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Semi-Parametric Estimation of American Option Prices

Abstract

We introduce a novel semi-parametric estimator of the price of American options in a discrete

time, Markovian framework. The estimator is based on a parametric specification of the stochas-

tic discount factor and is nonparametric w.r.t. the historical dynamics of the state variables. The

estimation method exploits the no-arbitrage conditions for a non-defaultable short term bond, the

underlying asset and a cross-section of observed prices of American options written on it. We use

the dynamic programming representation of American option prices to make explicit the nonlinear

restrictions on the Euclidean and functional parameters coming from option data. We obtain an

estimator of the transition density of the state variables process by minimizing a statistical mea-

sure based on the Kullback-Leibler divergence from a kernel-based transition density, subject to

the no-arbitrage restrictions. We use the estimator to compute the price of American options not

traded in the market by recursive valuation. Other functionals of the transition density interesting

for financial applications can be estimated in a similar way.

Keywords: American option, kernel estimator, semi-parametric estimation, dynamic program-

ming, recursive valuation, Fréchet derivative, nonlinear functional.

JEL Codes: C14, C60, G13.
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1 Introduction

This paper deals with the estimation of American option prices in a discrete time, incomplete market,

Markovian framework. The state variables vector includes the return on the fundamental asset and

other relevant pricing factors, such as the asset stochastic volatility and the discount rate. An Ameri-

can option differs from the corresponding European security since the holder has the right to exercise

the option on or before the maturity date (see Broadie and Detemple [2004] and Detemple [2005] for

reviews on valuation of American-style derivatives). Thus, the American option valuation problem can

be faced as an optimal stopping time problem (see Bensoussan [1984], Karatzas [1988] and Karatzas

[1989]).1 Equivalently, at each date the option value is the maximum between the exercise payoff

and the continuation value, that is, the risk adjusted and time discounted conditional expectation of

the one-period-ahead option value. This dynamic programming argument suggests that, in a discrete

time framework, the pricing of an American option can be represented by a backward recursive ap-

plication of a valuation operator that embodies both the exercise decision and the computation of the

continuation value.

The literature on dynamic programming approaches to American option pricing has mostly focused

on parametric models for the risk-neutral dynamics of the state variables vector, such as the Black-

Scholes, stochastic volatility and jump-diffusion models. The time is discretized and, for given values

of the model parameters, the backward recursive option valuation is performed assuming a finite set

of possible values for the state variables at each date. In lattice methods the state variables domain

is discretized in a deterministic way depending on the model (see, e.g., the binomial tree of Cox,

Ross and Rubinstein [1979], the trinomial tree of Boyle [1988], the multinomial tree of Kamrad and

Ritchken [1991] and the efficient lattice algorithm in Ritchken and Trevor [1999]). In Monte Carlo

methods the state variables domain is discretized in a stochastic way based on a special choice of the

space sampling (see, e.g., the random tree of Broadie and Glasserman [1997], the regression-based

Monte Carlo methods of Carriere [1996], Longstaff and Schwartz [2001] and Tsitsiklis and Van Roy

[2001] and the stochastic mesh of Broadie and Glasserman [2004]). For instance, in regression-based

Monte Carlo methods a sample of state variables paths is artificially generated from the model. The

conditional expectation that gives the continuation value at a given date and state is approximated

by using nonparametric regression methods applied to the simulated cash-flows or option values at

the future dates. Glasserman [2004] explains how regression-based Monte Carlo methods can be

interpreted as stochastic mesh approaches.

1Alternative characterizations of the American option pricing problem for special parameterizations of the state vari-
ables process include for instance the free boundary formulation (see, e.g., McKean [1965], Brennan and Schwartz [1977],
Barone-Adesi and Whaley [1987] and Huang, Subrahmanyam and Yu [1996]).
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Despite this huge body of literature on valuation, the analysis of statistical estimation methods with

American option price data is very limited, likely because of the complexity induced by the pricing

problem. Nonparametric estimation methods are particularly convenient in this respect, since they

allow to bypass this complexity by postulating a flexible link function relating the American option

price with observable contract characteristics and state variables. For instance, Broadie, Detemple,

Ghysels and Torrés [2000a] and Broadie, Detemple, Ghysels and Torrés [2000b] consider kernel-

based regression methods including the moneyness strike, the time-to-maturity, the asset stochastic

volatility and dividend yield among the regressors. In an empirical study, these authors find that both

dividend yield and stochastic volatility are important determinants of the American option price. Other

nonparametric approaches, such as splines and neural networks, are also possible (see Daglish [2003]

for a comparative study as well as Hutchinson, Lo and Poggio [1994] and Garcia and Gencay [2000]

for the use of neural networks to price European options).

We depart from this literature by combining the dynamic programming formulation with a semi-

parametric specification of the risk-neutral distribution in discrete time. Specifically, the historical

transition density f of the Markov state is left unconstrained and treated as a functional parameter,

while the Stochastic Discount Factor (SDF) is assumed to be in a parametric family indexed by the

finite-dimensional parameter θ. The goal is to estimate the true values f0 and θ0 of the model parame-

ters by the information in a time-series of state variables observations and a cross-section of observed

American option prices. The estimates of θ0 and f0 are used to estimate the prices of American options

that are not actively traded on the market at the current time. We also propose new semi-parametric es-

timators for a class of linear or nonlinear functionals of θ and f that include historical and risk-neutral

conditional cross-moments of the state variables, such as leverage effects (see Black [1977]) and term

structures of skewness and kurtosis measures (e.g., Bakshi, Kapadia and Madan [2003]).

The semi-parametric setting introduced in this paper is intermediate between fully parametric and

fully nonparametric approaches. The advantage w.r.t. the former approach is the flexibility in mod-

eling the historical transition density, which allows to get estimators of the option prices and exercise

boundary in a rather general model setting. Moreover, we get a proper distribution theory for the esti-

mators without introducing ad-hoc pricing errors. The advantage w.r.t. the latter approach is that the

estimated pricing model is arbitrage-free. In nonparametric approaches, ensuring the absence of arbi-

trage opportunities by imposing shape restrictions on the pricing function might be difficult, since such

shape restrictions are not completely known for American options in a general framework (see, e.g.,

Aı̈t-Sahalia and Duarte [2003], Yatchev and Härdle [2006] and Birke and Pilz [2009] for constrained

nonparametric estimation of the state price density from European option data).

The information contained in the historical state variables and cross-sectional option data is ex-
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ploited through the associated no-arbitrage restrictions. In our framework these restrictions are multi-

period and involve the recursive valuation operator for American options. The resulting constraints on

θ0 and f0 are nonlinear w.r.t. both parameters and do not correspond to standard moment restrictions.

This feature yields a setting that is different from the ones of the Generalized Method of Moments

(GMM, see Hansen [1982] and Hansen and Singleton [1982]), the Extended Method of Moments

(XMM, see Gagliardini, Gouriéroux and Renault [2011]) and other semi-parametric settings consid-

ered in the literature (e.g., Ai and Chen [2003]; see also Powell [1994] and Ichimura and Todd [2007]

for reviews). This difference explains the methodological novelty of our paper. To get numerically

tractable estimators, we consider a two-step approach. First, the SDF parameter θ0 is estimated by

minimizing a distance criterion that corresponds to a quadratic form of the empirical constraint vec-

tor. Second, the historical transition density f0 is estimated by minimizing an information-theoretic

criterion subject to the set of no-arbitrage restrictions with estimated SDF parameter. The information

criterion is based on the Kullback-Leibler distance of f0 from a kernel density estimator (see Kitamura

and Stutzer [1997] and Kitamura, Tripathi and Ahn [2004]).

Despite the differences in terms of model specification and data usage, comparing our estimation

methodology with the existing literature on dynamic programming valuation gives interesting insights.

Indeed, for any given value of the SDF parameter vector θ, we compute the conditional expectation that

gives the continuation value as a weighted average over the sample observations of the state variables.

Thus, our approach is closer in spirit to stochastic mesh than to lattice methods, with the historical

realization of the state variables vector process taken as a mesh. The weights turn out to be kernel

weights adjusted by a tilting factor accounting for the no-arbitrage restrictions, and multiplied by the

SDF to pass from the historical to the risk-neutral distribution.

In Section 2 we describe the discrete time Markovian framework and define the American option

pricing operator for recursive valuation. In Section 3 we introduce the semi-parametric specification

with historical transition density f of the state variables and SDF parameter θ. We discuss the no-

arbitrage restrictions from the available historical and option data. We investigate the local sensitivity

of the no-arbitrage constraint vector to the model parameters by computing the gradient of the con-

straints w.r.t. θ and their Fréchet derivative w.r.t. f . In Section 4 we introduce the semi-parametric

estimators of the true SDF parameter θ0, the true historical transition density f0 and a class of their

functionals, including the American option prices. We study the large sample properties of these es-

timators in Section 5. The asymptotics is for a long time-series of state variables observations and

a fixed number of cross-sectionally observed option prices. We link the asymptotic properties of the

proposed estimators to the ones of information-theoretic GMM estimators, by interpreting the Fréchet

derivative of the constraint vector as a moment function locally around the true transition density f0.
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In Section 6 we present the results of a Monte Carlo experiment to study the finite-sample properties

of the estimators. Section 7 concludes. In Appendix A we list the set of regularity assumptions for the

validity of the asymptotic properties. Proofs of the propositions are gathered in Appendices B-F and

proofs of technical lemmas in supplementary materials available on our web-pages.

2 Valuation of American options

In this section we define the dynamics of the state variables and asset prices. We first consider the state

variables and the SDF in Section 2.1. We then state an homogeneity property w.r.t. the underlying

asset price for a class of American options in Section 2.2. Finally in Section 2.3 we introduce an

operator formulation for the American option price useful for the derivation of the theoretical results.

2.1 The framework

We consider an incomplete market framework in discrete time. The time index t, with t ∈ N, iden-

tifies a trading day. A fundamental asset (a stock, say) with price St, a short-term non-defaultable

zero-coupon bond and a set of American options with different contract characteristics written on the

fundamental asset are traded on the market. The state variables are the daily geometric return on the

fundamental asset rt := log (St/St−1) and a (d− 1)-dimensional stochastic vector σt of relevant pric-

ing factors, with d ≥ 2. The vector σt can include the daily volatility of the stock return, the stock

dividend yield and the discount rate. We refer generically to σt as the volatility factor. We collect the

state variables in the vector Xt := [rt σ
′
t]
′. The filtration generated by the process (Xt) represents the

flow of information available to the investor and coincides with the filtration generated by the sequence

of [St σ
′
t]
′, given the initial asset value S0.

Assumption 1. Under the physical probability measure P , the process (Xt) is stationary, time-

homogeneous and Markov of order 1 in X = R× S ⊂ R× Rd−1 with transition density f(xt|xt−1).

