional parameter is A = f∗.

ii) Stochastic unit root

The stochastic unit root model has been introduced by Gouriéroux and Robert (2005) to study the links

between long memory, endogenous switching regimes and heavy tails, often encountered in financial time

series. The process is defined by:

Xt =





Xt−1 + εt , with prob. π (Xt−1),

εt , with prob. 1− π (Xt−1),

where the εt are i.i.d. errors independent from Xt−1, with density g, g > 0, and π is a function with values

in ]0, 1]. This is a Markov process with two stochastic regimes, corresponding to either a random walk, or
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a white noise2. Such a specification underlies the analysis of purchasing power parity (PPP), when it is

assumed that unit roots can exist within a band for the PPP equilibrium, whereas mean-reverting effects

exist outside the band (e.g., Bec et al., 2004; Rahbek and Shephard, 2002). Function π characterizes the

nonlinear serial dependence properties of Markov process (Xt). For instance, tail behaviour of π when y →∞
characterizes the durations spent by the process in the random walk regime. Under appropriate conditions

on functions π and g, process (Xt) is stationary (see Gouriéroux and Robert, 2005), and its conditional

density is given by:

f (x | y; A) = π(y)g (x− y) + [1− π(y)] g (x) .

The model is parameterized by A = (π, g)
′
.

iii) Dynamic models with proportional hazard

This specification concerns time series (Xt) of duration variables, where the lagged values are explanatory

variables with proportional hazard effect. Such models are used for analyzing liquidity risk from intertrade

duration data (see Gagliardini and Gouriéroux, 2002b). Since the proportional hazard condition is invariant

by increasing transformation, it only concerns the copula of the process, and any stationary distribution can

be imposed by an appropriate marginal transformation. The distribution of the Markov process (Ut) with

proportional hazard and uniform marginal distribution can be written as:

P [Ut ≥ u | Ut−1 = v] = exp [−a (v) H0(u)] ,

where a is a positive function on [0, 1], and H0 is a baseline cumulated hazard on [0, 1]. Functions a and H0

are restricted by the condition of uniform margins:

1− u = E [P [Ut ≥ u | Ut−1]] , ∀u ∈ [0, 1] ,

that is:

H−1
0 (z) = 1−

∫ 1

0

exp [−za(v)] dv, z ≥ 0. (1)

Thus the proportional hazard copula of (Ut, Ut−1) is characterized by the functional parameter a only and

it is given by:

c (u, v; a) = a(v)h0(u; a) exp [−a(v)H0(u; a)] ,

where H0(u; a) is defined by (1), and h0 = dH0/du. The distribution of the Markov process Xt = F−1(Ut)

2The specification is easily extended to a second regime which is a stationary autoregression.
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with proportional hazard and marginal c.d.f. F (resp. p.d.f. f) is characterized by two one-dimensional

functional parameters (f, a). In Gagliardini and Gouriéroux (2002b) it is shown that the strength of serial

dependence is related to the elasticity of function a, whereas the behaviour of the latter close to the boundary

points v = 0, v = 1 characterizes the tail dependence properties of the process. Note finally that two

functional parameters differing by a multiplicative constant, a and ka (say), define the same proportional

hazard copula, which creates an identifiability problem.

iv) Archimedean copula

The family is usually defined by (see Genest and Mc Kay, 1986):

C(u, v) = φ
[
φ−1(u) + φ−1(v)

]
, (2)

where the (strict) generator φ−1 is a convex, decreasing function defined on (0, 1], such that φ−1(1) = 0, and

φ−1(0) = +∞ 3. The most well-known Archimedean copulas are derived from factor models. Typically they

correspond to duration models, where the duration variables X and Y are independent identically distributed

conditional on an omitted factor Z, and the factor Z has identical proportional hazard effects on the duration

distributions (see e.g. Van der Berg, 2001). More precisely, up to some increasing transformations on X

and Y, we can assume that the variables X and Y are independent conditional on Z, with identical survivor

function P [X > x | Z] = exp (−Zx) , P [Y > y | Z] = exp (−Zy) 4. Then the joint survivor function is

P [X > x, Y > y] = E exp [−Z (x + y)] = φ (x + y), where φ(s) = E [exp (−sZ)]. A similar computation

provides the marginal survivor function P [X > x] = φ(x) and the Archimedean expression of the (survivor)

copula in equation (2) . In this case φ is the Laplace transform of the positive heterogeneity factor Z:

φ(s) = E [exp (−sZ)] , s ≥ 0. (3)

This specification is useful for analyzing credit risk and especially for modeling default correlation, with

heterogeneity Z being a latent economic factor with a common proportional hazard effect on the times to

default X, Y of two firms. The pattern of the nonlinear dependence between X and Y is characterized by

the Laplace transform φ of the omitted factor Z. Function φ is directly related to the age structure of default

correlation in the distribution of X and Y and, as a consequence, is linked to the term structure of spread

3The Archimedean copula admits a direct extension to multidimensional framework as φ
hPd

i=1 φ−1(ui)
i
. This is a typical

example of symmetric copula with large dimension depending on a single one-dimensional functional parameter. Clearly such
symmetric copulas, useful in default correlation analysis, do not belong to the class of index models.

4These models correspond to the so-called frailty models introduced in the multivariate failure time literature (see e.g. Oakes,
1989).
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of interest rates for any derivative written on the two firms 5. This provides a direct interpretation of φ in

terms of prices, and the flexibility of the model with respect to φ implies the flexibility of the associated

interest rate spread model.

When the generator φ is twice continuously differentiable, the copula p.d.f. is given by:

c(u, v) =
φ
′′ [

φ−1(u) + φ−1(v)
]

φ′ [φ−1(u)]φ′ [φ−1(v)]
,

and is parameterized by the generator φ (or by φ−1).

v) Markov process with finite dimensional canonical decomposition

Nonlinear canonical analysis provides a decomposition of a stationary Markov process Xt, t ∈ N, into or-

thogonal functional directions ϕj(Xt), ψj(Xt−1), j ∈ N varying, of decreasing serial dependence6. Functions

ϕj , ψj , j varying, are called canonical directions, and λj = corr [ϕj(Xt), ψj(Xt−1)], j varying, are the asso-

ciated canonical correlations. The canonical decomposition of Markov process (Xt) is characterized, up to

increasing transformations of the canonical directions, by the canonical decomposition of the copula.

A stationary Markov process with one dimensional canonical decomposition is obtained when λj = 0,

j ≥ 2, and λ1 = λ > 0 (see Gouriéroux and Jasiak, 2001). Its copula is given by:

c(u, v) = 1 + λϕ (u)ψ (v) ,

where the canonical directions ϕ and ψ satisfy the conditions:

∫ 1

0

ϕ (u) du =
∫ 1

0

ψ (v) dv = 0,
∫ 1

0

ϕ (u)2 du =
∫ 1

0

ψ (v)2 dv = 1,

and are such that the copula density is positive. Let us for simplicity consider the case of reversible Markov

processes, that is ϕ = ψ. Then the copula density can be parameterized by a =
√

λϕ, and we get:

c(u, v; a) = 1 + a(u)a(v),

where the functional parameter a satisfies the constraint:

∫ 1

0

a(v)dv = 0.

5See Gagliardini and Gouriéroux (2002a) and Gouriéroux and Monfort (2002b).
6See Lancaster (1968) and Dunford and Schwartz (1968) for the definition of canonical analysis and Gouriéroux and Jasiak

(2002) for an application to intertrade durations.
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The canonical correlation λ and the canonical direction ϕ are deduced from functional parameter a by the

equations:

λ =
∫ 1

0

a(v)2dv, ϕ(u) =
1√
λ

a(u).

3 The information operator

Let f (x, y;A) be a constrained nonparametric family of bivariate densities. The discussion of the non-

parametric estimation of function A follows the same lines as in the standard finite-dimensional parametric

framework, but the main ideas are generalized to take into account the functional nature of the parameter.

In particular, we introduce in Section 3.1 the derivative D log f (x, y; A) of the log-density with respect to A,

that is the functional score, and the information operator I, which is the functional counterpart of the usual

information matrix. In Section 3.2 we provide the expressions of the functional score and of the information

operator in some of the examples presented above.

3.1 Hadamard derivative and information operator

Let f (x, y; A) be a family of bivariate densities, where the functional parameter A belongs to an open set A of

Rq-valued functions defined on a subset of R. Set A is endowed with the L2 (λ)-norm ‖.‖L2(λ) corresponding

to the Lebesgue measure λ. Function A0 ∈ A denotes the true value of the functional parameter, and

f(., .) = f(., .;A0) the corresponding true p.d.f.

i) The differentiability assumption

Let us first define the derivative of the log-density with respect to A.

Assumption A.2 The Hadamard derivative of log f(x, y;A) with respect to A, denoted by D log f(x, y; A),

exists:

log f(x, y; A + h)− log f(x, y;A) = 〈D log f(x, y;A), h〉+ R(x, y; A, h),

for A,A + h ∈ A, where Dlogf(x, y;A) is a linear mapping from L2(λ) to R which associates to h ∈ L2(λ)

the quantity 〈D log f(x, y;A), h〉 ∈ R. The Hadamard derivative can be considered stochastic when x, y are

replaced by X,Y with distribution PA. Then Dlogf(X, Y ; A) is a linear operator from L2(λ) to L2 (PA)

which associates to h ∈ L2(λ) the random variable 〈D log f(X,Y ;A), h〉 ∈ L2 (PA). We also assume that:

i) operator D log f(X, Y ; A) : L2 (λ) → L2(PA) is bounded, for any A ∈ A,

10



ii) the stochastic residual term R(X, Y ; A, h) is such that ‖R(X, Y ;A, h)‖L2(PA) = o
(
‖h‖L2(λ)

)
, uniformly

on h in the class of compact sets, for any A ∈ A 7.

Under Assumption A.2 the information operator I can be defined by8 :

(g, Ih)L2(λ) :=
∫

g(v)
′
Ih(v)dv = E0 [〈D log f(X, Y ;A0), g〉 〈D log f(X, Y ;A0), h〉] , (4)

for g, h ∈ L2 (λ), where E0 [.] denotes expectation w.r.t. variables X,Y with distribution PA0 . The in-

formation operator I is the analogue of the information matrix defined for models with finite-dimensional

parameters. It is the covariance operator of the functional score D log f(X,Y ;A0). Indeed from the definition

of the adjoint operator D log f∗0 : L2 (PA0) → L2 (λ) of the functional score D log f0 := D log f(X,Y ;A0),

we get:

E0 [〈D log f(X, Y ; A0), g〉 〈D log f(X, Y ; A0), h〉] = (〈D log f0, g〉 , 〈D log f0, h〉)L2(PA0)

= (g,D log f∗0 D log f0 h)L2(λ) .

We deduce that the information operator I can be written as I = (D log f0)
∗
D log f0. Thus the information

operator I is a bounded, nonnegative, self-adjoint operator from L2 (λ) into itself.

Similarly, a conditional information operator IX|Y and a copula information operator Ic can be defined

from the differential of the conditional distribution D log f(X|Y ; A0) and the differential of the copula density

D log c(U, V ; A0), respectively.

ii) Decomposition of the information operator

The differential and information operators admit simplified expressions in most of the applications. A

particular decomposition of the information operator is generally encountered in examples (see Section 3.2

below). Specifically, we consider the following assumption:

Assumption A.3: The information operator I admits the decomposition:

(g, Ih)L2(λ) =
∫

g (w)
′
α0(w;A0)h(w)dw +

∫ ∫
g (w)

′
α1(w, v; A0)h(v)dvdw,

where α0 and α1 are matrix-valued functions, such that α0(w;A0) = α0(w;A0)′, α1(v, w; A0) = α1(w, v; A0)
′
,

∀v, w.
7Precisely: ∀A ∈ A, K ⊂ A compact: ‖R(X, Y ; A, h)‖L2(PA) / ‖h‖L2(λ) → 0, uniformly in h ∈ K (see Aı̈t-Sahalia, 1993;

Van der Vaart and Wellner, 1996).
8See e.g. Koshevnik and Levit (1976); Begun et al. (1983); Bickel et al. (1993); Gill and Van der Vaart (1993); Holly (1995).
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Under Assumption A.3 the information operator I is given by:

Ih (w) = α0(w; A0)h(w) +
∫

α1(w, v; A0)h(v)dv,

and is decomposed into a singular and an integral component, corresponding to functions α0 and α1, respec-

tively. Such operators are at the core of the classical Fredholm theory of linear integral equations (see e.g.

Yosida, 1995, Chapter 10; Rudin, 1973, Theorem 4.25 and Exercise 15 in Chapter 4). Assumption A.3 is

needed to derive several asymptotic results about the minimum chi-square estimator defined in Section 4, in

particular its one-dimensional nonparametric rate of convergence. Moreover under Assumption A.3 it is easy

to derive sufficient conditions9 for a bounded functional score (Assumption A.2) and for the invertibility of

the information operator (Assumption A.4 and discussion below).

To illustrate the decomposition in Assumption A.3, let us consider the functional score:

〈D log f(x, y; A), h〉 = γ0(x, y;A)
′
h(x) + γ1(x, y; A)

′
h(y) +

∫
γ2(x, y, w;A)

′
h(w)dw, (5)

where γ0, γ1, γ2 are Rq-valued functions10. In other words the joint density f(x, y;A) depends on function

A by means of values A(x), A(y) at points x, y and of integrals of function A. The information operator I

satisfies Assumption A.3 with component α0 given by:

α0(w; A) =
∫

γ0(w, y; A)γ0(w, y;A)
′
f(w, y)dy +

∫
γ1(x,w; A)γ1(x,w;A)

′
f(x,w)dx, (6)

and component α1 involving functions γ0, γ1, γ2. Thus the component α0 of the information operator is

obtained from the differentiation of the part of the joint density f(x, y;A) which depends on the value of

parameter A at some point. It is called local component. The components of the density which depend on

integrals of A contribute only to term α1.

Assumption A.2 on the Hadamard derivative D log f(X, Y ; A) and Assumption A.3 on the information

operator I introduce constraints on the parameterization of the model. Indeed the family f (x, y; A) can

be parameterized in different ways. For instance, if A is differentiable, we can replace the initial functional

parameter A by its derivative dA/dw, which provides the same information (up to a scalar parameter).

However it is well-known that nonparametric estimators of A and dA/dw can have very different rates of

convergence (see e.g. Silverman, 1978; Stone, 1983). The conditions of Assumptions A.2 - A.3 restrict the

admissible choice of parameter A to ensure a one-dimensional nonparametric rate of convergence of the
9Available on the website.

10In this case it is seen that operator Dlogf(X, Y ; A) can be represented by a stochastic measure with a continuous and a
degenerate component.
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appropriate estimators.

iii) Invertibility of the information operator

In the rest of the paper we assume the following invertibility condition.

Assumption A.4: The information operator I is invertible, with a continuous inverse I−1.

This assumption is the analogue of the usual invertibility condition of the information matrix, and is used

to identify locally the functional parameter of interest [see Appendix 2.3, Lemma A.2 iv), for a detailed

discussion of local identification]. Under Assumption A.3 and weak additional regularity conditions11, the

invertibility of I is implied by the following condition:

Sufficient invertibility condition: the differential operator has a zero null space:

〈D log f(X, Y ; A0), h〉 = 0 PA0 -a.s., h ∈ L2 (λ) =⇒ h = 0.

This sufficient condition is easily checked in the examples.

3.2 Examples

The differential of the copula or of the conditional density, and the corresponding information operators

are derived below for some constrained nonparametric families considered in Section 2.2 (see Appendix 1

for the derivations). For each example we select an appropriate functional parameter, in order to satisfy

Assumptions A.2 and A.3. As seen from the case of Archimedean copula, the parameter choice is the difficult

step when studying nonlinear dependence.

i) Truncated model

For the functional parameter A = log f∗, the differential of log f (x | y; A), for x ≤ y, is given by:

〈D log f (x | y;A) , h〉 = h(x)−
∫

f (z | y;A) h(z)dz = h(x)− EA [h(X) | Y = y] .

Let us now consider the conditional information operator IX|Y . By definition we have:

(
g, IX|Y h

)
L2(λ)

= E0 {(g(X)− E0 [g(X) | Y ]) (h(X)− E0 [h(X) | Y ])}

= E0Cov0 (g(X), h (X) | Y ) .
11Available on the website.
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It satisfies Assumption A.3 with:

α0 (x; A) = fX(x;A), α1(x, y;A) = −
∫

f (x | z;A) f (y | z;A) fY (z; A)dz.

ii) Dynamic model with proportional hazard

The differential of the copula density is given by (see Gagliardini and Gouriéroux, 2002b):

〈D log c (Ut, Ut−1; a) , h〉 = (1− at−1H0t) (ht−1/at−1 − E [ht−1/at−1 | Ut])

−E {(1− at−1H0t) (ht−1/at−1 − E [ht−1/at−1 | Ut]) | Ut}

= γ0(Ut, Ut−1)h (Ut−1) +
∫

γ1 (Ut, Ut−1, w)h(w)dw,

where ht−1 = h(Ut−1), at−1 = a(Ut−1), H0t = H0(Ut, a),

γ0 (u, v; a) =
1− a(v)H0(u; a)

a(v)
,

and γ1 is given in Gagliardini and Gouriéroux (2002b). The copula information operator Ic satisfies As-

sumption A.3 with local component:

α0(w; a) =
1

a(w)2
.

iii) Archimedean copula

Let us consider the Archimedean family of copula. The generator φ (or φ−1) is a natural functional parameter

for this family, but this parameter does not satisfy the differentiability condition given in Assumption A.2.

The Lemma below12 introduces an equivalent functional parameter in a one-to-one relationship with φ. Let

us consider the transformed variables:

W = C(U, V ), Z = V ,

where U, V have joint c.d.f. C given in (2).

Lemma 1 The joint p.d.f. of W and Z is given by:

f(w, z) =
f∗(w)∫ z

0
f∗(v)dv

1w≤z, w, z ∈ (0, 1) ,

12The proof is available on the website.
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where the latent measure density f∗ is:

f∗(w) = −φ
′′ [

φ−1 (w)
]

φ′ [φ−1 (w)]
, w ∈ (0, 1) . (7)

Moreover there is a one-to-one relationship between the c.d.f. F ∗ and the generator φ−1 since:

F ∗ (w) = −φ
′ [

φ−1 (w)
] ⇐⇒ φ−1 (y) =

∫ 1

y

1
F ∗ (w)

dw,

(for F ∗ satisfying the condition
∫ 1

0
1/F ∗(w)dw = ∞).

The generator φ−1 and the measure density f∗ are identifiable up to a multiplicative constant. This

identification problem can be solved by imposing that f∗ is a p.d.f. Then variables W and Z follow a

truncation model [see example i)], with latent density f∗ and Z ∼ U(0, 1).

Now let us parameterize the copula density by means of function a = f∗. The expression of the copula

density given in Section 2.2 iv) becomes:

c(u, v; a) = a [C(u, v; a)]
F ∗ [C(u, v; a); a]
F ∗ (u; a)F ∗ (v; a)

,

where functional parameter a is a positive function defined on [0, 1] and such that:

∫ 1

0

a(v)dv = 1.

The differential is:

〈D log c(u, v; a), h〉 =
h [C(u, v; a)]
a [C(u, v; a)]

+
∫ 1

0

γ (u, v, w; a)h(w)dw,

where the expression of function γ is given in Appendix 1.1. The information operator satisfies Assumption

A.3, with local component given by:

α0(w, a) =
fW (w; a)

a(w)2
=

φ−1(w; a)
a(w)

,

where fW (.; a) is the p.d.f. of variable W , and α1 is given by:

α1(x, y; a) = Ea {γ̃ (W,Z, y) | W = x}φ−1(x; a) + Ea {γ̃ (W,Z, x) | W = y}φ−1(y; a)

+Ea {γ̃ (W,Z, x) γ̃ (W,Z, y)} ,
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where function γ̃ is such that γ̃ (C(u, v), v, y) = γ(u, v, y) 13.

4 Minimum chi-square estimator

The aim of this section is to introduce a class of constrained nonparametric estimators with nice theoreti-

cal properties. We define the minimum chi-square estimators and study their consistency and asymptotic

distribution. We first consider the i.i.d. framework, where observations (Xt, Yt), t varying, correspond to

either a cross-section or a i.i.d. time series and the focus is on the contemporaneous dependence between

Xt and Yt. Then the results are derived in the time series setting, where the focus is on serial dependence.

The regularity assumptions and the proofs are gathered in Appendix 2.

4.1 Definition of the estimator

Let us consider the i.i.d. framework:

Assumption A.5.IID: The variables (Xt, Yt), t varying, are i.i.d., with distribution f (x, y;A). The support

of the p.d.f. is [0, 1]2.

It is always possible to transform variables (X∗
t , Y ∗

t ) with values in R into variables with values in [0, 1] by

applying the logit transformation. Therefore the assumption of compact support [0, 1]2 is not restrictive.

Let us introduce a kernel estimator of the unconstrained bivariate density function (Rosenblatt, 1956;

Parzen, 1962):

f̂T (x, y) =
1

Th2
T

T∑
t=1

K

(
x−Xt

hT

)
K

(
y − Yt

hT

)
, (8)

where K is a kernel and hT is a bandwidth14. Under standard regularity conditions (included in the set

of assumptions in Appendix 2.1), the kernel density estimator is a consistent estimator of its mean and is

asymptotically normal:

√
Th2

T

[
f̂T (x, y)− Ef̂T (x, y)

]
d−→ N

(
0, σ2 (x, y; A0)

)
, (9)

where σ2 (x, y;A0) = f(x, y; A0)
(∫

K2(w)dw
)2. Moreover, we also get the consistency and asymptotic

normality of integrals of f , that can be conditional and cross-moments, at rates depending on the number
13Another copula which defines a constrained nonparametric family is the extreme value copula (see e.g. Joe, 1997). The

choice of the functional parameter and the corresponding differential and information operators are available on the website.
14The results can be easily generalized to the case where different bandwidths hT and h

′
T are introduced for processes Xt

and Yt, respectively.
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of integrations (see Theorem 3 in Aı̈t-Sahalia, 1993):

√
ThT

[∫
g(x)f̂T (x, y)dx− E

∫
g(x)f̂T (x, y)dx

]
d−→ N

(
0, σ2 (y, g;A0)

)
, (10)

where σ2 (y, g;A0) = E0

[
g(Xt)2 | Yt = y

]
fY (y)

∫
K2(w)dw, and:

√
T

[∫ ∫
g(x, y)f̂T (x, y)dxdy − E

∫ ∫
g(x, y)f̂T (x, y)dxdy

]
d−→ N

(
0, σ2 (g;A0)

)
, (11)

where σ2 (g; A0) = V0 [g (Xt, Yt)] 15.

The unconstrained estimator of the bivariate density can be used to derive a minimum chi-square esti-

mator of parameter A:

ÂT = arg min
A∈Θ

QT (A) =
∫ 1

0

∫ 1

0

[
f̂T (x, y)− f(x, y;A)

]2

f̂T (x, y)
ωT (x, y)dxdy, (12)

where Θ is a subset of A, ωT is a smooth weighting function, converging pointwise to the constant function

1, when T tends to infinity. The constrained estimator of the bivariate density is deduced by:

f̂0
T (x, y) = f(x, y; ÂT ). (13)

The estimators ÂT and f̂0
T exist and are well defined (see Appendix 2.2).