When the return volatility is included in vector σt, Assumption 1 is compatible with the usual discrete

time stochastic volatility models and multivariate volatility factor models.2 Assumption 1 allows for

both a contemporaneous leverage effect, through the dependence between rt and the underlying asset

volatility conditional on Xt−1, and a lagged leverage effect, through the dependence of the underlying
2In a standard discrete time one-factor stochastic volatility model σt is a scalar (d = 2) and represents the volatility of

the stock return. We have rt = µ(σt) + σtεt, σt = a(σt−1, ut), where [εt ut]
′ ∼ IIN

([
0
0

]
,

[
1 ρ
ρ 1

])
. This model

allows for a leverage effect through the contemporaneous correlation ρ between the shocks on the geometric return and
volatility of the stock, and is compatible with Assumption 1. Markov processes of order m > 1 for the volatility σt are
compatible with Assumption 1 if we extend the state variables vector as Xt := [rt σt . . . σt−m+1]′ and d = m+ 1.
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asset volatility on rt−1. Since the state variables are assumed observable by the econometrician, the un-

derlying asset volatility has to be replaced by an observable proxy such as a realized volatility measure

(see Broadie, Detemple, Ghysels and Torrés [2000a]). Note that the underlying asset return rt, and

not its price St, is included in the state variables vector Xt since we invoke stationarity and ergodicity

conditions for Xt to prove consistency and asymptotic normality of the estimators in Sections 4 and 5.

We assume that the prices of all traded assets are compatible with a (not necessarily unique) risk-

neutral probability measure Q associated with a SDF (Hansen and Richard [1987] and Gouriéroux

and Monfort [2007]) satisfying the next Assumption 2.

Assumption 2. The one-day SDF Mt,t+1 between date t and date t+ 1 is a function of the value of the

state variables at date t+ 1, i.e. Mt,t+1 = m(Xt+1).

Under Assumptions 1 and 2 the sequence of random vectors Xt is a time-homogeneous Markov pro-

cess of order 1 also under the risk-neutral probability measure Q.

For expository purpose, in Sections 2.2-5 we consider null risk-free rate and dividend yield on the

stock.3 The results can be extended to stochastic risk-free rate and dividend yield by including them

in vector σt and considering cum-dividend stock returns. We use a constant non-zero risk-free rate in

Section 6 for our Monte Carlo experiment.

2.2 The American put options

Let us consider an American put stock option with strike price K > 0. Its payoff at exercise is

(K − S)+ := max [K − S, 0], if the stock price is S.4 By the principle of dynamic programming and

Assumption 1, the price V (h,K, S, x) of the American put option with time-to-maturity h and strike

price K at a date with underlying asset price S and state vector x is such that

V (h,K, S, x) =


max

[
(K − S)+,EQ [V (h− 1, K, St+1, Xt+1)|St = S,Xt = x]

]
, for h > 0,

(K − S)+ , for h = 0,

(2.1)

where EQ [ ·|St = S,Xt = x] denotes the conditional expectation operator under the risk-neutral prob-

ability measure Q given St and Xt. The quantities EQ [V (h− 1, K, St+1, Xt+1)|St = S,Xt = x] and
3In such a case, the prices of some American options (like calls) can be equal to the prices of European options written

on the same underlying and with the same contract characteristics. We do not use this equivalence to derive our results.
4The results in the paper extend to options with payoff at exercise ϕ(S,K) that is linearly homogeneous w.r.t.

the stock price, i.e., ϕ(S,K) = Sϕ(1,K/S). For instance, an American chooser option has payoff at exercise
ϕ(S,K) = max

[
(K − S)

+
, (S −K)

+
]
. When the homogeneity property is not satisfied, the approach in the paper

adapts by defining Yt := [St X
′
t]
′ in Equation (2.2). Moreover, when the option is written on a different underlying than

stocks, such as volatility options, this underlying plays the role of the fundamental asset in the paper.
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(K − S)+ are the continuation (or holding) value and the early exercise payoff (or intrinsic value) of

the option when St = S,Xt = x, respectively. The latter is the value of the option if it is exercised,

the former if it is not. The American option price is the maximum between them. The option price

depends on the available information at date t by means of St and Xt only, since process (St, Xt)

is Markov under Q, and it is therefore time-homogeneous. Equation (2.1) corresponds to the value

iteration algorithm (see Carriere [1996] and Tsitsiklis and Van Roy [2001]).

Let us show that the dimensionality of the option valuation problem can be reduced by exploiting

an homogeneity property of the American option price function. For a given strike K > 0 let us

introduce the process of the moneyness strike kt := K/St associated with St. From Assumptions 1

and 2, the process of the variable

Yt := [kt X
′
t]
′ (2.2)

in Y := R+×X is time-homogeneous and Markov of order 1 under both P and Q. Its transition law

is independent of the strike K under both P and Q. By the Markovianity of process (Yt) under Q,

we deduce the next Proposition 1, which states an homogeneity property of the American option price

w.r.t. the underlying asset price similar to Merton [1973] and Merton [1990].5

Proposition 1. Under Assumptions 1 and 2, the American put option price V (h,K, S, x) is a linearly

homogeneous function of the underlying asset price:

V (h,K, S, x) = Sv(h, y),

where y = [k x′]′, k = K/S, the American put option-to-stock price ratio function v is such that

v(h, y) =


max

[
(k − 1)+, EQ [ert+1v(h− 1, Yt+1)|Yt = y

]]
, for h > 0,

(k − 1)+, for h = 0,

(2.3)

for any y ∈ Y , and EQ [·|Yt = y
]

denotes the conditional expectation under the risk-neutral proba-

bility measure Q given Yt = y.

Proof. See Appendix B.

From Proposition 1, the American put option-to-stock price ratio V (h,K, S, x)/S is a function of

only the time-to-maturity h, the current moneyness strike k = K/S and the current state variables

5Theorem 9 in Merton [1973] and Theorem 8.6 in Merton [1990] show that the American call price function is ho-
mogeneous of degree 1 in the underlying asset and strike prices, when the underlying asset returns are independent and
identically distributed or follow an autonomous diffusion process, respectively.
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vector x. Since the risk-neutral transition law of the Markov process (Yt) is independent of strike

K, the option-to-stock price ratio is independent of K when the moneyness strike k is given. Thus,

the homogeneity property in Proposition 1 reduces the dimensionality of the valuation problem, since

function v(h, ·) gives the option-to-stock price ratio at time-to-maturity h for any strike K, stock

price S and state variables vector x. The daily stock gross return ert+1 = St+1/St in the conditional

expectation in Equation (2.3) accounts for the fact that we consider option-to-stock price ratios. Since

EQ [ert+1|Yt = y
]

= 1, for almost every (a.e.) y ∈ Y , by the martingale property of the stock price

under Q, the conditional expectation EQ [ert+1v(h− 1, Yt+1)|Yt = y
]

in Equation (2.3) can be written

as the expectation EQ̃ [v(h− 1, Yt+1)|Yt = y
]

under an equivalent probability measure Q̃.6 Hence,

Equation (2.3) admits the standard formulation of a backward dynamic programming iteration.

The function v determines the optimal exercise policy, i.e. the stopping rule. More precisely, the

continuation region at any time-to-maturity h ≥ 1 is defined as

C(h) :=
{
y = [k x′]′ ∈ Y : v(h, y) > (k − 1)+

}
. (2.4)

The set-theoretical complement of C(h) in Y is the exercise (or stopping) region. The frontier between

the two regions is the exercise boundary, and the values of y on this frontier are called critical.

2.3 The American put pricing operator

Following Proposition 1 we compute the American put option-to-stock price ratio v(h, y) recursively

backward w.r.t. the time-to-maturity h. This recursion can be expressed in terms of a pricing operator

acting on L2(Y), that is the linear space of functions ϕ on Y such that
∫
Y
ϕ(y)2fX(x)

k2
dy <∞ , where

fX denotes the stationary density of Xt.7

Definition 1. The American put pricing operator A : L2(Y) → L2(Y) maps a payoff-to-stock price

ratio ϕ ∈ L2(Y) into the put option-to-stock price ratio A[ϕ] ∈ L2(Y), that is defined as

A[ϕ](y) := max
[
(k − 1)+, EQ [ert+1ϕ(Yt+1)|Yt = y

]]
, for all y = [k x′]′ ∈ Y .

The linear operator that maps ϕ ∈ L2(Y) into EQ [ert+1ϕ(Yt+1)|Yt = ·
]
∈ L2(Y) is the conditional

expectation operator for Markov process (Yt) under the probability measure Q̃. This operator acts on

a payoff at date t+ 1 and returns its price at date t taking the stock price as numéraire. By a change of
6This equivalent (to P and Q) probability measure, under which the process (1/St) is a martingale, is sometimes

called the dual (to Q) martingale measure (see, e.g., Shiryaev, Kabanov, Kramkov and Melnikov [1994]).
7We prove that the American put pricing operator maps L2(Y) into itself in Appendix C. See Peskir and Shiryaev

[2006], p.15, for a similar operator representation of the Wald-Bellman equations.
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variable and Assumption 2, we can rewrite this operator through the historical transition density of Xt

and the SDF:

EQ [ert+1ϕ(Yt+1)|Yt = y
]

=

∫
X
m(xt+1)ert+1ϕ(ke−rt+1 , xt+1)f(xt+1|x)dxt+1, y ∈ Y . (2.5)

From Proposition 1 the option-to-stock price ratio function satisfies the backward recursion v(h, y)

= A[v(h− 1, ·)](y), with value at maturity v(0, y) = (k − 1)+. Thus, we get

v(h, y) = Ah[v(0, ·)](y), for all h ∈ N and y ∈ Y , (2.6)

where Ah denotes the h-fold application of operator A.

3 A semi-parametric option pricing model

Building on the framework of Section 2, we now introduce a semi-parametric option pricing model. We

consider the parameterization of the SDF in Section 3.1 and describe the restrictions on the parameters

induced by the no-arbitrage assumption in Section 3.2. Finally in Section 3.3 we derive the sensitivity

of the American option-to-stock price ratios to a change in the model parameters.

3.1 The historical and risk neutral parameters

The SDF is parameterized by a finite-dimensional parameter, while the historical transition density f

of process (Xt) in Assumption 1 is left unconstrained.

Assumption 3. The one-day SDF Mt,t+1 between date t and date t + 1 is a function of the unknown

parameter vector θ0 ∈ Θ, i.e. Mt,t+1 = m(Xt+1; θ0), where m is a known function and Θ ⊂ Rp is the

SDF parameter set.

The parameter vector θ includes the risk premia associated with the priced risk factors. In an incom-

plete market framework, a multiplicity of admissible SDF’s may exist. Here we implicitly assume that

only one valid SDF admits the parametric specification in Assumption 3. This is made explicit by the

identification conditions for parameter θ in Section 5 (see Assumptions 5 and 7).

From Equation (2.5) and Assumption 3 the pricing operator A in Definition 1 involves both the

finite-dimensional parameter θ and the infinite-dimensional parameter f . We denote by Aθ,f the pric-

ing operator A defined for generic parameters θ and f . This operator yields a semi-parametric pricing

model for American put options through Equation (2.6). The goal is to estimate the true SDF param-

eter θ0 and the true historical transition density f0. Then, by the plug-in principle, we can estimate
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the American put option-to-stock price ratio Ah?θ0,f0
[v(0, ·)](k?, xt0) at the current date t0 for any given

moneyness strike k? and time-to-maturity h?, as well as other functionals of interest that depend on

the true parameters (θ0, f0).

3.2 The no-arbitrage restrictions

The true values θ0 and f0 of the model parameters are estimated from the information contained in the

no-arbitrage restrictions implied by the market prices. The data consist of two sets of observations.

First, we have a sample of N cross-sectionally observed prices of American put options with times-

to-maturity hj and moneyness strikes kj , where j = 1, . . . , N , traded at the current date t0. The

corresponding option-to-stock price ratios are denoted by vj , for j = 1, . . . , N . The N options are

in the continuation region, i.e. vj > (kj − 1)+, for j = 1, . . . , N . Second, we have a sample of T

historical observations xt, where t = t0 − T + 1, . . . , t0, for the state variables vector before date t0.

The observational design for the options reflects the common practice of cross-sectional calibra-

tion. This practice accounts for the fact that the set of actively traded options changes from one trading

day to the next one. The results of the paper can be extended to include a few cross-sections of ob-

served option prices with minor modifications. The extension of the asymptotic analysis to include

a full panel of option prices at every trading day in the sample is more difficult because of the time-

varying random number and characteristics (time-to-maturity and moneyness strike) of the actively

traded options and is beyond the scope of this paper. Furthermore, we do not include in the sample op-

tions which are exercised at date t0 since the corresponding no-arbitrage restrictions imply inequality

constraints on (θ0, f0), which make the econometric analysis considerably more complex.

The one-day no-arbitrage restrictions on the underlying stock and on the short-term non-defaultable

bond are 
E0 [m(Xt+1; θ0)ert+1|Xt = x] = 1,

E0 [m(Xt+1; θ0)|Xt = x] = 1,

for a.e. x ∈ X , (3.1)

respectively, where E0 [·|Xt = x] denotes the conditional expectation under the true historical prob-

ability measure given Xt = x. The conditional moment restrictions (3.1) are valid uniformly in the

conditioning value of the state variables vector. We refer to them as uniform capital market restrictions.

The no-arbitrage restrictions on the cross-sectionally observed American option prices at date t0,

that we call derivative market restrictions, are given by

g(θ0, f0) = 0, (3.2)
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where the vector functional g = [g1 . . . gN ]′ with argument (θ, f) is defined by gj(θ, f) :=

Ahjθ,f [v(0, ·)](yj) − vj , with yj := [kj x
′
0]′ and x0 := xt0 , for j = 1, · · · , N . The derivative market

restrictions (3.2) are not parametric moment restrictions, since we cannot write them as an expectation

under f0 of a known function of the unknown parameter θ0 and the data. Indeed, the restriction vector

g depends nonlinearly on f because of the multi-day nature of the constraints and the exercise decision

embodied in the pricing operator. Moreover the derivative market restrictions (3.2) are local in nature,

holding for the value x0 of the state variables vector at date t0 only. These features explain why our

framework differs from the standard GMM setting (Hansen [1982] and Hansen and Singleton [1982])

as well as from the XMM setting (Gagliardini, Gouriéroux and Renault [2011]).

The set of no-arbitrage restrictions is given by System (3.1) and Equation (3.2). For the definition

and interpretation of the estimators in Section 4, we rewrite these restrictions in an equivalent form.

The restrictions (3.1) can be written as E0 [ΓU(Xt+1; θ0)|Xt = x] = 0, for a.e. x ∈ X , where

ΓU(x; θ) := m(x; θ)[er 1]′ − [1 1]′ (3.3)

is the moment function for the capital market restrictions. Moreover, since the N traded options at

date t0 are in the continuation region, their prices equal the holding values. Thus, by using Definition

1 and Equation (2.5), the restriction (3.2) can be rewritten as E0 [γS(Xt+1; θ0, f0)|Xt = x0] = 0, where

the vector function γS = [γS,1 . . . γS,N ]′ is defined as

γS,j(x; θ, f) := m(x; θ)γ1,j(x; θ, f)− vj, γ1,j(x; θ, f) := erAhj−1
θ,f [v(0, ·)](kje−r, x), (3.4)

for j = 1, · · · , N and any x ∈ X . We gather the restrictions (3.1) and (3.2) into system
E0 [ΓU(Xt+1; θ0)|Xt = x] = 0, for a.e. x ∈ X ,

E0 [γS(Xt+1; θ0, f0)|Xt = x0] = 0.

(3.5)

Vector γS defines a short-term quasi moment function for the derivative market restrictions. Vector γS

is not a feasible parametric moment function since, when hj > 1 for some option j, it involves the

unknown transition density f0 through γ1,j , that is, the one-day-ahead price of option j in units of the

current underlying asset price.8

8We could consider γS as a moment function involving both a finite-dimensional parameter θ and an infinite-
dimensional parameter f as in Ai and Chen [2003]. However, their estimation approach cannot be applied here since
the restriction is local and not uniform w.r.t. the conditioning value of the state variables vector. Moreover, the estimation
approach has to account for parameter f being the transition density of the observed state variables.
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3.3 Sensitivity of the derivative market constraints to the model parameters

The informational content of the derivative market restrictions (3.2) depends on the sensitivity of vector

functional g to an infinitesimal change in parameters θ and f . In Proposition 2 below we compute the

gradient∇θ′gj of function gj(·, f) w.r.t. the finite-dimensional parameter θ, and the Fréchet derivative

of functional gj(θ, ·) w.r.t. the infinite-dimensional parameter f , for j = 1, . . . , N . The Fréchet

derivative at f in the direction ∆f , denoted by 〈Dgj(θ, f),∆f〉, measures the first-order variation of

gj(θ, ·) when we perturb the transition density from f to f + ∆f , holding parameter θ fixed. Hence

gj(θ, f + ∆f) = gj(θ, f) + 〈Dgj(θ, f),∆f〉+O
(
‖∆f‖2

∞
)
, (3.6)

where ‖∆f‖∞ denotes the supremum norm of ∆f (see, e.g., Ichimura and Todd [2007] for the use of

the Fréchet derivative in nonparametric and semi-parametric methods).

Proposition 2. Let parameters (θ, f) satisfy the no-arbitrage restrictions g(θ, f) = 0 and

Ef [ΓU(Xt+1; θ)|Xt = x] = 0, for a.e. x ∈ X , where Ef [·|Xt = x] denotes the expectation w.r.t.

the pdf f(·|x). Moreover, assume that yj is in the interior of the continuation region Cθ,f (hj) for time-

to-maturity hj and parameters (θ, f), for all j = 1, . . . , N . Then, under Assumptions 1-3, and A 2 and

A 8 in Appendix A, the Fréchet derivative of gj(θ, ·) at f in the direction ∆f is

〈Dgj(θ, f),∆f〉 =

∫
X
m(x; θ)γ1,j(x; θ, f)∆f(x|x0)dx

+

∫
X

∫
X
m(x; θ)γ2,j(x, x̃; θ, f)∆f(x|x̃)dxdx̃, (3.7)

and the gradient of gj w.r.t. θ is

∇θ′gj(θ, f) = Ef [(∇θ′m(Xt+1; θ)) γ1,j(Xt+1; θ, f)|Xt = x0]

+

∫
X

Ef [(∇θ′m(Xt+1; θ)) γ2,j(Xt+1, x̃; θ, f)|Xt = x̃] dx̃, (3.8)

for j = 1, . . . , N , where functions γ1,j(x; θ, f) are given in Equations (3.4) and

γ2,j(x, x̃; θ, f) :=

hj∑
l=2

fQ
θ,l−1(x̃|x0)EQ

θ,f

[
1Cθ,f (hj−1)(Yt+1) . . .1Cθ,f (hj−l+1)(Yt+l−1)

·eRt,lAhj−lθ,f [v(0, ·)](Yt+l)

∣∣∣∣∣Xt+l = x,Xt+l−1 = x̃, Yt = yj

]
, (3.9)
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and where Rt,l =
l∑

i=1

rt+i is the cumulated geometric stock return between day t and day t+ l, 1Cθ,f (h)

is the indicator of the continuation region for time-to-maturity h and parameters (θ, f), the conditional

expectation EQ
θ,f [·|·] is taken under the risk-neutral probability measure of (Yt) for parameters (θ, f),

and fQ
θ,l−1 is the (l − 1)-day risk-neutral transition density of (Xt) for parameters (θ, f).

Proof. See Appendix D.

The Fréchet derivative in Equation (3.7) involves two components. The first one yields the sensitivity to

infinitesimal perturbations ∆f(·|x0) of the transition density for the conditioning value x0 of the state

variables vector at t0. The second one yields the integrated sensitivity to infinitesimal perturbations

∆f(·|x̃) of the transition densities for the conditioning values x̃ ∈ X . This decomposition of the

Fréchet derivative results from the multi-day nature of the constraint vector g and an application of a

functional version of the product rule for differentiation. Indeed, since in Proposition 2 the options are

assumed to be in the continuation region at date t0 for parameters (θ, f), we have

gj(θ, f) =

∫
X
m(x; θ)γ1,j(x; θ, f)f(x|x0)dx− vj, (3.10)

in a neighborhood of parameters values, for j = 1, . . . , N . Thus, if we hold the transition density f

in the normalized future option-to-stock price ratio γ1,j(x; θ, f) fixed, the quantity gj(θ, f) is sensitive

to an infinitesimal perturbation in parameter f only through the perturbation in the pdf f(·|x0). The

associated short-term sensitivity is measured by functionm·γ1,j , which yields the first term in the RHS

of Equation (3.7). The dependence of the normalized future option-to-stock price ratio γ1,j(x; θ, f) on

the transition density f explains the second term in the RHS of Equation (3.7). Since γ1,j(x; θ, f)

involves a (hj − 1)-fold application of the pricing operator Aθ,f , function γ2,j(x, x̃; θ, f) in the long-

term sensitivity consists of a sum over hj − 1 terms. The term for index l, with 2 ≤ l ≤ hj , involves

a conditional expectation under the risk-neutral probability measure of the l-day-ahead option price in

units of the stock price at the current date. The expectation is w.r.t. the paths of process (Yt) that lie

in the continuation region between t and t + l − 1, and is conditional on Xt+l = x, Xt+l−1 = x̃ and

Yt = yj . The weight fQ
θ,l−1(x̃|x0) accounts for the risk-neutral likelihood of a (l − 1)-day transition

of the state variables vector from x0 to x̃. Function γ2,j is equal to zero if the j-th option has time-to-

maturity hj = 1.9

Finally, the gradient of the local constraint vector g w.r.t. θ in Equation (3.8) also involves two

9The max operator inA does not prevent differentiability of g(θ, ·). Indeed, the kinks induced by the exercise decisions
at future dates are smoothed by a subsequent application of the conditional expectation operator (see the proof of Proposi-
tion 2 in Appendix D), while the kink for the exercise decision at the current date is irrelevant since the N options are in
the continuation region.
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components, that are a conditional expectation given Xt = x0 and a conditional expectation integrated

over the conditioning value x̃ ∈ X , respectively. These two components come from the application of

the product rule for differentiation w.r.t. θ in the RHS of Equation (3.10).