The aim of this section is not to discuss the practical implementation of a nonparametric minimum

chi-square estimator, but to prove the existence of nonparametrically efficient estimators. Nevertheless

two approaches can be followed in practice to solve the optimization problem with respect to functional

parameter.

i) The optimization can be performed over a finite dimensional sub-space of functions A by standard

optimization software. When the dimension of the space tends to infinity sufficiently fast with T, the

asymptotic properties of the estimator will stay the same.

ii) Alternatively the derivatives of the chi-square criterion are related to the information operator, and

explicit expressions of the derivative are available for some examples. Then we can compute recursively the

functional solution by a Newton-Raphson type algorithm, or apply a single step of the algorithm from a

consistent, but inefficient functional estimator.

Finally, in some examples, such as the stochastic unit root model, the chi-square criterion can be con-
15The asymptotic bias in these nonparametric estimators will be carefully taken into account in Section 4.4 and in Appendix

2.
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centrated with respect to some functional parameters, which diminishes the dimension of the optimization

problem.

4.2 Consistency of the estimators

To prove the consistency of the minimum chi-square estimator ÂT , it is shown in Appendix 2.3 that the

optimization criterion QT converges to the chi-square proximity measure Q, defined by:

Q(A) =
∫ 1

0

∫ 1

0

[f(x, y)− f(x, y; A)]2

f(x, y)
dxdy,

uniformly in A ∈ Θ, and that Q is continuous.

Proposition 2 : Under the regularity assumptions of Appendix 2 including the bandwidth condition

hT = cT T−α, limT→∞cT = c > 0, with 0 < α < 1/d, where d is the dimension of the observable variables

(that is d = 2 in the present framework), the chi-square estimator ÂT is consistent in norm:

∥∥∥ÂT −A0

∥∥∥
L2(λ)

p−→ 0.

Proof. See Appendix 2.3.

Let us now consider the constrained density estimator f̂0
T , and its consistency in L1-norm, where Lp is the

space of p-integrable functions on [0, 1]2. The convergence of ÂT to A0 and the continuity of the chi-square

measure Q imply the convergence of Q(ÂT ) to Q (A0) = 0. By using the Cauchy-Schwarz inequality:

∥∥∥f(., .; ÂT )− f(., .)
∥∥∥

L1
≤

∥∥∥∥∥
f(., .; ÂT )− f(., .)√

f(., .)

∥∥∥∥∥
L2

∥∥∥
√

f(., .)
∥∥∥

L2
= Q(ÂT )1/2,

we deduce the following proposition.

Proposition 3 : Under the assumptions of Proposition 2, the constrained density estimator f̂0
T is consistent

in L1 norm:
∥∥∥f̂0

T − f
∥∥∥

L1

p→ 0.

4.3 Asymptotic expansion of the minimum chi-square estimator

Let us now consider the asymptotic expansion of the minimum chi-square estimator which relates the dif-

ference between the estimator and the true value with the efficient functional score. The expansion and the

asymptotic normality require a stronger condition on the bandwidth.
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Proposition 4 : Assume the regularity conditions of Appendix 2 and let bandwidth hT be such that:

hT = cT T−α, limT→∞cT = c > 0, with
1

4m

(
1 +

2m− 1
4m2 + 2m + 1

)
< α <

1
2d

(
1− 1

2
2m− 1

4m2 + 2m + 1

)
,

(14)

where m is the degree of differentiability of the density f and d the dimension of the observed variables. Then

minimum chi-square estimator ÂT is such that:

I
(
ÂT −A0

)
= ψT + rT , (15)

where ψT ∈ L2 (λ) is defined by:

(ψT , h)L2(λ) =
∫ ∫

δf̂T (x, y)ωT (x, y) 〈D log f(x, y; A0), h〉 dxdy, h ∈ L2 (λ) ,

δf̂T = f̂T − f , and rT is a residual term which can be neglected asymptotically, both in norm and pointwise:

i) ‖rT ‖L2(λ) = op(1/
√

T ) and

ii) rT (w) = op(1/
√

ThT ) λ-a.s. in w ∈ (0, 1) .

Proof. See Appendix 2.4 i)-iv).

In the bivariate case d = 2, the bandwidth condition can be satisfied whenever the density is twice

differentiable (m ≥ 2). The expansion of Proposition 4 is the analogue of the usual asymptotic expansion of

the maximum likelihood estimator in a parametric model with likelihood function LT (θ):

I
(
θ̂T − θ0

)
' ∂LT

∂θ
(θ0) .

Moreover in this parametric framework it is known that the ML estimator is asymptotically equivalent to a

GMM estimator based on the moment restrictions Eθ0

[
∂LT

∂θ (θ)
]

= 0, which justifies the terminology efficient

score for ∂LT

∂θ (θ). Since:

ψT '
∫ ∫

f̂T (x, y) D log f(x, y;A0)dxdy ' 1
T

T∑
t=1

D log f(Xt, Yt;A0),

function ψT has the interpretation of the efficient score16.
16Note that

R R
f(x, y)D log f(x, y; A0)dxdy = 0, which follows from the unit mass restriction:

R R
f(x, y; A)dxdy = 1, for

any A ∈ A.
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When the differential operator admits the decomposition (5) into a singular and an integral component,

the efficient score ψT is given by:

ψT (w) =
∫

δf̂T (w, y)ωT (w, y)γ0 (w, y) dy +
∫

δf̂T (x,w)ωT (x,w)γ1(x,w)dx

+
∫ ∫

δf̂T (x, y)ωT (x, y)γ2(x, y, w)dxdy. (16)

Moreover when the information operator satisfies Assumption A.3, the first order condition is equivalent to:

α0(w)δÂT (w) +
∫

α1(w, v)δÂT (v)dv ' ψT (w), (17)

where δÂT = ÂT −A0.

The proposition below gives the norm and pointwise asymptotic expansion of the minimum chi-square

estimator [see Appendix 2.4 v)].

Corollary 5 Under the Assumptions of Proposition 4, the minimum chi-square estimator is such that:

i) ÂT −A0 = I−1ψT + r̃T , where ‖r̃T ‖L2(λ) = op(1/
√

T );

ii) ÂT (w)−A0(w) = α0(w)−1 (ψT (w)− EψT (w)) + I−1EψT (w) + op(1/
√

ThT ), λ-a.s. in w ∈ (0, 1) .

In particular a bias term appears in the asymptotic expansion of the minimum chi-square estimator ÂT ; it

is induced by the expectation of the efficient score EψT , which vanishes only asymptotically.

Finally the expansion of the constrained estimator of the density is deduced by a δ-method (see website).

Proposition 6 : Under the Assumptions of Proposition 4, the constrained density estimator is such that:

f̂0
T (x, y)− f(x, y) =

〈
Df(x, y; A0), δÂT

〉
+ op(1/

√
ThT ), λ2-a.s. in (x, y) .

4.4 Asymptotic distribution of the minimum chi-square estimator

The asymptotic distribution of the minimum chi-square estimator ÂT is derived from the asymptotic ex-

pansion given in Corollary 5. We distinguish the pointwise estimation of A, that is estimation of A(w) for

any w, and the estimation of linear forms17 of A, such as
∫ 1

0
g(w)

′
A(w)dw, for which different orders are

expected 1/
√

ThT and 1/
√

T , respectively.

17In the mathematical literature,
R 1
0 g(w)

′
A(w)dw is usually called a functional of A. However, we prefer the name linear

form in order to avoid confusion with the word functional used to characterize parameter A. Moreover,
R 1
0 g(w)

′
A(w)dw is the

counterpart in our setting of the linear forms of a finite-dimensional parameter usually considered in econometrics.
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i) Pointwise estimation

Let us assume that the differential operator admits the decomposition (5) into singular and integral compo-

nents. We deduce from (16), (10), and (11) that
√

ThT (ψT − EψT ) (w) is pointwise asymptotically normal

(see Appendix 2.5).

Lemma 7 : Under the regularity assumptions in Appendix 2 and when the differential admits the decompo-

sition (5):
√

ThT (ψT − EψT ) (w) d−→ N

[
0,

(∫
K2(x)dx

)
α0(w)

]
, λ-a.s. in w.

The pointwise asymptotic distribution of ÂT follows from Corollary 5 ii).

Proposition 8 : Under the Assumptions of Proposition 4 the estimator ÂT is λ-a.s. pointwise asymptoti-

cally normal:

√
ThT

(
ÂT (w)−A0(w)− I−1EψT (w)

)
d−→ N

(
0,

(∫
K2(x)dx

)
α0 (w)−1

)
,

λ-a.s. in w ∈ (0, 1).

Let us briefly discuss the expressions of the asymptotic variance and of the asymptotic bias. The asymp-

totic variance is given by the inverse of the local component of the information operator α0 (w)−1 (up to a

multiplicative constant). To provide insight into this result we remark that, since linear forms of A converge

at a parametric rate 1/
√

T [see subsection ii) below], for the computation of the asymptotic variance of the

pointwise estimator we can neglect any dependence of the density f(x, y; A) on linear forms of A. Then the

relevant component of the information operator is the local component α0, as illustrated in Section 3.1 ii),

and the asymptotic variance of the estimator is essentially its inverse. The asymptotic bias is such that (see

website):

I−1EψT (w) =
hm

T

m!

(∫
K(u)umdu

)
I−1b(w) + o (hm

T ) , (18)

where function b ∈ L2 (λ) is given by:

b(w) =
∫

∆mf(w, y)γ0 (w, y) dy +
∫

∆mf(x,w)γ1(x,w)dx +
∫ ∫

∆mf(x, y)γ2 (x, y, w) dxdy,

with ∆mf = ∂mf/∂xm + ∂mf/∂ym. In particular, the asymptotic variance and the asymptotic bias have

the standard orders for one-dimensional nonparametric estimation, that is 1/ThT and hm
T , respectively. By

choosing the bandwidth hT such that:

hT = O
(
T−

1
2m+1

)
, (19)
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the minimum chi-square estimator admits the optimal one-dimensional rate of convergence T−
m

2m+1 (Stone,

1983). Under bandwidth condition (14) the optimal choice (19) is admissible whenever 1
2m+1 < 1

2d

(
1− 1

2
2m−1

4m2+2m+1

)
.

For instance, m ≥ 2 is sufficient in the bivariate case d = 2. Finally, the minimum chi-square estimator is

pointwise asymptotically unbiased if
√

ThT hm
T = o(1), that is if hT = o

(
T−

1
2m+1

)
.

From Proposition 6 we deduce the asymptotic distribution of the constrained density estimator.

Corollary 9 : Under the Assumptions of Proposition 6, the constrained density estimator
√

ThT

(
f̂0

T (x, y)− f(x, y)− 〈
D log f(x, y; A0), I−1EψT

〉)
is asymptotically normal, with asymptotic vari-

ance: (∫
K2(x)dx

)
f (x, y)2

[
γ0 (x, y)′ α0 (x)−1

γ0 (x, y) + γ1 (x, y)′ α0 (y)−1
γ1 (x, y)

]
.

Moreover the asymptotic bias is such that:

〈
D log f(x, y; A0), I−1EψT

〉
=

hm
T

m!

(∫
K(u)umdu

) 〈
D log f(x, y; A0), I−1b

〉
+ o (hm

T ) .

In particular the constrained estimator has a one-dimensional nonparametric convergence rate, and, if

hT = o
(
T−

1
2(m+1)

)
:

√
Th2

T

[
f̂T (x, y)− f̂0

T (x, y)
]
'

√
Th2

T

[
f̂T (x, y)− f(x, y)

]
d−→ N

[
0, f(x, y)

(∫
K2(w)dw

)2
]

.