4 Semi-parametric estimation

In this section we introduce semi-parametric estimators of the model parameters and of some of their

functionals. To get numerically tractable estimators, we focus on a two-step estimation procedure. It

consists in first getting an estimator of the SDF parameter θ0, and then using it to derive an estimator of

the historical transition density f0. We consider a minimum-distance estimator of the SDF parameter

that exploits the information in the local no-arbitrage restrictions at the current date only (Section 4.1),

and another one that exploits the full set of no-arbitrage restrictions (Section 4.2). We then introduce

an estimator of the transition density that minimizes an information-theoretic criterion subject to the

full set of no-arbitrage restrictions (Section 4.3). Finally, we introduce an estimator for a class of

functionals of θ0 and f0 that includes the prices of American options (Section 4.4).

4.1 The cross-sectional estimator of the SDF parameter

The estimators we consider require preliminary nonparametric estimators of the historical transition

and stationary densities of process (Xt) as input. For this purpose, we use kernel density estimators.

We need some standard assumptions on the serial dependence of process (Xt) (see, e.g., Bosq [1998]).

Assumption 4. Under the physical probability measure P , the process (Xt) is geometrically strong

mixing, that is, the α-mixing coefficients αj , for j ∈ N, are such that αj = O(%j), as j → ∞, for a

scalar % ∈ (0, 1).

Under Assumption 4 the serial dependence between Xt and Xt−j , for j ∈ N, decays geometrically

fast as the time lag j increases. Assumption 4 is satisfied by a wide class of commonly used linear

and non-linear time-series processes (see, e.g., Carrasco and Chen [2002]). When the state variables

process (Xt) corresponds to discrete-time observations of an underlying continuous time diffusion

process, the Markov property in Assumption 1 holds and we require that the skeleton of the process

satisfies Assumption 4 (see Chen, Hansen and Carrasco [2010] for sufficient conditions on the drift

and volatility functions). The kernel estimator of the historical transition density of process (Xt) is

f̂(x|x̃) :=
1

hdT

T∑
t=2

K

(
xt − x
hT

)
K

(
xt−1 − x̃
hT

)/ T∑
t=2

K

(
xt−1 − x̃
hT

)
(4.1)
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and the kernel estimator of the historical stationary density fX is

f̂X(x) :=
1

ThdT

T∑
t=1

K

(
xt − x
hT

)
, (4.2)

where K is a d-dimensional kernel, hT is the bandwidth (see, e.g., Bosq [1998]) and we have switched

to the simpler notation x1 := xt0−T+1, . . . , xT := xt0 .10

The full set of no-arbitrage restrictions at date t0 includes the capital market restrictions (3.1) for

the state value x0 and the derivative market restrictions (3.2). This set of local restrictions can be

written as

G(θ0, f0) = 0, (4.3)

where the (N + 2)-dimensional vector functional G(θ, f) is defined by

G(θ, f) = [Ef [ΓU(Xt+1; θ)|Xt = x0]′ g(θ, f)′]′. (4.4)

We follow the minimum distance principle and estimate parameter θ by minimizing a quadratic cri-

terion based on the sample counterpart G(θ, f̂) of the local restrictions at date t0. This sample coun-

terpart is defined by replacing the transition density f with the kernel estimator f̂ into Equation (4.4).

Vector Ef̂ [ΓU(Xt+1; θ)|Xt = x0] =

∫
X

ΓU(x; θ)f̂(x|x0)dx is the conditional expectation of the mo-

ment function ΓU(·; θ) w.r.t. the kernel density f̂(·|x0). Vector g(θ, f̂) involves the empirical American

put pricing operator

Aθ,f̂ [ϕ](y) = max
[
(k − 1)+,Ef̂ [m(Xt+1; θ)ert+1ϕ(ke−rt+1 , Xt+1)|Xt = x]

]
, (4.5)

for ϕ ∈ L2(Y) and y ∈ Y , in which the continuation value is computed as a risk-adjusted conditional

expectation under the kernel probability measure. The practical implementation of operator Aθ,f̂ is

discussed in Section 6 in an example.

Definition 2. The cross-sectional estimator of the SDF parameter θ0 is θ̂ := arg min
θ∈Θ

QT (θ), for the

criterion QT (θ) := G(θ, f̂)′ΩTG(θ, f̂), where ΩT is a positive-definite (N + 2)× (N + 2) weighting

matrix for all T , P -a.s.

The estimator θ̂ yields the SDF parameter that minimizes a weighted sum of squared errors on price

ratios at date t0 for the options, the stock and the short-term non-defaultable bond.

10In the Monte-Carlo experiment in Section 6, the different components of vector Xt are rescaled before applying the
common bandwidth hT .
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4.2 The XMM estimator of the SDF parameter

The estimator of the SDF parameter introduced in the previous section can be improved by extending

the set of calibrated constraints to accommodate both the local restrictions at date t0 and the uniform

moment restrictions on the bond and stock at all dates. In this section we build on the Extended Method

of Moments (XMM) estimation for efficient pricing of European options developed in Gagliardini,

Gouriéroux and Renault [2011] and we introduce a second estimator of the SDF parameter.

Definition 3. The XMM estimator of the SDF parameter θ0 is θ̂∗ := arg min
θ∈Θ

Q∗T (θ), for the criterion

Q∗T (θ) := hdTG(θ, f̂)′ΩTG(θ, f̂) +
1

T

T∑
t=1

Ef̂ [ΓU(Xt+1; θ)|Xt = xt]
′Ω̃T (xt)Ef̂ [ΓU(Xt+1; θ)|Xt = xt],

where Ω̃T (x) is a positive-definite 2× 2 weighting matrix for all T and x ∈ X , P -a.s., and matrix ΩT

is as in Definition 2.

The objective function Q∗T in Definition 3 involves two components. The first one is a quadratic form

in the estimated local no-arbitrage restrictions at date t0. It corresponds to the objective function

QT of the cross-sectional estimator in Definition 2 multiplied by hdT . The second component in Q∗T
is a time-series average of quadratic forms in the vectors Ef̂ [ΓU(Xt+1; θ)|Xt = xt] with weighting

matrices Ω̃T (xt), for t = 1, . . . , T . The average is over the state variables observations. The vector

Ef̂ [ΓU(Xt+1; θ)|Xt = xt] is an empirical counterpart of the no-arbitrage restriction vector for the stock

and the bond at state variables vector xt, which is asymptotically equivalent to a Nadaraya-Watson

kernel regression estimator. Thus, the second component ofQ∗T (θ) is similar to the minimum distance

criterion introduced in Ai and Chen [2003] to estimate conditional moment restrictions models (see

also Nagel and Singleton [2010] for the use of optimal instruments in estimating conditional asset

pricing models). In the cross-sectional component of criterion Q∗T (θ) we single out the factor hdT that

shrinks to zero with the sample size. This factor introduces a down-weighting of the cross-sectional

component of the criterionQ∗T to ensure a suitable convergence rate for estimator θ̂∗ (see Section 5.2).

4.3 The semi-parametric estimator of the historical transition density

Let us now consider the estimation of the historical transition density f0 of the state variables. The

nonparametric kernel estimator f̂ in Equation (4.1) does not take into account the information con-

tained in the no-arbitrage restrictions. We propose to estimate f0 by the transition density that satisfies

the no-arbitrage restrictions and is the closest to f̂ in the sense of a particular statistical measure. This

measure is based on the Kullback-Leibler divergence between the transition density f and the kernel
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transition density estimator f̂ for a given conditioning value x̃ ∈ X , that is defined as

dKL(f, f̂ |x̃) :=

∫
X

log

(
f(x|x̃)

f̂(x|x̃)

)
f(x|x̃)dx.

Definition 4. The semi-parametric estimator of the historical transition density f0 is

f̂ ∗ := arg min
f∈F

DT (f, f̂), s.t.


Ef [ΓU(Xt+1; θ̂∗)|Xt = x] = 0, for a.e. x ∈ X ,

G(θ̂∗, f) = 0,

where

DT (f, f̂) :=

∫
X
dKL(f, f̂ |x)f̂X(x)dx+ ωTdKL(f, f̂ |x0), (4.6)

estimators f̂ , f̂X and θ̂∗ are defined in Equations (4.1) and (4.2) and Definition 3, set F is the set of

d-dimensional Markov transition densities and the weight ωT is such that ωT > 0, P -a.s.

The first component in criterion DT is the average Kullback-Leibler divergence over X weighted by

the kernel density estimator f̂X . The second component is the local Kullback-Leibler divergence at

x0 weighted by ωT . This local component ensures that the minimization admits a unique solution

for f̂ ∗(·|x0). The constraints involve both the uniform and the local restrictions, written for the SDF

parameter estimate θ̂∗.

Let us now characterize estimator f̂ ∗ in terms of the first-order condition. We start by defining the

functional Lagrangian corresponding to the criterion and the restrictions:

L := DT (f, f̂)− ωTλ′g(θ̂∗, f)− ωTν ′0Ef [ΓU(Xt+1; θ̂∗)|Xt = x0]− ωTµ0

∫
X
f(x|x0)dx

−
∫
X
f̂X(x̃)ν(x̃)′Ef [ΓU(Xt+1; θ̂∗)|Xt = x̃]dx̃−

∫
X
f̂X(x̃)µ(x̃)

∫
X
f(x|x̃)dxdx̃. (4.7)

Vectors λ := [λ1 . . . λN ]′ ∈ RN and ν0 := [ν0,1 ν0,2]′ ∈ R2 are the Lagrange multiplier vectors for

the local derivative and capital market restrictions at t0, respectively, while ν(·) := [ν1(·) ν2(·)]′ is a

bivariate functional Lagrange multiplier vector for the uniform no-arbitrage restrictions. The scalar

µ0 is the Lagrange multiplier for the local unit mass constraint
∫
X
f(x|x0)dx = 1 and the Lagrange

multiplier scalar function µ accounts for the unit mass constraint
∫
X
f(x|x̃)dx = 1, that holds for all

x̃ ∈ X . The Lagrange multipliers λ, ν0 and µ0 in Equation (4.7) are multiplied by the weight ωT ,

and functions ν and µ by f̂X , to simplify the expressions of the estimators. The differential of the
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functional Lagrangian L w.r.t. the historical transition density f is equal to zero at f̂ ∗:

δL|f=f̂∗ = 0. (4.8)

The differential of the functional Lagrangian is derived in Appendix E by using Proposition 2. By

solving the first-order condition in Equation (4.8), we deduce the next Proposition 3.