The discrepancy
√

Th2
T

[
f̂T (x, y)− f̂0

T (x, y)
]
, x, y varying, between the unconstrained and the constrained

estimators can be used as a basis for a (pointwise) misspecification test.

ii) Estimation of linear forms

Let us now consider the estimation of a linear form G =
∫

g(v)
′
A0(v)dv, with g ∈ L2 (λ). We deduce from

Corollary 5 i):

√
T

(
ĜT −G

)
=
√

T
(
g, δÂT

)
L2(λ)

'
√

T
(
g, I−1ψT

)
L2(λ)

=
√

T
(
I−1g, ψT

)
L2(λ)

,

since I−1 is self-adjoint on L2 (λ). The following Lemma provides the asymptotic distribution of
√

T (g, ψT − EψT )L2(λ), for g ∈ L2 (λ).

Lemma 10 Under the regularity Assumptions in Appendix 2:

√
T (g, ψT − EψT )L2(λ)

d−→ N
[
0, (g, Ig)L2(λ)

]
, for g ∈ L2 (λ) .
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Proof. We have:

√
T (g, ψT − EψT )L2(λ) =

√
T

∫ ∫ (
f̂T (x, y)− Ef̂T (x, y)

)
ωT (x, y) 〈D log f(x, y;A0), g〉 dxdy

'
√

T

∫ ∫ (
f̂T (x, y)− Ef̂T (x, y)

)
〈D log f(x, y;A0), g〉 dxdy.

By using (11) in Section 4.1, the latter expression is asymptotically normal. Its variance is given by:

σ2 (g) = V0 [〈D log f(Xt, Yt; A), g〉] = E0

[
〈D log f(Xt, Yt;A), g〉2

]
= (g, Ig)L2(λ) .

The asymptotic distribution of a linear form follows.

Proposition 11 Under the Assumptions in Proposition 4, the estimator ĜT =
∫

g(v)
′
ÂT (v)dv of a linear

form of A is asymptotically normal, with parametric rate of convergence:

√
T

(
ĜT −G− (

g, I−1EψT

)
L2(λ)

)
d→ N

(
0,

(
g, I−1g

)
L2(λ)

)
, for g ∈ L2 (λ) .

From (18) the bias term is such that:

(
g, I−1EψT

)
L2(λ)

=
hm

T

m!

(∫
K(u)umdu

) (
g, I−1b

)
L2(λ)

+ o (hm
T ) ,

and is negligible whenever hT = o
(
T−

1
2m

)
.

4.5 Time series framework

The previous results are easily extended to the time series framework by introducing some mixing condition

and considering the transition density, which includes all the relevant information for a Markov process.

Assumption A.5.TS: Process Xt, t varying, is a strictly stationary, homogeneous Markov process, with

transition density f (xt | xt−1; A), and β-mixing coefficients such that: βk = O
(
ρk

)
, ρ < 1. The support of

the stationary p.d.f. is [0, 1].

Moreover the minimum chi-square estimator is now defined by minimizing a chi-square divergence between

the conditional distribution in the family and its unconstrained kernel estimator:

ÂT = arg min
A∈Θ

QT (A) =
∫ 1

0

∫ 1

0

[
f̂T (x|y)− f(x|y;A)

]2

f̂T (x|y)
ωT (x, y)f̂Y,T (y)dxdy. (20)
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We also need some regularity assumptions, valid for the time series framework. They are deduced from

the set in Appendix 2.1 by considering the conditional distribution f(x|y; A), instead of the joint one, the

conditional differential operator D log f(X|Y ; A) and the conditional information operator IX|Y . They are

referred to as Assumptions TS in Appendix 2.1.

The derivation of the asymptotic properties of the minimum chi-square estimator in the time series

framework is completely analogous to Section 4.2-4.4 18.

Proposition 12 : Under regularity Assumptions TS in Appendix 2 the minimum chi-square estimator ÂT

is consistent.

The asymptotic expansion of the chi-square estimator in the time series framework is given by:

IX|Y
(
ÂT −A0

)
' ψ̃T ,

where function ψ̃T ∈ L2 (λ) is defined by:

(
ψ̃T , h

)
L2(λ)

= E0

[
δf̂T (X | Y )
f (X | Y )

ωT (X, Y ) 〈D log f(X | Y ; A0), h〉
]

, h ∈ L2 (λ) ,

and the omitted residual term is asymptotically negligible both pointwise and in norm. In particular, when

the conditional information operator IX|Y admits a representation as in Assumption A.3 with α̃0, α̃1, say,

the asymptotic expansion becomes:

α̃0(w)δÂT (w) +
∫

α̃1 (w, v) δÂT (v)dv ' ψ̃T (w).

The asymptotic distribution of ÂT is immediately deduced from that of ψ̃T :

√
ThT

(
ψ̃T (w)− Eψ̃T (w)

)
d−→ N

[
0,

(∫
K2(x)dx

)
α̃0(w)

]
, λ-a.s. in w,

√
T

(
g, ψ̃T − Eψ̃T

)
L2(λ)

d−→ N
[
0,

(
g, IX|Y g

)
L2(λ)

]
, for g in L2 (λ) .

Note that the asymptotic variance
(
g, IX|Y g

)
L2(λ)

= V0 [〈D log f(Xt | Xt−1;A0), g〉] includes no cross-term,

since 〈D log f(Xt | Xt−1;A0), g〉 is a martingale difference sequence.

We deduce:
18It will not be repeated in the Appendix and is available upon request.
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Proposition 13 : Under regularity Assumptions TS in Appendix 2 we have:

√
ThT

(
ÂT (v)−A0(v)− I−1

X|Y Eψ̃T (v)
)

d−→ N

(
0,

(∫
K2(x)dx

)
α̃0 (v)−1

)
, λ-a.s in v,

and:
√

T
(
g, ÂT −A0 − I−1

X|Y Eψ̃T

)
L2(λ)

d−→ N

[
0,

(
g, I−1

X|Y g
)

L2(λ)

]
, for g in L2 (λ) .

5 Nonparametric efficiency for linear forms

The aim of this section is to show that a minimum chi-square estimator is nonparametrically efficient for

linear forms19. We first review the approach to derive the nonparametric efficiency bound.

5.1 Nonparametric efficiency bound for linear forms

The nonparametric ”efficiency bound” for function A is defined from the parametric efficiency bound. The

idea is to consider linear forms of A, such as
∫

A(v)
′
g(v)dv, for g ∈ L2(λ), which is a scalar parameter that

can be consistently estimated at rate 1/
√

T , and to construct the semi-parametric bound BA(g), say, for

this scalar parameter. A consistent estimator ÂT is said to be nonparametrically efficient for linear forms

if the asymptotic variance of
∫

ÂT (v)
′
g(v)dv is BA(g), for any g ∈ L2(λ), that is if ÂT provides efficient

estimators for all linear forms. This concept of nonparametric efficiency differs from minimax efficiency,

for which the estimator is nonparametrically efficient when its Mean Squared Error is pointwise minimal

in a suitable class of estimators (see e.g. Donoho and Liu, 1991; Fan, 1993, and references therein). The

choice between these different definitions of efficiency is not clear in practice, especially since the estimated

functional parameter ÂT can be used for several purposes. As an illustration we can consider the canonical

decomposition described in Section 2.2 v). We are interested in both canonical correlation (which is a scalar

function of A) and canonical directions (which are related to pointwise estimation of A). In such a case it

seems natural to impose at any ”efficient” pointwise estimator to be at least efficient for linear forms.

The semi-parametric bound BA(g) can be derived using Stein’s heuristic (see Stein, 1956; Severini and

Tripathi, 2001). The approach consists in two steps:

i) First introduce a one dimensional parametric model A (.; θ), and derive the Cramer-Rao lower bound

BA(g, θ) for
∫ 1

0
A(v; θ)

′
g(v)dv in this model.

19For expository purpose we will consider linear forms of A. The results extend immediately to nonlinear functions of A
whose derivative is bounded in L2 (λ) .
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ii) Then the nonparametric efficiency bound is defined by:

BA(g) = max BA(g, θ), g varying,

where the maximization is performed on all possible parametric specifications A(., θ).

Since a parameter is defined up to an invertible transformation, for any parametric specification we can

select the parameter θ such that: ∫
A(v; θ)

′
g(v)dv = θ.

In a neighbourhood of θ0, this condition is equivalent to:

∫
g(v)

′ ∂A

∂θ
(v; θ0) dv = 1.

Then we compute:

BA(g) = max BA(g, θ), (21)

s.t. :
∫

g(v)
′ ∂A

∂θ
(v; θ0) dv = 1,

where the maximization is performed over all parameterizations A (., θ). The nonparametric efficiency bound

is the mapping g → BA(g).

Proposition 14 : i) In the i.i.d. framework the nonparametric efficiency bound is given by:

BA(g) = (g, I−1g)L2(λ).

ii) In the time series framework the nonparametric efficiency bound is given by:

BA(g) = (g, I−1
X|Y g)L2(λ).

Proof. See Appendix 3.

5.2 Nonparametric efficiency of the minimum chi-square estimator

From Propositions 11 and 13, if the bandwidth hT is such that hT = o
(
T−

1
2m

)
, we immediately deduce

that the estimator ĜT =
∫

g(v)
′
ÂT (v)dv is asymptotically unbiased and reaches the nonparametric efficiency

bound for linear forms.
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Corollary 15 : The minimum chi-square estimator ÂT is nonparametrically efficient for linear forms.

The efficiency property of the minimum chi-square estimator is important in practice. Indeed a number of

inefficient nonparametric estimation methods have been introduced for some specific copulas (see e.g. Genest

and Rivest, 1993, for Archimedean copulas, Abdous et al., 2000, and references therein for extreme value

copulas). Similarly the usual estimator of the transformation in transformed regression model, based on the

ratio of partial derivatives of the conditional distribution due to the nonparametric identification constraint

suggested by Ridder (Ridder, 1990), is consistent, asymptotically normal (Horowitz, 1996; Gorgens and

Horowitz, 1999), but in general inefficient. However these inefficient nonparametric estimators can be used

as a first step of a Newton-Raphson type algorithm to compute the efficient chi-square estimator.

6 Constrained estimation. Identifying restrictions

Up to now we have assumed that the functional parameter A is free to vary over an open sphere in L2 (λ).

However this condition is not met in some examples described in Section 2.2. We consider therefore in this

section the case of a constrained functional parameter. From the examples, two sources of constraints can be

distinguished. First, when one component of A is a marginal distribution, fY say, this component satisfies

the unit mass restriction
∫

fY (y)dy = 1. Second, some parameters may be not identified unless additional

restrictions are imposed. This is the case for the copula parameter a in the proportional hazard and in

Archimedean copulas [examples iii) and iv)], since a and ka, where k is a positive constant, define the same

copula. A possible identifying restriction is:
∫

a(v)dv = 1.

6.1 Restricted information operator

Let us assume that functional parameter A satisfies n linear constraints:

∫
A(v)

′
gi(v)dv = (A, gi)L2(λ) = ki, i = 1, ..., n,

where gi ∈ L2(λ), ki ∈ R, i = 1, ..., n. Let us denote by Ã ⊂ A the subset of functional parameters satisfying

these restrictions. The tangent space H of Ã at A0 ∈ Ã does not depend on A0, has a finite codimension,

and it is given by:

H = {h ∈ L2 (λ) : (h, gi)L2(λ) = 0, i = 1, ..., n}.

The differential operator D log f (X, Y ;A0) can be restricted to the linear space H ⊂ L2 (λ), and under

Assumption A.2 it follows that D log f (X, Y ; A0) : H → L2 (PA0) is a bounded operator. The information
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operator IH is the bounded linear operator from H in itself defined by:

(g, IHh)L2(λ) = E0 [〈D log f (X,Y ;A0) , g〉 〈D log f (X,Y ;A0) , h〉] , h, g ∈ H.

Under Assumption A.3 the restricted information operator IH admits a decomposition into singular and

integral components:

IHh (w) = α0,H(w)h(w) +
∫

α1,H(w, v)h(v)dv, h ∈ H, (22)

with α0,H = α0. Under this decomposition it is possible to derive sufficient conditions for the boundedness

and invertibility of IH , see website. In particular, under weak regularity assumptions, a sufficient condition

for the invertibility of operator IH is:

the differential operator has a zero null space on H:

〈D log f (X, Y ;A0) , h〉 = 0 PA0-a.s., h ∈ H =⇒ h = 0. (23)

To illustrate these results, let us consider the example of the proportional hazard copula [see example

iii) in Section 2.2 and Section 3.2 ii)]. The functional parameter a of the copula is subject to the identifying

constraint:
∫ 1

0
a(v)dv = 1. The corresponding tangent space H is given by:

H =
{

h ∈ L2 (λ) :
∫ 1

0

h(v)dv = 0
}

.

Let us show that the copula information operator Ic
H is invertible. Indeed let us consider a function h ∈ H

such that:

〈D log c (Ut, Ut−1; a0) , h〉 = 0, PA0 -a.s.

Then by using the differential of the proportional hazard copula [see section 3.2 ii)], we deduce that:

(1− a0t−1H0t) (ht−1/a0t−1 − E [ht−1/a0t−1 | Ut])

= [1− a0 (Ut−1) H0 (Ut)] {h (Ut−1) /a0 (Ut−1)− E [h (Ut−1) /a0 (Ut−1) | Ut]}

is a function of Ut only.

This implies that h/a0 is a constant. Since
∫ 1

0
h(v)dv = 0, it follows that h = 0. Thus sufficient condition

(23) is satisfied and Ic
H is invertible. On the contrary, the copula information operator is not invertible when

it is defined on the entire space L2 (λ), since the differential D log c (Ut, Ut−1; a0) has a non zero null space,
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consisting in functions ka0, where k is a constant.

6.2 The minimum chi-square estimator

Let Θ̃ be a subset of Ã. The minimum chi-square estimator is obtained by minimizing the chi-square

divergence under the constraints:

ÂT = arg min
A∈eΘ QT (A) =

∫ 1

0

∫ 1

0

[
f̂T (x, y)− f(x, y;A)

]2

f̂T (x, y)
ωT (x, y)dxdy. (24)

The consistency of the constrained estimator is proved as in Section 4.2. Let us now focus on the asymptotic

expansion. Under the regularity assumptions in Appendix 2, it can be verified that the first order condition

is equivalent to:

IHδÂT ' PHψT ,

where PH denotes the orthogonal projector on H 20. The asymptotic expansion of the minimum chi-square

estimator ÂT is derived as in Section 4.3 by replacing the information operator I with the restricted one,

IH , and the efficient score ψT with the projection PHψT :

ÂT −A0 ' I−1
H PHψT .

Let us derive the asymptotic distribution, and neglect the bias terms for expository purposes. Without loss

of generality, let functions gi ∈ L2 (λ), i = 1, ..., n, be orthonormal. Since H has finite codimension, we

have PHψT (w) = ψT (w)−∑n
i=1 (gi, ψT )L2(λ) gi(w) = ψT (w) + op(1/

√
T ) [see Lemma 10], and we get from

Lemma 7:
√

ThT PHψT (w) d−→ N

[
0,

(∫
K2(x)dx

)
α0(w)

]
, λ-a.s. in w.

Moreover, from Lemma 10:

√
T (g, PHψT )L2(λ) =

√
T (PHg, ψT )L2(λ)

d−→ N
[
0, (PHg, IHPHg)L2(λ)

]
, g ∈ L2 (λ) .

We deduce:
20The residual term of this asymptotic expansion has the same order as in Proposition 4 and can be neglected for the

derivation of the asymptotic distribution of bAT .
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Proposition 16 : Under the regularity assumptions in Appendix 2 including bandwidth condition (14):

√
T

(
g, ÂT −A0

)
L2(λ)

d−→ N
[
0,

(
g, PHI−1

H PHg
)
L2(λ)

]
, g ∈ L2 (λ) .

When in addition the differential operator admits a decomposition (5):

√
ThT

(
ÂT (v)−A0(v)

)
d−→ N

(
0,

(∫
K2(x)dx

)
α0,H (v)−1

)
,

λ-a.s in v.

6.3 The nonparametric efficiency bound for linear forms

The following proposition reports the efficiency bound BA(g) for linear forms (g,A)L2(λ), g ∈ L2 (λ), under

the constraint A ∈ Ã.

Proposition 17 : The nonparametric efficiency bound is given by:

BA(g) = (g, PHI−1
H PHg)L2(λ), g ∈ L2 (λ) .

The constrained minimum chi-square estimator is therefore nonparametrically efficient for linear forms.

7 Concluding remarks

The analysis of nonlinear dependence is crucial for financial applications and requires an appropriate spec-

ification of the joint density for often a rather large dimension. To avoid the curse of dimensionality and

to select models with structural interpretations the density cannot be let unconstrained. At the opposite

a standard parametric specification is generally too restrictive to get the expected fit. In this paper we

have considered the intermediate case in which the conditional distribution or the copula depends on one-

dimensional functional parameters. The functional parameter is defined up to a one to one transformation.

We have explained what representation of the functional parameter has to be selected to get results on the

information operator, efficiency bound, and efficient estimators similar to the standard results of the pure

parametric framework. The approach has been illustrated by discussing different families of constrained

nonparametric densities, useful for financial and duration analysis.
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Appendix 1

Differential and information operators for the Archimedean copula

A.1.1 Differential of the copula

The log-copula density is given by:

log c(u, v; a) = log a [C(u, v; a)] + log F ∗ [C(u, v; a); a]− log F ∗ (u; a)− log F ∗ (v; a) ,

where a = f∗. Let us derive the differential with respect to a. We get:

〈D log c(u, v; a), h〉 =
h [C(u, v; a)]
a [C(u, v; a)]

+ 〈D log F ∗ [C(u, v; a); a] , h〉 − 〈D log F ∗(u; a), h〉 − 〈D log F ∗(v; a), h〉

+
(

d log a

dw
[C(u, v; a)] +

a [C(u, v; a)]
F ∗ [C(u, v; a); a]

)
〈DC(u, v; a), h〉 . (a.1)

Let us now derive the differentials of C (u, v; a) and F ∗(u, v; a) w.r.t. a.

i) Differential of C(u, v; a). We get:

〈DC(u, v; a), h〉 =
〈
Dφ

[
φ−1 (u; a) + φ−1 (v; a) ; a

]
, h

〉

+φ
′ [

φ−1 (u; a) + φ−1 (v; a) ; a
] {〈

Dφ−1 (u; a) , h
〉

+
〈
Dφ−1 (v; a) , h

〉}

=
〈
Dφ

(
φ−1 [C(u, v; a); a] ; a

)
, h

〉

+φ
′ (

φ−1 [C(u, v; a); a] ; a
) {〈

Dφ−1 (u; a) , h
〉

+
〈
Dφ−1 (v; a) , h

〉}
.

By the implicit function theorem we have:

〈
Dφ

[
φ−1 (y; a) ; a

]
, h

〉
= −φ

′ [
φ−1 (y; a) ; a

] 〈
Dφ−1 (y; a) , h

〉
,

and thus we get:

〈DC(u, v; a), h〉 = F ∗ [C(u, v; a); a]
{〈

Dφ−1 [C(u, v; a); a] , h
〉 − 〈

Dφ−1 (u; a) , h
〉− 〈

Dφ−1 (v; a) , h
〉}

.

(a.2)

ii) Differential of F ∗(y; a). We have:

〈D log F ∗ (y; a) , h〉 =
1

F ∗ (y; a)

∫ y

0

h(v)dv = Ea [h(W )/a(W ) | Z = y] . (a.3)
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By inserting (a.2) and (a.3) in (a.1) we get:

〈D log c(u, v; a), h〉 =
h [C(u, v; a)]
a [C(u, v; a)]

+ Ea [h(W )/a(W ) | Z = C(u, v; a)]

− Ea [h(W )/a(W ) | Z = u]− Ea [h(W )/a(W ) | Z = v]

+
{

a [C(u, v; a)] +
d log a

dw
[C(u, v; a)] F ∗ [C(u, v; a); a]

}

· {〈
Dφ−1 [C(u, v; a); a] , h

〉− 〈
Dφ−1(u; a), h

〉− 〈
Dφ−1(v; a), h

〉}
. (a.4)

Let us finally compute the differential of φ−1(y; a) with respect to a.

iii) Differential of φ−1(y; a). We have:

φ−1(y; a) =
∫ 1

y

dw∫ w

0
a(v)dv

.

Let us consider the first order expansion:

φ−1(y; a + h) =
∫ 1

y

dw∫ w

0
a (v) dv +

∫ w

0
h(v)dv

'
∫ 1

y

1∫ w

0
a (v) dv

[
1−

∫ w

0
h(v)dv∫ w

0
a (v) dv

]
dw

' φ−1(y; a)−
∫ 1

y

∫ w

0
h(v)dv

F ∗(w; a)2
dw.

Thus:

〈
Dφ−1(y; a), h

〉
= −

∫ 1

y

1
F ∗(w; a)2

(∫ w

0

h(v)dv

)
dw

=
(∫ 1

w

dv

F ∗(v; a)2

)(∫ w

0

h(v)dv

)
|1y −

∫ 1

y

(∫ 1

w

dv

F ∗(v; a)2

)
h(w)dw

= −
(∫ 1

y

dv

F ∗(v; a)2

) ∫ y

0

h(v)dv −
∫ 1

y

(∫ 1

w

dv

F ∗(v; a)2

)
h(w)dw.

= k(y; a)
∫ y

0

h(v)dv +
∫ 1

y

k(w; a)h(w)dw, (a.5)

where k(y; a) = − ∫ 1

y

(
1/F ∗(v)2

)
dv.

By inserting (a.5) in (a.4), we get the differential of the copula density, which is of the form:

〈D log c(u, v; a), h〉 =
h [C(u, v; a)]
a [C(u, v; a)]

+
∫ 1

0

γ (u, v, w; a)h(w)dw, say.
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A.1.2 The information operator

Let us now compute the information operator Ic of the copula. We get:

E0 [〈D log c(U, V ; a0), g〉 〈D log c(U, V ; a0), h〉] = E0

{
g [C0(U, V )] h [C0(U, V )] /a0 [C0(U, V )]2

}

+
∫

E0 {g [C0(U, V )] γ (U, V, y) /a0 [C0(U, V )]}h(y)dy

+
∫

E0 {γ (U, V, y)h [C0(U, V )] /a0 [C0(U, V )]} g(y)dy

+
∫ ∫

E0 {γ (U, V, x) γ (U, V, y)} g(x)h(y)dxdy.

Let us consider the four terms of the decomposition separately. The first one is:

E0

{
g [C0(U, V )] h [C0(U, V )] /a0 [C0(U, V )]2

}
=

∫
g(w)h(w)

fW (w; a0)
a0(w)2

dw,

where fW (.; a0) is the density of W . The second term is:

∫
E0 {g [C0(U, V )] γ (U, V, y) /a0 [C0(U, V )]}h(y)dy

=
∫

E0 {g(W )γ̃ (W,Z, y) /a0(W )}h(y)dy, say,

=
∫ ∫

g(w)
E0 {γ̃ (W,Z, y) | W = w} fW (w, a0)

a0(w)
h(y)dwdy,

where function γ̃ is such that γ̃ (C(u, v), v, y) = γ(u, v, y). Similarly we get the third and fourth terms:

∫ ∫
g(y)

E0 {γ̃ (W,Z, y) | W = w} fW (w, a0)
a0(w)

h(w)dydw,

and : ∫ ∫
g(x)E0 {γ̃ (W,Z, x) γ̃ (W,Z, y)}h(y)dxdy, respectively.