Proposition 3. Under Assumptions 1-4, the estimator f̂ ∗ of the historical transition density and the

estimators λ̂, ν̂0 and ν̂(·) of the Lagrange multiplier vectors are such that

f̂ ∗(x|x̃) =



f̂(x|x0) exp
(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
∫
X
f̂(x|x0) exp

(
ν̂ ′0ΓU(x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂ ∗)

)
dx
, if x̃ = x0,

f̂(x|x̃) exp
(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
∫
X
f̂(x|x̃) exp

(
ν̂(x̃)′ΓU(x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂ ∗)
/
f̂X(x̃)

)
dx

, if x̃ 6= x0,

(4.9)

and 
Ef̂∗

[
ΓU(Xt+1; θ̂∗)

∣∣∣Xt = x
]

= 0, for a.e. x ∈ X ,

Ef̂∗

[
γS(Xt+1; θ̂∗, f̂ ∗)

∣∣∣Xt = x0

]
= 0,

(4.10)

where the vector function γL is defined by

γL(x, x̃; θ, f) := m(x; θ) · [γ2,1(x, x̃; θ, f) . . . γ2,N(x, x̃; θ, f)]′, (4.11)

for functions γ2,j defined in Equation (3.9).

Proof. See Appendix E.

The estimator f̂ ∗ of the historical transition density in Proposition 3 is an exponential tilting transfor-

mation of the kernel estimator f̂ , i.e. f̂ ∗ = T̂ ∗f̂ , say, where T̂ ∗ is the exponential tilting factor. When

the conditioning value for the historical transition density is x0, the tilting in Equation (4.9) involves

the moment function ΓU of the uniform capital market restrictions as well as the vector γS with the

short-term components of the Frechét derivatives of the constraints for the options. Otherwise, the

tilting involves moment vector ΓU and vector γL, which is the analogue of vector γS for the long-term

components of the Frechét derivatives of the constraints for the options. The constraints in System

(4.10) are empirical counterparts of the constraints in System (3.5). Moreover, the estimator f̂ ∗ is

defined implicitly by Equation (4.9) and System (4.10). Indeed, the vector functions γS and γL involve
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the estimator f̂ ∗ itself. Proposition 3 extends the results in Kitamura and Stutzer [1997] and Kitamura,

Tripathi and Ahn [2004], where information-based GMM estimators for models with unconditional,

respectively conditional, moment restrictions are considered. In these articles, the tilting function in-

volves the orthogonality function defining the (conditional) moment restrictions, which is independent

of the transition f .

Proposition 3 suggests an iterative algorithm to compute numerically estimator f̂ ∗ and the estima-

tors λ̂, ν̂0 and ν̂(·) of the Lagrange multipliers. The algorithm is as follows:

i) In a preliminary step, we select the initial consistent estimator f̂ ∗(0) = f̂ for f , based on λ̂(0) = 0,

ν̂
(0)
0 = 0 and ν̂(0) = 0.

ii) We compute functions γS(x; θ̂∗, f̂ ∗(0)) and γL(x, x̃; θ̂∗, f̂ ∗(0)).

iii) We compute λ̂(1) and ν̂(1)
0 as

[
λ̂(1)′ ν̂

(1)′
0

]′
= arg min

λ∈RN , ν0∈R2

log Ef̂

[
exp

(
ν ′0ΓU(Xt+1; θ̂∗) + λ′γS(Xt+1; θ̂∗, f̂ ∗(0))

)∣∣∣Xt = x0

]
.

iv) We compute ν̂(1)(x̃) for any x̃ 6= x0 as

ν̂(1)(x̃) = arg min
ν∈R2

log Ef̂

[
exp

(
ν ′ΓU(Xt+1; θ̂∗) +

ωT

f̂X(x̃)
λ̂(1)′γL(Xt+1, Xt; θ̂

∗, f̂ ∗(0))

)∣∣∣∣∣Xt = x̃

]
.

v) We derive an updated estimator f̂ ∗(1) for f from Equation (4.9) using λ̂(1), ν̂(1)
0 and ν̂(1).

vi) We repeat steps ii)-v) by replacing f̂ ∗(0), λ̂(0), ν̂(0)
0 , ν̂(0) with f̂ ∗(1), λ̂(1), ν̂(1)

0 , ν̂(1), and then iterate

the algorithm until convergence.

The steps iii) and iv) are similar to the computation of the Lagrange multipliers in information-

theoretic estimation of moment restrictions models (see, e.g., Kitamura and Stutzer [1997] and Kita-

mura, Tripathi and Ahn [2004]). The Lagrange multipliers (λ̂, ν̂0) and ν̂ are updated sequentially to

ease the computation. The proof of the numerical convergence of this algorithm is beyond the scope of

the paper. In the Monte Carlo experiment in Section 6 we observe convergence after a few iterations

in most of the replications.

The estimator defined in Proposition 3 can be extended to the case where ωT = 0, that is, when

the local component in criterion (4.6) gets a zero weight. In such a case, the estimator in Equation

(4.9) and System (4.10) admits a simple interpretation. Estimate f̂ ∗(·|x̃) is the conditional density that

is the closest to the kernel estimator f̂(·|x̃) in terms of distance dKL(·, ·|x̃) and satisfies the capital

and derivative market restrictions at x̃ if x̃ = x0, and the capital market restrictions at x̃ otherwise.11

11This estimator corresponds to a particular solution of the minimization problem in Definition 4.
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The computation of the estimated conditional densities at different conditioning points x̃ can be done

separately. While our two-step approach may yield asymptotically inefficient estimates, the joint op-

timization w.r.t. θ and f combined with the grid method used to evaluate the constraint vector (see

Section 6.2) is numerically challenging.

4.4 The estimators of functionals of the model parameters

By the plug-in principle, the estimators θ̂∗ and f̂ ∗ in Definitions 3 and 4 can be used to introduce semi-

parametric estimators for a class of Rr-valued Fréchet differentiable functionals of the SDF parameter

θ and the historical transition density f . A functional a in this class is characterized by the first-order

expansion around the true parameters value (θ0, f0):

a(θ, f) = a(θ0, f0) +∇θ′a(θ0, f0) (θ − θ0) + 〈Da(θ0, f0),∆f〉+O
(
‖∆f‖2

∞ + ‖θ − θ0‖2
)
, (4.12)

for ∆f = f − f0, such that the Fréchet derivative of a(θ0, ·) w.r.t. f in direction ∆f at f0 can be

written in the form

〈Da(θ0, f0),∆f〉 =

∫
X
αS(x)∆f(x|x?)dx+

∫
X
fX(x̃)

∫
X
αL(x, x̃)∆f(x|x̃)dxdx̃, (4.13)

for some given state variables vector x? ∈ X and Rr-valued functions αS and αL.

Definition 5. The semi-parametric estimator of the true value a0 := a(θ0, f0) of the Rr-valued func-

tional a is defined as â∗ := a(θ̂∗, f̂ ∗), where θ̂∗ and f̂ ∗ are given in Definitions 3 and 4, respectively.

We exploit Equations (4.12) and (4.13) to derive the large sample properties of estimator â∗ in Section

5. The class of functionals defined by these equations contains several functionals of interest for

financial applications. We provide three examples for which we characterize functions αS and αL.

i) The American put option-to-stock price ratio

From Equation (2.6) we write the American put option-to-stock price ratio for time-to-maturity h?,

moneyness strike k? and state variables vector x? as a(θ, f) = Ah?θ,f [v(0, ·)](y?), for y? = [k? x?′]′.

Proposition 2 shows that this functional satisfies Equations (4.12) and (4.13) with

αS(x) = m(x; θ0)γ?1(x; θ0, f0), αL(x, x̃) = m(x; θ0)γ?2(x, x̃; θ0, f0)/ fX(x̃), (4.14)

where functions γ?1 and γ?2 are defined as γ1,j and γ2,j in Equations (3.4) and (3.9) by setting j = 1,

h1 = h? and y1 = y?. Then, Definition 5 gives the estimator of the American put option-to-stock price
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ratio. The continuation value involves integration w.r.t. the estimated transition density f̂ ∗ adjusted for

risk by means of the SDF m(·; θ̂∗).

ii) The exercise boundary

For given time-to-maturity h? and state variables vector x?, the critical moneyness k?θ,f is the solution

of the equation Ah?θ,f [v(0, ·)](k?θ,f , x?) =
(
k?θ,f − 1

)+ and depends on (θ, f). This defines a functional

a(θ, f) = k?θ,f , which satisfies Equations (4.12) and (4.13) with

αS(x) =
m(x; θ0)γ?1(x; θ0, f0)

1−∇kv(h?, y?)
, αL(x, x̃) =

m(x; θ0)γ?2(x, x̃; θ0, f0)

(1−∇kv(h?, y?))fX(x̃)
,

where functions γ?1 and γ?2 are as in Equations (4.14) and y? = [k?θ0,f0
x?′]′. By considering the

estimator a(θ̂∗, f̂ ∗) for different values of x?, we get an estimator of the critical region.

iii) Term structure of conditional historical and risk-neutral moments

Let Ψ(Xt+h? ; θ) be a function of the state variables at horizon h? and of the SDF parameter. Let us

consider the functional defined by a(θ, f) = Ef [Ψ(Xt+h? ; θ)|Xt = x?]. The conditional expectation

in the RHS involves the one-day transition density f only, due to the Markov property of process (Xt).

Functional a satisfies Equations (4.12) and (4.13) with

αS(x) = E0 [Ψ(Xt+h? ; θ0)|Xt+1 = x] , αL(x, x̃) =
h?∑
l=2

E0 [Ψ(Xt+h? ; θ0)|Xt+l = x]
fXt+l−1|Xt(x̃|x?)

fX(x̃)
.

The historical conditional moment generating function corresponds to Ψ(Xt+h? ; θ) =

exp (urt+h? + w′σt+h?), with u ∈ R and w ∈ Rd−1. The historical conditional moments and cross-

moments of the one-day stock return and volatility factor correspond to Ψ(Xt+h? ; θ) = rmt+h?σ
n
t+h? ,

with m ∈ N and multi-index n ∈ Nd−1. The risk-neutral counterparts of these functionals are obtained

when the functions Ψ(Xt+h? ; θ) above are multiplied by the h?-day SDFMt,t+h? = Mt,t+1 · · ·Mt+h?−1,t+h? .

In particular, when the underlying asset volatility is included in vector σt, the conditional historical

(resp. risk-neutral) cross-moments are the basis for the estimation of the conditional historical (resp.

risk-neutral) leverage effects.

5 Large sample properties of the estimators

In this section we study the large sample properties of the semi-parametric estimators introduced in

Section 4. The asymptotics is for a long time-series of observations of the state variables, i.e. T →∞,
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and a fixed number N of cross-sectionally observed option prices. We use the following notation:

Γ̄U(x) := m(x; θ0)[er 1]′, γ̄S(x) := m(x; θ0)[γ1,1(x; θ0, f0) . . . γ1,N(x; θ0, f0)]′,

Γ̄S(x) := [Γ̄U(x)′ γ̄S(x)′]′, Γ̄L(x, x̃) := [0 0 γL(x, x̃; θ0, f0)′]′/fX(x̃), (5.1)

ΓS(x) := [ΓU(x; θ0)′ γS(x; θ0, f0)′]′, ΓL(x, x̃) := Γ̄L(x, x̃)− E0

[
Γ̄L(Xt+1, Xt)

∣∣Xt = x̃
]
,

where functions ΓU , γS , γ1,j , for j = 1, . . . , N , and γL are defined in Equations (3.3), (3.4) and (4.11).