Thus Ic satisfies Assumption A.3, with local component α0(w; a) = fW (w; a) /a0(w)2, and:

α1(x, y; a) = Ea {γ̃ (W,Z, y) | W = x} fW (x, a) /a(x)

+Ea {γ̃ (W,Z, x) | W = y} fW (y, a) /a(y) + Ea {γ̃ (W,Z, x) γ̃ (W,Z, y)} .

Finally the density of W is given by (see website):

fW (w) = 1 +
1

φ′ [φ−1(w)]
F ∗(w) + φ−1(w)f∗(w) = φ−1(w)f∗(w).
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Appendix 2

Asymptotic properties of minimum chi-square estimator

The asymptotic properties of the minimum chi-square estimator are derived in this Appendix for d = 2

observed variables and one-dimensional functional parameter. However the results are easily extended to any

number d of observed variables with still one-dimensional functional parameter. This multivariate framework

is considered only when we discuss the regularity conditions on the bandwidth and its optimal choice.

A.2.1 Set of regularity conditions

Let us first describe the set of additional regularity conditions which are used for asymptotic analysis.

Assumption A.5: (Xt, Yt), t varying, is a strictly stationary process, with β-mixing coefficients β (k) such

that: β (k) = O
(
ρk

)
, ρ < 1.

Assumption A.6: The stationary density f of (Xt, Yt) has compact support [0, 1]d, vanishes at its bound-

ary, and is of class Cm
(
[0, 1]d

)
.

Assumption A.7: There exist C > 0, γ > 0, and an increasing sequence of sets ΩT ⊂ (0, 1)d
, T ∈ N, such

that:

inf
(x,y)∈ΩT

f(x, y) > C(log T )−γ , for any T .

Assumption A.8: The conditional density fh(z | w) of (Xt, Yt) given (Xt−h, Yt−h) = w is such that:

sup
h∈N

sup
z,w∈[0,1]d:f(w)>0

fh(z | w) < +∞.

Assumption A.9: The kernel K is of class Cm, with derivatives in L2 (R), and is Lipschitz. Moreover

the kernel K is of order m ≥ 2, that is:

∫
usK(u)du = 0, s = 1, ..., m− 1, and

∫
|u|m K(u)du < +∞.

Assumption A.10: The bandwidth hT is such that:

hT = cT T−α, limT→∞cT = c > 0, with
1

4m

(
1 +

2m− 1
4m2 + 2m + 1

)
< α <

1
2d

(
1− 1

2
2m− 1

4m2 + 2m + 1

)
.

Assumption A.11: There exists compact sets Ω̃T , ΩT such that Ω̃T ⊂ ΩT ⊂ [0, 1]d, weighting function ωT

has support in ΩT , is smaller than 1 with restriction ωT |eΩT
= 1, T ∈ N, and λd

(
Ω̃T

)
→ 1, as T → ∞,
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where λd is the Lebesgue measure.

Assumption A.12: Set ΩT in Assumption A.11 satisfies Assumption A.7.

Assumption A.13: For any A,A0 ∈ Θ : f(X, Y ; A)/f(X,Y ) ∈ L2(PA0). Moreover the first-order expan-

sion of the density is such that:

f(x, y;A + h) = f(x, y;A) + 〈Df(x, y;A), h〉+ R(x, y; A, h), A,A + h ∈ Θ,

where:

i) Df(X, Y ; A)/f(X,Y ) is a bounded operator from L2 (λ) in L2(PA0), ∀A,A0 ∈ Θ;

ii) the residual term satisfies: ‖R(X,Y ; A, h)/f(X, Y )‖L2(PA0 ) = O
(
‖h‖2L2(λ)

)
, A,A + h ∈ Θ.

iii) Moreover: R(x, y; A0, h) = O

((
‖h(x)‖+ ‖h(y)‖+ ‖h‖L2(λ)

)2
)

, λ2-a.s. in (x, y) ∈ (0, 1)2 .

Assumption A.14: There exist p > 1 such that:

sup
A∈Θ

∥∥∥∥
f(., .;A)2

f(., .)

∥∥∥∥
Lp

< ∞.

Assumption A.15: The set Θ is bounded and closed with respect to the norm ‖.‖L2(λ) .

Assumption A.16: The set {f(., .; A), A ∈ Θ} is bounded and closed in L2(µ) for any measure µ on (0, 1)d

with compact support and continuous density w.r.t λd.

Assumption A.17: The information operator I is such that:

inf
h:‖h‖L2(λ)=1

(h, Ih)L2(λ) > 0.

Assumption A.18: With probability approaching 1:

for any g ∈ L2 (λ) : ÂT + tg ∈ Θ for t in a neighbourhood of 0.

Assumption A.19: The operator Df(X,Y ;A)
f(X,Y ) is Lipschitz with respect to A at A0 :

∥∥∥∥
Df(X, Y ; A0 + h)

f(X, Y )
− Df(X, Y ; A0)

f(X, Y )

∥∥∥∥
L

≤ C ‖h‖L2(λ) ,

for some constant C, where ‖.‖L denotes the L2-norm on the space of bounded linear operators from L2(λ)

into L2(PA0).
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Assumption A.20: There exists p > 1 such that:

‖〈D log f(., .;A0), g〉 〈D log f(., .; A0), h〉 f(., .)‖Lp = O
(
‖g‖L2(λ) ‖h‖L2(λ)

)
.

Assumption A.21: There exists β2 > q/4 such that:

λ2(Ω̃c
T ) = O

(
T−β2

)
,

where p is the value given in Assumption A.20, 1/p + 1/q = 1, and Ω̃T is defined in Assumption A.11.

Assumptions A.5-A.10 are standard conditions on the distribution and serial dependence of process

(Xt, Yt), on the kernel K and on bandwidth hT . In particular, when d = 2, it is easily checked that

Assumption A.10 can be satisfied whenever m ≥ 2. Assumptions A.5-A.10 are used to prove standard

results on the convergence of kernel density estimator f̂T , which will be used later on to derive the asymptotic

properties of the minimum chi-square estimator. In particular we have Lemma A.1 below, which follows from

Theorem 2.2 in Bosq (1998) [see the website for additional results on kernel estimators used in the proofs].

Lemma A.1 : Under Assumptions A.5, A.6, A.7 and A.9:

i) If the bandwidth hT is such that hT = cT T−α, limT→∞cT = c > 0, with 0 < α < 1/d, then:

τT,1 := sup
(x,y)∈ΩT

∣∣∣∣∣
f̂T (x, y)− f (x, y)

f̂T (x, y)

∣∣∣∣∣ = op (1) .

ii) If the bandwidth hT satisfies Assumption A.10, then there exists β1 > 1
4

(
1 + 1

2
2m−1

4m2+2m+1

)
such that:

τT,1 = op

(
T−β1

)
.

Assumptions A.11 and A.12 explain how the sequence of weighting functions ωT with compact support

ΩT converges to the constant function 1 on (0, 1)d. Assumption A.13 introduces integrability conditions

for the family f (x, y;A) and for its Hadamard derivative with respect to A. It is used to define the chi-

square criterion and to prove its continuity. In particular for A = A0 Assumption A.13 i) reduces to

Assumption A.2 i). Assumption A.14 implies that the densities in the family have similar patterns at the

boundary. Assumption A.15 describes the set of admissible values of functional parameter A. Assumption

A.16 is useful to prove the existence of the minimum chi-square estimator ÂT , by using the fact that the

criterion defining ÂT is a distance in an Hilbert space. Assumption A.17 is useful for local identification

of the functional parameter, and implies in particular that the information operator I is invertible, that is
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Assumption A.4 (see Yosida, 1995, Theorem 2, p.320). When the information operator I satisfies Assumption

A.3, sufficient conditions for Assumption A.17 can be easily derived. Assumption A.18 is used to derive

first order expansions. When the parameter set Θ has a non-empty interior (w.r.t. ‖.‖L2(λ)) containing the

true functional parameter A0, Assumption A.18 is satisfied whenever ÂT is consistent. Finally, the last three

Assumptions A.19-A.21 are technical conditions required to bound the residual terms in the asymptotic

expansions.

In the time series framework of Section 4.5, this set of assumptions is replaced by a similar one, in which

f(x, y), Df(X, Y ; A0) and I are replaced by f(x|y), Df(X|Y ; A0) and IX|Y , respectively, in Assumptions

A.13, A.14, A.16, A.17, A.19 and A.20. These new assumptions are refereed to as TS.

A.2.2 Existence of the minimum chi-square estimator

The chi-square criterion QT is the L2 (µT )-distance between the constrained nonparametric family of

densities f(., .; A), A ∈ Θ, and the unconstrained kernel estimator f̂T , where measure µT has density ωT /f̂T .

Under Assumption A.16 the projection of f̂T on the set {f(., .; A), A ∈ Θ} with respect to L2 (µT ) is well-

defined. We deduce that a solution ÂT exists.

A.2.3 Consistency of the minimum chi-square estimator: proof of Proposition 2

As usual the proof is based on the analysis of the asymptotic criterion:

Q∞(A) = Q(A) =
∫ ∫

[f(x, y)− f(x, y;A)]2

f(x, y)
dxdy, A ∈ Θ,

We have the following Lemma A.2. In particular, the consistency of the minimum chi-square estimator is a

direct consequence of Lemma A.2 i), iv) and v).

Lemma A.2: i) Under Assumption A.13 the chi-square criterion Q is continuous.

ii) Under Assumptions A.13 and A.15: Q (A0 + h) = (h, Ih)L2(λ) + O
(
‖h‖3L2(λ)

)
, for A0 + h ∈ Θ.

iii) Under Assumptions A.13 and A.15: supA∈Θ Q(A) < ∞.

iv) Under Assumptions A.13, A.15 and A.17 parameter A0 is locally identified, that is:

∀ε > 0 : inf
A∈Θ∩Bε(A0)c

Q(A) > Q(A0),

where Bε(A0) denotes a ball of radius ε around A0, w.r.t. the norm ‖.‖L2(λ).

v) Under Assumptions A.1, A.2, A.5-A.9, A.11-A.15 and bandwidth condition hT = cT T−α,

limT→∞cT = c > 0, with 0 < α < 1/d, the criterion QT converges in probability to Q uniformly in A ∈ Θ.
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Proof of Lemma A.2: The proofs of i)-iii) are simple and given on the website. Let us first focus on the

proof of iv). From Lemma A.2 ii), for any h such that A0 + h ∈ Θ\Bε(A0) we get:

Q(A0 + h) ≥ (h, Ih)L2(λ)

[
1− C ‖h‖L2(λ)

‖h‖2L2(λ)

(h, Ih)L2(λ)

]
, for some constant C > 0,

≥ (h, Ih)L2(λ)


1− C sup

h∈(Θ−A0)

‖h‖L2(λ)

(
inf

h:‖h‖L2(λ)=1
(h, Ih)L2(λ)

)−1

 .

From Assumption A.17 we have k = infh:‖h‖L2(λ)=1 (h, Ih)L2(λ) > 0. Moreover without loss of generality we

can assume that suph:A0+h∈Θ ‖h‖L2(λ) < k/2C. Then for any h such that A0 + h ∈ Θ\Bε(A0), we get:

Q(A0 + h) ≥ 1
2

(h, Ih)L2(λ) .

Thus:

inf
A∈Θ\Bε(A0)

Q(A) ≥ inf
h∈(Θ−A0)\Bε(0)

Q(A0 + h) ≥ ε2

2
inf

h∈(Θ−A0)\Bε(0)

(h, Ih)L2(λ)

‖h‖2L2(λ)

≥ k

2
ε2 > 0 = Q(A0), (a.6)

and iv) is proved.