5.1 The cross-sectional estimator of the SDF parameter

Let us consider the cross-sectional estimator θ̂ in Definition 2. Under the regularity conditions in Ap-

pendix A, the criterionQT (θ) converges uniformly to the limit criterionQ0(θ) = G(θ, f0)′Ω0G(θ, f0),

where Ω0 := plim
T→∞

ΩT is a symmetric (N + 2)× (N + 2) matrix assumed to be positive-definite. Let

us assume the global identification of parameter θ0 w.r.t. the population constraint vector G(θ, f0).

Assumption 5. The unique element θ ∈ Θ such that G(θ, f0) = 0 is θ = θ0.

Under Assumption 5 the limit criterion Q0 is uniquely minimized by θ0. By the consistency theo-

rem for minimum distance estimators (see Theorem 2.1 in Newey and McFadden [1999]) we get the

following result.

Proposition 4. Under Assumptions 1-5 and A 1-10 in Appendix A, estimator θ̂ is consistent, i.e.

θ̂
P→ θ0 .

Proof. See Appendix F.1.

Let us now prove the asymptotic normality of estimator θ̂. The criterion function QT (θ) is not ev-

erywhere differentiable on Θ because of the maximum operator inAθ,f̂ (see Equation (4.5)). However,

by using Proposition 2, the consistency of kernel estimator f̂ and the fact that the N options are in the

continuation region, we show in Appendix F.2 that the criterion QT (θ) is differentiable w.r.t. any θ in

an open neighborhood of θ0, with probability approaching 1 (w.p.a. 1). This is enough to apply the

standard approach to prove the asymptotic normality of extremum estimators as in Newey and Mc-

Fadden [1999]. For this purpose, we assume local identification of parameter θ0 w.r.t. the population

constraint vector G(θ, f0).

Assumption 6. The (N + 2)× p matrix J0 := ∇θ′G(θ0, f0) is full column-rank.
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From Equation (4.4) and Proposition 2 the Jacobian matrix is J0 = JS + JL, where

JS := E0

[
Γ̄S(Xt+1)∇θ′ log (m(Xt+1; θ0))|Xt = x0

]
,

JL := E0

[
Γ̄L (Xt+1, Xt)∇θ′ log (m(Xt+1; θ0))

]
.

(5.2)

Moreover, in Appendix F.2 we derive the following asymptotic expansion of the estimator θ̂:

√
ThdT

(
θ̂ − θ0

)
= (J ′0Ω0J0)

−1
J ′0Ω0

√
ThdTG(θ0, f̂) + op(1), (5.3)

where

√
ThdTG(θ0, f̂) =

√
ThdT

∫
X

Γ̄S(x)∆f̂(x|x0)dx

+
√
ThdT

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃+ op(1). (5.4)

We use the asymptotic normality of the integrals of kernel estimators (see, e.g., Aı̈t-Sahalia [1992]) to

deduce the next Proposition 5.

Proposition 5. Under Assumptions 1-6 and A 1-10 in Appendix A, estimator θ̂ is asymptotically normal

with
√
ThdT -rate of convergence:

√
ThdT

(
θ̂ − θ0

)
D→ N

(
0,

K
fX(x0)

Σθ

)
,

for the constant K :=

∫
X
K2(x)dx and where the p× p matrix Σθ is defined as

Σθ := (J ′0Ω0J0)
−1
J ′0Ω0ΣS(x0)Ω0J0 (J ′0Ω0J0)

−1 (5.5)

and the (N + 2)× (N + 2) matrix ΣS(x0) as ΣS(x0) := V0

[
Γ̄S(Xt+1)|Xt = x0

]
, with V0 [·|Xt = x0]

denoting the conditional variance under the true historical probability measure given Xt = x0.

Proof. See Appendix F.2.

The convergence rate of estimator θ̂ is d-dimensional nonparametric due to the conditioning on the

d-dimensional vector Xt = x0 in the constraints. Moreover, the bias in the asymptotic distribution is

negligible under the bandwidth conditions in Assumption A 6 in Appendix A. The matrix J0, that is

the sum of the matrices defined in Equations (5.2), and the matrix Σθ defined in Equation (5.5) are
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reminiscent of the Jacobian and the asymptotic variance-covariance matrices of the moment function

in the classical GMM setting. The matrix ΣS(x0) is the conditional variance-covariance matrix of

vector function Γ̄S (and of ΓS as well). This matrix does not involve vector function Γ̄L since the

second term in the RHS of Equation (5.4) is asymptotically negligible. From the analogy with the

classical GMM setting, Corollary 6 follows.

Corollary 6. The weighting matrix that minimizes the asymptotic variance-covariance matrix of θ̂ is

Ω0 = ΣS(x0)−1. The minimal asymptotic variance-covariance matrix is
K

fX(x0)
(J ′0ΣS(x0)−1J0)−1.

5.2 The XMM estimator of the SDF parameter

The XMM criterion in Definition 3 exploits both the uniform restrictions (3.1) and the restrictions

(4.3) at x0. The global and local identification conditions for parameter θ0 based on this extended set

of restrictions are given below in Assumptions 7 and 8, respectively.

Assumption 7. The unique θ ∈ Θ, such that G(θ, f0) = 0 and E0[ΓU(Xt+1; θ)|Xt = x] = 0, for a.e.

x ∈ X , is θ = θ0.

Assumption 8. The unique β ∈ Rp, such that∇θ′G (θ0, f0) β = 0 and E0 [∇θ′ΓU (Xt+1; θ0) |Xt = x] β =

0, for a.e. x ∈ X , is β = 0.

Local and uniform restrictions contain information on parameter θ0 of different character. There-

fore, it is important to distinguish between the linear transformations of θ0 that are identifiable from

the uniform restrictions (3.1) alone, and the linear transformations of θ0 that are identifiable only when

the local restrictions (4.3) at x0 are also taken into account. Following Gagliardini, Gouriéroux and

Renault [2011], the former are called full-information identifiable, the latter full-information uniden-

tifiable. To characterize the two types of transformations, let us define the linear space

J := {β ∈ Rp : E0 [∇θ′ΓU (Xt+1; θ0) |Xt = x] β = 0, for a.e. x ∈ X} , (5.6)

and let s ≤ p be the dimension of J . Any linear transformation β′θ0 with β ∈ J is (locally)

full-information unidentifiable, since a change in β′θ has a vanishing first-order impact on vector

E0 [ΓU (Xt+1; θ) |Xt = x] for a.e. x ∈ X . Now, let R = [R1 R2] be an orthogonal p × p matrix, such

that the columns of the p× s matrix R2 span J . Then, the invertible parameter transformation from θ

to η = [η′1 η
′
2]′, defined by  η1

η2

 :=

 R′1θ

R′2θ

 , (5.7)
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is such that the (p − s)-dimensional vector η1 involves full-information identifiable parameters only,

while the s-dimensional vector η2 involves full-information unidentifiable parameters only.

The asymptotic distribution of estimator θ̂∗ in Definition 3 is given in Proposition 7 below in terms

of the estimators η̂∗1 := R′1θ̂
∗ and η̂∗2 := R′2θ̂

∗ of the transformed parameters. Let Ω0, defined in Section

5.1, and Ω̃0(x) := plim
T→∞

Ω̃T (x), for any x ∈ X , be the limit weighting matrices. We prove in Appendix

F.3 that the asymptotically optimal weighting matrices are Ω0 = ΣS(x0)−1 and Ω̃0(x) = ΣU(x)−1,

where ΣU(x) := V0[ΓU(Xt+1; θ0)|Xt = x], for any x ∈ X . We state the result directly for this choice.

Proposition 7. Under Assumptions 1-4, 7, 8 and A 1-11 in Appendix A, estimators η̂∗1 and η̂∗2 with

Ω0 = ΣS(x0)−1 and Ω̃0(x) = ΣU(x)−1, for any x ∈ X , are consistent, asymptotically normal and

independent, such that

√
T (η̂∗1 − η1,0)

D−→ N
(

0,
(
R′1E0

[
J̃0(Xt)

′ΣU(Xt)
−1J̃0(Xt)

]
R1

)−1
)
,

and √
ThdT (η̂∗2 − η2,0)

D−→ N
(

0,
K

fX (x0)

(
R′2J

′
0ΣS (x0)−1 J0R2

)−1
)
,

where J̃0(x) := E0 [∇θ′ΓU (Xt+1; θ0) |Xt = x], matrices R1 and R2 are defined in Equation (5.7) and

vectors η1,0 and η2,0 denote the true values of parameters η1 and η2, respectively.

Proof. See Appendix F.3.

The components of estimator θ̂∗ feature different rates of convergence, that are the parametric rate
√
T for the full-information identifiable components as in standard GMM, and the nonparametric rate√
ThdT for the full-information unidentifiable components. The uniform restrictions in the time-series

component of criterion Q∗T in Definition 3 are non-informative for the full-information unidentifiable

parameter η2,0, and the kernel estimation conditional on Xt = x0 in the cross-sectional component

of criterion Q∗T explain the nonparametric convergence rate for that parameter. The factor hdT that

down-weights the cross-sectional component of Q∗T ensures that the kernel estimation conditional on

Xt = x0 in the local restrictions does not impact asymptotically the parametric convergence rate of

the full-information identifiable parameter η1,0. Mixed-rates asymptotics are obtained also in a condi-

tional moment restrictions setting with weak identification (see Stock and Wright [2000] and Antoine

and Renault [2010]). The asymptotic variance-covariance matrix of estimator η̂∗1 in Proposition 7 is

the asymptotic efficiency bound for estimating parameter η1,0 from the uniform moment restrictions

assuming η2,0 known (see Chamberlain [1987]). The asymptotic variance-covariance matrix of esti-

mator η̂∗2 equals the minimal asymptotic variance-covariance matrix of the unfeasible cross-sectional
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estimator of parameter η2,0 assuming η1,0 known (see Corollary 6). Moreover, the estimators of the

parameters η1,0 and η2,0 are asymptotically independent. Comparing Corollary 6 and Proposition 7 we

understand that accounting for the uniform moment restrictions (3.1) allows us to increase the con-

vergence rate of the full-information identifiable parameters and to decrease in general the asymptotic

variance of the full-information unidentifiable parameters.

5.3 The estimator of the historical transition density and of its functionals

Let us now consider the estimator f̂ ∗ in Definition 4. We derive its asymptotic distribution by con-

sidering a linearization of the tilting function in Equation (4.9) in a neighborhood of (θ0, f0). Under

Assumption A 12 in Appendix A the weight ωT converges to the non-negative scalar ω. We get (see

Appendix F.4)

f̂ ∗(x|x̃) '


f̂(x|x0) + f0(x|x0)Λ̂′ΓS(x), if x̃ = x0,

f̂(x|x̃) + f0(x|x̃)
(
ν̂(x̃)′ΓU(x; θ0) + ωΛ̂′ΓL(x, x̃)

)
, if x̃ 6= x0,

(5.8)

where Λ̂ = [ν̂ ′0 λ̂
′]′. We prove in Appendix F.4 that the estimators of the Lagrange multipliers Λ̂ and

ν̂(x̃) for x̃ 6= x0 convergence to zero at rate
√
ThdT and are asymptotically normal. Thus, we get

f̂ ∗(x|x̃) = f̂(x|x̃) +Op

(
1/
√
ThdT

)
, (5.9)

for any x, x̃ ∈ X . The remainder term is dominated by the convergence rate 1/
√
Th2d

T of the ker-

nel estimator. Hence, estimators f̂ ∗ and f̂ are pointwise asymptotically equivalent, and we get the

following Proposition 8.

Proposition 8. Under Assumptions 1-4, 7, 8 and A 1-12 in Appendix A, the estimator f̂ ∗ is pointwise

asymptotically normal with
√
Th2d

T -rate of convergence:

√
Th2d

T

(
f̂ ∗(x|x̃)− f0(x|x̃)

)
D→ N

(
0,
K2f0(x|x̃)

fX(x̃)

)
,

for any x, x̃ ∈ X , where the constant K is defined in Proposition 5.

Proof. See Appendix F.4.

The asymptotic distribution of the estimators of smooth functionals of f0 and θ0 based on f̂ ∗ and f̂

differ. We give below the asymptotic distribution of estimator â∗ introduced in Definition 5 for the case
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where x? = x0 in Equation (4.13). This corresponds, e.g., to American put option-to-stock price ratios

and exercise boundary for the value x0 of the state variables vector, or to conditional cross-moments

of the future state variables given Xt = x0 (see examples i)-iii) in Section 4.4). The derivation of this

asymptotic distribution is based on the asymptotic expansion obtained from Equation (4.12):

â∗−a0 = ∇θ′a(θ0, f0)
(
θ̂∗ − θ0

)
+
〈
Da(θ0, f0),∆f̂ ∗

〉
+Op

(
‖∆f̂ ∗‖2

∞

)
+Op

(
‖θ̂∗ − θ0‖2

)
, (5.10)

where the Fréchet derivative
〈
Da(θ0, f0),∆f̂ ∗

〉
is given in Equation (4.13) with ∆f = ∆f̂ ∗ :=

f̂ ∗ − f0. Since we expect a nonparametric convergence rate for â∗, the estimation of the SDF pa-

rameter affects the asymptotic distribution of â∗ only through the estimation of the full-information

unidentifiable component η2 (see Proposition 7). The asymptotic expansion is (see Appendix F.4):

√
ThdT

(
θ̂∗ − θ0

)
= −R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1

√
ThdTG(θ0, f̂) + op(1). (5.11)

We insert Expansions (5.4), (5.8) and (5.11) into Equation (5.10), and use the asymptotic normality

of integral transformations of kernel estimators (see, e.g., Aı̈t-Sahalia [1992]). To state the result we

define the following conditional covariance matrices under the true historical probability measure:

Σαj ,i(x) := Cov0 [αj(Xt+1),Γi(Xt+1, Xt)|Xt = x] ,

Σi,l(x) := Cov0 [Γi(Xt+1, Xt),Γl(Xt+1, Xt)|Xt = x] ,

(5.12)

for the subscripts j = S, L and i, l = S, L, U and the state variables vector x ∈ X .12 We further define

the matrix Σi,j⊥l(x) := Σi,j(x) − Σi,l(x)Σl(x)−1Σl,j(x), for the subscripts i, j, l = αS, αL, S, L, U

and x ∈ X , that is the conditional covariance between the vector subscripted by i and the residual of

the projection of the vector subscripted by j onto the vector subscripted by l. We set Σi ≡ Σi,i and

Σi⊥j ≡ Σi,i⊥j for the conditional variances and the conditional variances of the projection residuals,

respectively. Moreover we consider the Jacobian matrix

JαL‖U := E0

[
ΣαL,U(Xt)ΣU(Xt)

−1Γ̄U(Xt+1)∇θ′ log (m(Xt+1; θ0))
]
,

that corresponds to the unconditional cross-second moment between ∇θ′ logm and the conditional

12Even if functions ΓS and ΓU are independent of the lagged value of the state variables, we use Equations (5.12) for a
compact notation. We also omit the dependence of ΓU on θ0.
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orthogonal projection of αL onto Γ̄U , and the Jacobian matrix

JL⊥U := E0

[(
Γ̄L (Xt+1, Xt)− ΣL,U(Xt)ΣU(Xt)

−1Γ̄U (Xt+1)
)
∇θ′ log (m(Xt+1; θ0))

]
,

that corresponds to the unconditional cross-second moment between ∇θ′ logm and the residual of the

conditional orthogonal projection of Γ̄L onto Γ̄U .

Proposition 9. Under Assumptions 1-4, 7, 8 and A 1-12 in Appendix A, the estimator â∗ for x? = x0

is asymptotically normal with
√
ThdT -rate of convergence:

√
ThdT (â∗ − a0)

D−→ N
(

0,
K

fX(x0)
Σa

)
,

where the r × r matrix Σa is defined as

Σa := ΣαS⊥S(x0) +M0(ω)ΣS(x0)M0(ω)′, (5.13)

constant K is defined in Proposition 5, and matrix M0(ω) is defined as

M0(ω) := ω

(
ΣαS ,S (x0)

(
ΣS (x0) + ωE0 [ΣL⊥U (Xt)]

)−1

E0 [ΣL⊥U(Xt)] ΣS (x0)−1

−E0 [ΣαL,L⊥U(Xt)]
(

ΣS (x0) + ωE0 [ΣL⊥U(Xt)]
)−1
)

+

((
ΣαS ,S (x0) + ωE0 [ΣαL,L⊥U (Xt)]

)(
ΣS (x0) + ωE0 [ΣL⊥U (Xt)]

)−1

(JS + JL⊥U)

+JαL‖U −∇θ′a(θ0, f0)

)
R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1, (5.14)

where ω is the probability limit of weight ωT in Definition 4.

Proof. See Appendix F.4.

If the SDF parameter vector θ0 is full-information identifiable, that is, the linear space J defined in

Equation (5.6) is null and R2 = 0, the term in the third and fourth line in the RHS of Equation (5.14) is

zero. Then, the asymptotic variance of estimator â∗ is minimized for ω = 0, that is, when the criterion

DT in Equation (4.6) does not account asymptotically for the local Kullback-Leibler divergence at x0.

We get Σa = ΣαS⊥S(x0), which is the conditional variance of the residual of the orthogonal projection

of αS onto ΓS given x0. To get the intuition, suppose that functional a is the conditional expectation

of function αS with true value a0 = E0[αS(Xt+1)|Xt = x0]. Then, when ω = 0 the estimator
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â∗ is asymptotically equivalent to the unfeasible estimator
∫
X
αS(x)f̃ ∗(x|x0)dx, where f̃ ∗(·|x0) =

arg min
f∈F0

dKL(f, f̂ |x0) under the constraint
∫
X

ΓS(x)f(x|x0)dx = 0, and F0 denotes the set of d-

dimensional Markov transition densities given x0. A similar interpretation is given for the estimation

of a moment under a moment restriction by Brown and Newey [1998] in an unconditional setting,

and by Antoine, Bonnal and Renault [2007] in a conditional setting. The matrix K
fX(x0)

[ΣαS(x0) −
ΣαS⊥S(x0)] is the efficiency gain from the information in the local no-arbitrage restrictions. Moreover,

estimation of parameter θ0 has no effect on the accuracy of estimator â∗.

If some components of the SDF parameter θ0 are full-information unidentifiable and ω > 0, matrix

M0(ω)ΣS(x0)M0(ω)′ in the RHS of Equation (5.13) is the contribution to the asymptotic variance

of estimator â∗ from including the local Kullback-Leibler divergence at x0 in the criterion DT and

estimating the SDF parameter θ0. The matrix M0(ω)ΣS(x0)M0(ω)′ involves conditional variances

and covariances of the residual of the orthogonal projection of ΓL onto ΓU because of the interaction

between local and uniform restrictions in the constrained optimization of criterion DT . For a scalar

functional a, the asymptotic weight ω can be selected in order to minimize the asymptotic variance

matrix
K

fX(x0)
Σa.13 This optimal weight arg min

ω∈R+

M0(ω)ΣS(x0)M0(ω)′ depends in general on the

functional of interest a.

Finally, let us apply Proposition 9 when the functional of interest a corresponds to the option-to-

stock price ratio of an American put option with time-to-maturity h? and moneyness strike k? in state

x0. From example i) in Section 4.4, the asymptotic variance of the estimator â∗ is obtained by using

αS and αL defined in Equations (4.14), and setting∇θ′a(θ0, f0) = JS? + JL? , where matrices JS? , JL?

are defined as in Equations (5.2) by replacing Γ̄S and Γ̄L by αS and αL, respectively.

6 Monte Carlo experiment

In this section we investigate the finite sample properties of the estimators in a Monte Carlo exper-

iment. We consider a scalar volatility factor σt (i.e. d = 2) representing the volatility of the stock

return. We describe the Data-Generating Process (DGP) in Section 6.1, the numerical implementation

in Section 6.2 and the results in Section 6.3.
13Weighting matrix Ω0 is considered as given and equal to Ω0 = ΣS(x0)−1, which is asymptotically optimal for the

estimation of θ0. The asymptotic variance
K

fX(x0)
Σa could be minimized by optimizing jointly w.r.t. ω and Ω0, but the

optimization problem becomes more difficult. We do not consider this alternative approach.
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6.1 The design

Under the historical probability measure P , the stock return process (rt) is such that

rt = rf + γσ2
t + σtεt, εt

i.i.d.∼ N
(
0, 1
)
, (6.1)

where γ ≥ 0 is the variance-in-mean parameter. The daily risk-free rate rf is constant and equal to

2 · 10−4. The stochastic variance σ2
t follows an Autoregressive Gamma (ARG) Markov process of

order 1 (Gouriéroux and Jasiak [2006]), which is the discrete-time counterpart of the Cox-Ingersoll-

Ross process (Cox, Ingersoll and Ross [1985]). The historical transition density of σ2
t is defined by

the conditional Laplace transform

E0[exp (−uσ2
t )
∣∣σ2

t−1] = exp
(
−φ1(u)σ2

t−1 − φ2(u)
)
, u ≥ 0, (6.2)

where the functions φ1 and φ2 are defined as φ1(u) := ρu/ (1 + cu) and φ2(u) := δ log (1 + cu) for

parameters c, δ > 0 and ρ ∈ [0, 1). We consider a 4-dimensional SDF parameter θ = [θ1 θ2 θ3 θ4]′ and

an exponential-affine one-day SDF:

Mt,t+1(θ) = exp (−rf ) exp
(
−θ1 − θ2σ

2
t+1 − θ3σ

2
t − θ4 (rt+1 − rf )

)
. (6.3)

Parameters θ2 and θ4 are related to the risk premia associated with the stochastic volatility and the

excess return of the stock, respectively. Exponential-affine SDF specifications are common in reduced-

form modeling (see, e.g., Duffie, Pan and Singleton [2000], Duffie, Filipovic and Schachermayer

[2003] and Gouriéroux and Monfort [2007]). Under the above DGP, the historical transition density

of Xt given Xt−1 is independent of rt−1. In this case, the set of conditioning state variables for option

valuation becomes smaller, as stated in the next Corollary 10 for a general volatility process (σt).