Let us finally consider v). By developing the criterion functions we get:

QT (A)−Q(A) =
(∫ ∫

f̂T (x, y)ωT (x, y)dxdy − 1
)
− 2

(∫ ∫
f(x, y; A)ωT (x, y)dxdy − 1

)

+
∫ 1

0

∫ 1

0

f(x, y; A)2
(

1

f̂T (x, y)
− 1

f(x, y)

)
ωT (x, y)dxdy

+
∫ 1

0

∫ 1

0

f(x, y; A)2

f(x, y)
(ωT (x, y)− 1) dxdy

≡ S1,T + S2,T + S3,T + S4,T , say.

Let us now check that each term converges in probability to 0, uniformly in A ∈ Θ. We have:

|S1,T | =
∣∣∣∣
∫ ∫

f̂T (x, y) (ωT (x, y)− 1) dxdy

∣∣∣∣ ≤
∫ ∫ ∣∣∣f̂T (x, y)

∣∣∣ |ωT (x, y)− 1| dxdy

≤
∫ ∫ ∣∣∣f̂T (x, y)

∣∣∣ IeΩc
T
(x, y)dxdy

≤
∫ ∫ ∣∣∣f̂T (x, y)− f(x, y)

∣∣∣ dxdy +
∫ ∫

f(x, y)IeΩc
T
(x, y)dxdy

≤
(∫ ∫ [

f̂T (x, y)− f(x, y)
]2

dxdy

)1/2

+ PA0

[
(Xt, Yt) ∈ Ω̃c

T

]
= op(1),
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uniformly in A ∈ Θ, from Theorem 4.1 in Gouriéroux and Tenreiro (2001) and Assumption A.11. The proof

is similar for S2,T :

|S2,T | ≤ 2
∫ ∫

f(x, y;A)IeΩc
T
(x, y)dxdy ≤ 2

(∫ ∫
f(x, y; A)2

f (x, y)
dxdy

) 1
2

(∫ ∫
IeΩc

T
(x, y)f (x, y) dxdy

) 1
2

≤ 2
(

sup
A∈Θ

Q(A) + 1
) 1

2

PA0

[
(Xt, Yt) ∈ Ω̃c

T

]1/2

= op(1)

in probability uniformly in A ∈ Θ due to Assumption A.11 and Lemma A.2 iii).

Let us now consider S3,T :

|S3,T | ≤
∫ 1

0

∫ 1

0

f(x, y; A)2

f(x, y)

∣∣∣∣∣
f̂T (x, y)− f(x, y)

f̂T (x, y)

∣∣∣∣∣ ωT (x, y)dxdy

≤ sup
(x,y)∈ΩT

∣∣∣∣∣
f̂T (x, y)− f(x, y)

f̂T (x, y)

∣∣∣∣∣ ·
∫ 1

0

∫ 1

0

f(x, y; A)2

f(x, y)
dxdy

≤
(

sup
A∈Θ

Q(A) + 1
)

sup
(x,y)∈ΩT

∣∣∣∣∣
f̂T (x, y)− f(x, y)

f̂T (x, y)

∣∣∣∣∣ = op(1),

in probability uniformly in A ∈ Θ due to Lemma A.1 i) and Lemma A.2 iii).

Finally, the last term S4,T is such that:

|S4,T | ≤
∫ ∫

f(x, y; A)2

f(x, y)
|ωT (x, y)− 1| dxdy ≤

∫ ∫
f(x; y;A)2

f(x, y)
IeΩc

T
(x, y)dxdy

≤
∥∥∥∥

f(., .;A)2

f(., .)

∥∥∥∥
Lp

∥∥∥IeΩc
T

∥∥∥
Lq

, where
1
p

+
1
q

= 1,

≤ sup
A∈Θ

∥∥∥∥
f(., .;A)2

f(., .)

∥∥∥∥
Lp

· λ2

(
Ω̃c

T

)1/q

= op(1), uniformly in A ∈ Θ,

due to Assumptions A.11 and A.14. Q.E.D.

A.2.4 Asymptotic expansion of the minimum chi-square estimator

i) Expansion of the first order condition

From Assumption A.18, with probability approaching 1, ÂT satisfies the set of first order conditions:

∫ ∫
f̂T (x, y)− f(x, y; ÂT )

f̂T (x, y)

〈
Df

(
x, y; ÂT

)
, g

〉
ωT (x, y)dxdy = 0, ∀g ∈ L2(λ).
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Let us denote δÂT = ÂT −A0. We expand the functions involved in the first order condition. We can write:

f
(
x, y; ÂT

)
= f(x, y) +

〈
Df (x, y;A0) , δÂT

〉
+ R

(
x, y; δÂT

)
,

〈
Df

(
x, y; ÂT

)
, g

〉
= 〈Df (x, y; A0) , g〉+ R̃

(
x, y; δÂT , g

)
.

where R and R̃ are residual terms. By writing:

1

f̂T (x, y)
=

1
f(x, y)

(
1− δf̂T (x, y)

f̂T (x, y)

)
,

and using the definitions of efficient score ψT and information operator I, the first order condition can be

rewritten as:
(
g, ψT − IδÂT

)
L2(λ)

+ R
(
δÂT , g

)
= 0, ∀g ∈ L2 (λ) , (a.7)

where the residual term R
(
δÂT , g

)
is:

R
(
δÂT , g

)

= −
∫ ∫

δf̂T (x, y) 〈D log f (x, y; A0) , g〉 δf̂T (x, y)

f̂T (x, y)
ωT (x, y)dxdy

−
∫ ∫ 〈

D log f (x, y;A0) , δÂT

〉
〈D log f (x, y;A0) , g〉 f(x, y)

[(
1− δf̂T (x, y)

f̂T (x, y)

)
ωT (x, y)− 1

]
dxdy

−
∫ ∫

R
(
x, y; δÂT

)
〈D log f (x, y; A0) , g〉

(
1− δf̂T (x, y)

f̂T (x, y)

)
ωT (x, y)dxdy

+
∫ ∫

δf̂T (x, y)
f(x, y)

R̃
(
x, y; δÂT , g

)(
1− δf̂T (x, y)

f̂T (x, y)

)
ωT (x, y)dxdy

−
∫ ∫ 〈

Df (x, y;A0) , δÂT

〉

f(x, y)
R̃

(
x, y; δÂT , g

)(
1− δf̂T (x, y)

f̂T (x, y)

)
ωT (x, y)dxdy

−
∫ ∫ R

(
x, y; δÂT

)

f(x, y)
R̃

(
x, y; δÂT , g

)(
1− δf̂T (x, y)

f̂T (x, y)

)
ωT (x, y)dxdy

≡ R1

(
δÂT , g

)
+ R2

(
δÂT , g

)
+ R3

(
δÂT , g

)
+ R4

(
δÂT , g

)
+ R5

(
δÂT , g

)
+ R6

(
δÂT , g

)
.

ii) A bound for the residual term

The following Lemma provides a bound for the residual term R
(
δÂT , g

)
[see the website for the proof].

Lemma A.3: Under Assumptions A.1-A.2, A.5-A.13, A.19 and A.20 the residual term R
(
δÂT , g

)
in (a.7)
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is such that:

R
(
δÂT , g

)
= ‖g‖L2(λ) Op

[
τ2
T,1 + (τT,1 + τT,2)

∥∥∥δÂT

∥∥∥
L2(λ)

+
∥∥∥δÂT

∥∥∥
2

L2(λ)

]
,

where

τT,1 := sup
(x,y)∈ΩT

∣∣∣∣∣
δf̂T (x, y)

f̂T (x, y)

∣∣∣∣∣ , τT,2 := λ2

(
Ω̃c

T

)1/q

,

q is defined as in Assumption A.21, and the Op term is uniform w.r.t. g.

iii) The residual term is negligible in norm: proof of Proposition 4 i)

Let us now show that the residual term is negligible in norm with respect to the other terms in the expansion

(a.7) of the first order condition.

Lemma A.4: Under Assumptions A.1-A.2, A.4-A.13, and A.19-A.21:

i)
∥∥∥δÂT

∥∥∥
L2(λ)

= Op

(
1/
√

T + hm
T

)
.

ii)
(
g, IδÂT

)
L2(λ)

= (g, ψT )L2(λ) + op

(
1/
√

T
)

, uniformly in g ∈ L2 (λ) .

iii)
∥∥∥IδÂT − ψT

∥∥∥
L2(λ)

= op

(
1/
√

T
)

.

Proof of Lemma A.4: i) To get a bound for
∥∥∥δÂT

∥∥∥
L2(λ)

, we first consider the expansion of
(
g, δÂT

)
L2(λ)

for any g. Since τT,1 = op(T−1/4), τT,2 = o(T−1/4) [see Lemma A.1 ii) and Assumption A.21], from Lemma

A.3 we get:

R
(
δÂT , g

)
= ‖g‖L2(λ)

[
op

(
1/
√

T
)

+ op

(
T−1/4

∥∥∥δÂT

∥∥∥
L2(λ)

)
+ Op

(∥∥∥δÂT

∥∥∥
2

L2(λ)

)]
.

Then the first order condition is such that:

(
g, IδÂT

)
L2

= (g, ψT )L2(λ) +‖g‖L2(λ)

[
op

(
T−1/2

)
+ op

(
T−1/4

∥∥∥δÂT

∥∥∥
L2(λ)

)
+Op

(∥∥∥δÂT

∥∥∥
2

L2(λ)

)]
, (a.8)

uniformly in g ∈ L2 (λ). Since I−1 is bounded (Assumption A.4), we get:

(
g, δÂT

)
L2(λ)

=
(
g, I−1ψT

)
L2(λ)

+ ‖g‖L2(λ)

[
op

(
1/
√

T
)

+ op

(
T−1/4

∥∥∥δÂT

∥∥∥
L2(λ)

)
+Op

(∥∥∥δÂT

∥∥∥
2

L2(λ)

)]
.
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Let us now deduce a bound for
∥∥∥δÂT

∥∥∥
L2(λ)

. Since (g, ψT − EψT )L2(λ) = Op(1/
√

T ) [see Lemma 10 in the

text], (g, EψT )L2(λ) = O
(
‖g‖L2(λ) hm

T

)
[see website] and I−1 is bounded (Assumption A.4) we get:

(
g, I−1ψT

)
L2(λ)

= Op

(
‖g‖L2(λ)

(
1/
√

T + hm
T

))
.

Thus:

(
g, δÂT

)
L2(λ)

= ‖g‖L2(λ)

[
Op

(
1/
√

T + hm
T

)
+ op

(
T−1/4

∥∥∥δÂT

∥∥∥
L2(λ)

)
+Op

(∥∥∥δÂT

∥∥∥
2

L2(λ)

)]
, g ∈ L2 (λ) .

We get:

∥∥∥δÂT

∥∥∥
L2(λ)

= sup
g∈L2(λ):‖g‖L2(λ)≤1

(
g, δÂT

)
L2(λ)

= Op

(
1/
√

T + hm
T

)
+ op

(
T−1/4

∥∥∥δÂT

∥∥∥
L2(λ)

)
+ Op

(∥∥∥δÂT

∥∥∥
2

L2(λ)

)
,

that is
∥∥∥δÂT

∥∥∥
L2(λ)

= Op

(
1/
√

T + hm
T

)
.

ii) Since h2m
T = o

(
T−1/2

)
by the bandwidth condition A.10, we deduce ii) directly from (a.8). Note that

the op term is uniform w.r.t. g.

iii) Finally we have:
∥∥∥IδÂT − ψT

∥∥∥
L2(λ)

= supg∈L2(λ):‖g‖L2(λ)≤1

(
g, IδÂT − ψT

)
L2(λ)

= op

(
1/
√

T
)

. Q.E.D.

iv) The residual term is negligible pointwise: proof of Proposition 4 ii)

Let us now focus on pointwise expansions, which provide the pointwise rate of convergence of the residual

term in the expansion of the first order condition. Intuitively, pointwise expansions are derived from the

first order condition corresponding to a variation g of the functional parameter A which involves only its

value at a point x0 ∈ [0, 1]. Such a variation will be approached by localization. More precisely we consider

variations which are more and more concentrated around x0 as T → ∞, at a higher speed than the kernel

localization. For expository purpose let us consider the case where A has a single component.

Let ϕ ∈ C∞0 be a symmetric kernel with compact support, and let h̃T be a bandwidth converging to 0.

For any x0 ∈ [0, 1], let us define the function:

gT,x0(x) =
1√
h̃T

ϕ

(
x− x0

h̃T

)
, x ∈ [0, 1] .
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Then:

‖gT,x0‖2L2(λ) =
∫

1

h̃T

ϕ

(
x− x0

h̃T

)2

dx =
∫

ϕ (u)2 du,

is constant in T . Moreover for any h ∈ L2 (λ):

(gT,x0 , h)L2(λ) =
∫

1√
h̃T

ϕ

(
x− x0

h̃T

)
h(x)dx =

√
h̃T

∫
ϕ (u)h(x0 + h̃T u)du

=
√

h̃T h (x0) +
√

h̃T

∫
ϕ (u)

[
h(x0 + h̃T u)− h(x0)

]
du.

We will now derive a result similar to Lemma A.4 ii), in which the function g = gT,x0 depends on T .

Lemma A.5: Let gT ∈ L2 (λ) for any T , such that ‖gT ‖L2(λ) ≤ const. Under the Assumptions of Lemma

A.4:
√

T
(
gT , IδÂT

)
L2(λ)

=
√

T (gT , ψT )L2(λ) + Op

(
T−β∗

)
,

for some β∗ > 1
4

2m−1
4m2+2m+1 .

Proof of Lemma A.5: Since the first order condition holds for any given T :

(
gT , IδÂT

)
L2(λ)

= (gT , ψT )L2(λ) + R
(
δÂT , gT

)
.

From Lemma A.1 ii), A.3, A.4 i) and Assumptions A.10, A.21 we get:

R
(
δÂT , gT

)
= ‖gT ‖L2(λ) Op

[
T−2β1 +

(
T−β1 + T−β2/q

)(
T−1/2 + hm

T

)
+

(
T−1/2 + hm

T

)2
]

= Op(T−β∗−1/2),

for β∗ = min
{

2
(
β1 − 1

4

)
, β1,

β2
q , αm− 1

4 , 1
2 , 2

(
αm− 1

4

)}
> 1

4
2m−1

4m2+2m+1 . Q.E.D.

Let us now apply Lemma A.5 to sequence gT = gT,x0 , where the bandwidth for localization h̃T is such that21:

h̃T = o (hT ) , hT = o(h̃T T 2β∗),
√

ThT h̃m
T = o(1).

We get:

√
ThT /h̃T

(
gT,x0 , IδÂT

)
L2(λ)

=
√

ThT /h̃T (gT,x0 , ψT )L2(λ) + Op

(
T−β∗

√
hT /h̃T

)
. (a.9)

21For instance ehT = ecT T−δ, limT→∞ecT = ec > 0, with max
�
α, 1−α

2m

	
< δ < α + 2β∗. This is possible under Assumption

A.10.
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Let us consider the RHS of (a.9). We get:

√
ThT /h̃T (gT,x0 , ψT )L2(λ) + Op

(
T−β∗

√
hT /h̃T

)

=
√

ThT ψT (x0) +
√

ThT

∫
ϕ (u)

[
ψT

(
x0 + h̃T u

)
− ψT (x0)

]
du + op(1). (a.10)

Let us now show that the second term is negligible. We have:

√
ThT

∫
ϕ (u)

[
ψT

(
x0 + h̃T u

)
− ψT (x0)

]
du

=
√

ThT

∫
ϕ (u)

[
(ψT − EψT )

(
x0 + h̃T u

)
− (ψT − EψT ) (x0)

]
du

+
√

ThT

∫
ϕ (u)

[
EψT

(
x0 + h̃T u

)
− EψT (x0)

]
du

= Op

(√
ThT

h̃2
T

2
d2

dx2
(ψT − EψT ) (x0)

∫
u2ϕ (u) du

)
+ O(

√
ThT h̃m

T ),

if the kernel ϕ is of order m ≥ 2. Since ψT (x0) involves partial moments of kernel estimators of a density

[see (16)], we have (ψT − EψT ) (x0) = Op

[
(ThT )−1/2

]
(see Lemma 7 in the text). Since each differentiation

diminishes the rate of convergence of a kernel estimator by the factor hT (see Theorem 3 in Aı̈t-Sahalia, 1993),

we deduce d2

dx2 (ψT − EψT ) (x0) = Op

[
(ThT )−1/2

h−2
T

]
. Finally, since h̃T = o(hT ) and

√
ThT h̃m

T = o(1), we

conclude:
√

ThT

∫
ϕ (u)

[
ψT

(
x0 + h̃T u

)
− ψT (x0)

]
du = op(1), (a.11)

and from (a.9), (a.10) it follows:

√
ThT /h̃T

(
gT,x0 , IδÂT

)
L2(λ)

=
√

ThT ψT (x0) + op(1). (a.12)

Let us now consider the LHS of (a.12). We get:

√
ThT /h̃T

(
gT,x0 , IδÂT

)
L2(λ)

=
√

ThT IδÂT (x0) +
√

ThT

∫
ϕ (u)

[
IδÂT

(
x0 + h̃T u

)
− IδÂT (x0)

]
du.

Thus, from (a.12) we get:

√
ThT IδÂT (x0) = −

√
ThT

∫
ϕ (u)

[(
IδÂT

)(
x0 + h̃T u

)
−

(
IδÂT

)
(x0)

]
du +

√
ThT ψT (x0) + op(1),

λ-a.s. in x0 ∈ [0, 1] . This is an integral equation for
√

ThT IδÂT with a unique solution in L2 (λ) [up to

order op(1) pointwise]. By substitution and using (a.11), the solution is of the form
√

ThT IδÂT =
√

ThT ψT
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+op(1), pointwise, which gives Proposition 4 ii).

v) Pointwise expansion of the minimum chi-square estimator: proof of Corollary 5

Part i) follows from Lemma A.4 ii) and boundedness of I−1 (Assumption A.4). Let us now focus on part ii).

Since I−1 is bounded, the same argument as in section A.2.4 iv) above can be used to bound pointwise the

residual in the asymptotic expansion of the minimum chi-square estimator δÂT ' I−1ψT . Thus we have:

√
ThT δÂT (w) =

√
ThT I−1ψT (w) + op(1), λ-a.s. in w ∈ [0, 1] .

Let us now carefully separate the bias term. We get:

√
ThT δÂT (w) = I−1

[√
ThT (ψT (w)− E0ψT (w))

]
+

√
ThT I−1E0ψT (w) + op(1)

=
√

ThT α0 (w)−1 (ψT (w)− E0ψT (w)) +
√

ThT I−1E0ψT (w) + op(1),

since the contribution of the integral component of I to I−1 (ψT − E0ψT ) is of order Op

(
1/
√

T
)

[see Lemma

10]. Therefore Corollary 5 is proved.

A.2.5 Asymptotic distribution of ψT : proof of Lemma 7

Under the regularity conditions in Appendix 2.1 we have:

√
ThT (ψT − EψT ) (w) =

√
ThT

∫ (
f̂T (w, y)− Ef̂T (w, y)

)
γ0 (w, y) dy

+
√

ThT

∫ (
f̂T (x, w)− Ef̂T (x,w)

)
γ1(x, w)dx + op(1).

Theorem 3 in Ait-Sahalia (1993) applies and it follows:

√
ThT (ψT − EψT ) (w) d−→ N(0, σ2 (w)),

where the asymptotic variance is given by:

σ2 (w) =
(∫

K(z)2dz

) (
E

[
γ0 (Xt, Yt) γ0 (Xt, Yt)

′ | Xt = w
]
fX(w)

+E
[
γ1 (Xt, Yt) γ1 (Xt, Yt)

′ | Yt = w
]
fY (w)

)

=
(∫

K(z)2dz

)
α0 (w) , from equation (6).
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Appendix 3

Nonparametric efficiency bound

In this Appendix we derive the nonparametric efficiency bound in the i.i.d. framework [proof of Proposi-

tion 14 i)]; the proof in the time series framework is similar and is available on the website. Let us introduce

a one dimensional parametric model A(., θ) and derive its Cramer-Rao bound. The score is given by:

∂ log f

∂θ
(x, y;A (θ0)) =

〈
D log f(x, y; A0),

dA

dθ
(θ0)

〉
.

The Fisher information is:

E0

[(
∂ log f

∂θ
(Xt, Yt;A (θ0))

)2
]

= E0

[〈
D log f(X, Y ;A0),

dA

dθ
(θ0)

〉2
]

=
(

dA

dθ
(θ0), I

dA

dθ
(θ0)

)

L2(λ)

.

Thus the Cramer-Rao bound is given by:

BA(g, θ) =
(

dA

dθ
(θ0), I

dA

dθ
(θ0)

)−1

L2(λ)

.

The parametric specification can be chosen such that
∫

g(v)
′
A (v, θ) dv = θ, which is equivalent (in a neigh-

borhood of θ0) to the constraint:

∫
g(v)

′ dA

dθ
(v, θ0)dv =

(
g,

dA

dθ
(θ0)

)

L2(λ)

= 1. (a.13)

Thus both the Cramer-Rao bound and the constraint (a.13) depend on the parameterization only by means

of the function δ (.) = dA/dθ(., θ0). Therefore problem (21) in the text is equivalent to:

min
δ∈L2(λ)

(δ, Iδ)L2(λ) ,

s.t : (g, δ)L2(λ) = 1.

By Cauchy-Schwarz inequality we have:

1 = (g, δ)2L2(λ) =
(
I−1/2g, I1/2δ

)2

L2(λ)
≤ (

I−1g, g
)
L2(λ)

(δ, Iδ)L2(λ) .

Therefore (δ, Iδ)L2(λ) ≥
(
I−1g, g

)−1

L2(λ)
and the bound is reached for δ∗ = I−1g ∈ L2 (λ). Thus we deduce:

BA(g) =
(
g, I−1g

)
L2(λ)

.
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Schönbucher, P. J., and D. Schubert, 2001, Copula-dependent default risk in intensity models, University

of Bonn, Working Paper.

Scott, D., 1992, Multivariate density estimation. Theory, practice and visualization (Wiley, New York).

Severini, T. A., and G. Tripathi, 2001, A simplified approach to computing efficiency bounds in semi-

parametric models, Journal of Econometrics 102, 23-66.

Silverman, B., 1978, Weak and strong consistency of the kernel estimate of a density and its derivatives,

Annals of Statistics 6, 177-184.

Silverman, B., 1986, Density estimation for statistics and data analysis (Chapman and Hall, London).

Sklar, A., 1959, Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de

Statistique de l’Université de Paris 8, 229-231.

Stein, C., 1956, Efficient nonparametric testing and estimation, in: J. Neyman, ed., Proceedings of the

third Berkeley symposium on mathematical statistics and probability, Vol. 1 (University of California Press,

Berkeley) 187-196.

Stone, C., 1983, Optimal uniform rates of convergence of nonparametric estimators of a density function

or its derivatives, in: M. H. Rizvi, J. S. Rustagi and D. Siegmund, eds., Recent advances in statistics, essays

in honor of Herman Chernoff’s sixtieth birthday (Academic Press, New-York).

Vaart, A. W. van der, and J. A. Wellner, 1996, Weak convergence and empirical processes (Springer,

New York).

Van den Berg, G., 2001, Duration models: specification, identification, and multiple durations, in: J. J.

Heckman and E. Leamer, eds., Handbook of econometrics, Vol. 5 (North-Holland, Amsterdam).

Yosida, K., 1995, Functional analysis (Springer, New York).

50