Corollary 10. When the density ofXt givenXt−1 is independent of rt−1 under P , Proposition 1 holds

with Yt = [kt σ
′
t]
′ and y = [k σ′]′.

Thus, under the above DGP, the option-to-stock price ratio depends on time-to-maturity h, moneyness

strike k and volatility σ only. Moreover, in Definitions 2 and 3 and in Proposition 3, the conditioning

variable Xt is replaced by σt. Gagliardini, Gouriéroux and Renault [2011] show that the SDF in Equa-

tion (6.3) is admissible for the DGP defined in Equations (6.1) and (6.2). Specifically, the no-arbitrage

conditions for the stock and the non-defaultable bond are satisfied, i.e. E0 [Mt,t+1(θ0)ert+1 |σt = σ] = 1

and E0 [Mt,t+1(θ0)erf |σt = σ] = 1, for all σ ∈ R+, iff the true parameter value θ0 = [θ0
1 θ

0
2 θ

0
3 θ

0
4]′ is

such that θ0
1 = −φ2(ξ), θ0

3 = −φ1(ξ) and θ0
4 = 1/2 + γ, where ξ = θ0

2 + γ2/2 − 1/8. We report in
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c = 3.65 · 10−6 ρ = 9.6 · 10−1 δ = 1.05 γ = 3.6 · 10−1

θ1 = 4.55 · 10−7 θ2 = −5.9 · 10−2 θ3 = 1.14 · 10−1 θ4 = 8.6 · 10−1

Table 1: The values of the historical and SDF parameters of the DGP.

Table 1 the values of the historical and SDF parameters. They satisfy the above constraints and are

calibrated on real data for liquid assets.

Let us now describe the data we create. We generate 1000 time-series of returns and volatility

with length T = 1000 from date t0 − T + 1 to current date t0. The volatility σ0 at date t0 is the

same across simulations14 and is equal to 6.5 · 10−3. For this value of volatility, we consider the cross-

section of American put option-to-stock price ratios with time-to-maturity h = 20. We display this

cross-section as a function of the moneyness strike by a solid line in Figure 1. We compute the price

ratios by recursive valuation, using the estimate of the transition density of the state variables obtained

by kernel estimation on a very long simulated time-series of the state variables. From the full cross-

section of American put option-to-stock price ratios, we select N = 8 values, with moneyness strike

k = 0.966, 0.976, 0.983, 0.991, 0.997, 1.007, 1.011, 1.031. We display these price ratios by crosses in

Figure 1. For each Monte Carlo replication, the data available to the econometrician are a different

time-series of state variables and the same 8 American put option-to-stock price ratios. This simulation

design reflects the analysis in previous sections, where the value x0 of the conditioning state variables

(that in this Monte Carlo experiment reduces to the volatility σ0) is constant and given.

We assume that the econometrician does not know the true DGP under P described in Equations

(6.1) and (6.2) but correctly adopts the parametric specification of the SDF in Equation (6.3) and is

aware of the Granger non-causality of rt−1 on Xt. The transition density f of Xt given σt−1 is treated

as a functional parameter. We estimate the model parameters and some American put option-to-stock

price ratios for each Monte Carlo replication. We start with the estimation of the SDF parameter θ.

In this semi-parametric setting, not all the components of vector θ are full-information identifiable.

Indeed, the linear space J defined in Equation (5.6) is one-dimensional and spanned by the vec-

tor [−δc/(1 + cξ) 1 − ρ/(1 + cξ)2 0]
′ (see Proposition 1 in Gagliardini, Gouriéroux and Renault

[2011]). By constructing matrix [R1 R2] as in Equation (5.7) and inverting the parameter transforma-

tion, it is seen that the SDF parameter θ4 is full-information identifiable, while parameters θ1, θ2 and

θ3 are not. We consider the cross-sectional and XMM estimators of the SDF parameter in Definitions

14We use the time-reversibility of Markov process (σt) to generate the paths.
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2 and 3 with identity weighting matrices ΩT = IN+2 and Ω̃T = I2. The XMM estimator becomes

θ̂∗ = arg min
θ∈Θ

(
hT

∥∥∥G(θ, f̂)
∥∥∥2

+
1

T

T∑
t=1

∥∥∥Ef̂ [ΓU(Xt+1; θ)|σt]
∥∥∥2
)
. (6.4)

The cross-sectional estimator θ̂ minimizes the first component of the criterion in the RHS of Equation

(6.4). For comparison purpose, we also consider the time-series GMM estimator of parameter θ,

that is defined as the minimizer of the second component of the same criterion. We then pass to

the estimation of the transition density of the state variables and compute the estimator f̂ ∗ defined in

Proposition 3. Finally, we use the estimators θ̂∗ and f̂ ∗ to compute the American put option-to-stock

price ratios Ah?
θ̂∗,f̂∗

[v(0, ·)](y?) for time-to-maturity h? = 20, volatility σ? = σ0 and moneyness strikes

k? = 0.972, 0.986, 1, 1.03.

6.2 The numerical implementation

The evaluation at a given θ of the criterion functions minimized by estimators θ̂ and θ̂∗ requires the

computation of the conditional expectation Ef̂ [ΓU(Xt+1; θ)|σt] for any sample value σt (including σ0)

and of the price ratio vθ,f̂ (h, yj) := Ah
θ,f̂

[v(0, ·)](yj) for any option j = 1, . . . , N , where operator Aθ,f̂
is defined as in Equation (4.5). Any integral w.r.t. the kernel conditional density f̂ involved in the

computations is replaced by an empirical weighted sum via a Nadaraya-Watson estimator. We take the

Gaussian kernel with bandwidth hT = 0.9 min {s, Rq/1.34}T−
1
5 as suggested in Silverman [1986],

where s andRq denote the sample volatility and interquartile range of the observations σt, respectively.

The computation of the option price ratios involves recursive applications of the pricing operator Aθ,f̂
to functions defined on the two-dimensional moneyness-volatility space Y = R2

+. Specifically, we use

the backward dynamic programming iteration vθ,f̂ (h, ·) = Aθ,f̂ [vθ,f̂ (h− 1, ·)], for h = 1, . . . , 20, with

vθ,f̂ (0, y) = (k − 1)+, and evaluate function vθ,f̂ (20, ·) at yj to get the option-to-stock price ratio of

option j. To make the estimation procedure feasible, functions ϕ = vθ,f̂ (h − 1, ·), for h = 1, . . . , 20,

are evaluated on a finite grid with Nk × Nσ grid points on the subset [klow, khigh] × [σlow, σhigh] of

Y . When the computation of Aθ,f̂ [ϕ](y), for a given y in the grid, requires to evaluate function ϕ at a

point (k̃, σ̃) within [klow, khigh]× [σlow, σhigh] but outside the grid, the value at the nearest grid point

is selected. When k̃ < klow we set ϕ(k̃, σ̃) = 0 and when σ̃ < σlow the value at the nearest grid point is

selected. When k̃ > khigh and/or σ̃ > σhigh we use a linear extrapolation procedure. The use of a finite

subset of Y and a finite grid introduces a numerical error, that becomes negligible as σlow, klow → 0

and σhigh, khigh, Nk, Nσ →∞. In the Monte Carlo experiment, we set Nk = 300 and Nσ = 30 for the

discretization and klow = 0.8 and khigh = 1.2 for the moneyness strike domain. The bounds σlow and
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σhigh of the volatility domain are set equal to the 1% and 99% quantiles of the volatility realizations

in the Monte Carlo repetition. The grid spacing is homogeneous, with an adjustment at the border

such that the volatility σ0 coincides with one of the Nσ points that discretize [σlow, σhigh]. For our

choice of domain and fineness of the grid, the absolute percentage numerical error in price ratios15 at

time-to-maturity h = 20 and volatility state σ0 is monotonically decreasing in the moneyness strike

and less than 3% for k ≥ 0.9. We have implemented our routines in Fortran. A commercial 2 GHz

processor takes less than a second to evaluate the American put-option-to stock ratios for h = 20 at

all grid points. A numerical minimization of the criterion in Equation (6.4) is feasible in less than a

minute in most of the repetitions.

We compute the estimator f̂ ∗ by the iterative algorithm described in Section 4.3 with ωT = 0.

This choice simplifies the estimation procedure, since we can dispense with computing function γL.

The computation of the function γS(·; θ̂∗, f̂ ∗(i−1)) in the tilting factor T̂ ∗(i) at the i-th iteration uses

option price ratios evaluated with operator Aθ̂∗,f̂∗(i−1) implemented as above. The computation of the

integral of a function w.r.t. the conditional density f̂ ∗(i−1) is implemented via a kernel regression of

the function multiplied by the tilting factor T̂ ∗(i−1). Then, at the i-th iteration we use f̂ ∗(i) for the

estimation of the four option-to-stock price ratios of interest. This requires evaluation of the tilting

factor T̂ ∗(i) only for conditional values σ̃ corresponding to volatility values of grid points. We take

as convergence criterion the stability of price ratios up to 10−5. Less than 10 iterations are enough in

most of the Monte Carlo repetitions, making the procedure feasible in less than five minutes.

6.3 The results

We show in Figure 2 the kernel smoothed density functions of the XMM and cross-sectional estimators

of the SDF parameters. The XMM estimators of parameters θ1, θ2 and θ3 feature small bias and their

distributions are slightly skewed. The skew is more pronounced for parameter θ3. The estimator of

parameter θ4 is downward biased. The estimated values of the parameters have the same sign as the true

parameter values in most of the Monte Carlo repetitions. The cross-sectional estimates feature larger

standard deviations than the XMM estimates. Hence, accounting for the uniform restrictions (3.1)

improves the accuracy of the SDF parameter estimator also in finite sample. The difference between

the XMM and cross-sectional estimators is larger for the full-information identifiable parameter θ4.

The two estimators have similar biases, but the distribution of the cross-sectional estimator features

larger variance and is more skewed and leptokurtic.16 These findings are compatible with the different

rate of convergence of the XMM and cross-sectional estimators of θ4, that is parametric for the former

15The error is computed w.r.t. the results obtained with a grid 10 times finer in the moneyness and volatility dimensions.
16The bias of the XMM estimator of θ4 is −3.45 · 10−1, that of the cross-sectional estimator is −5.69 · 10−1.
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and nonparametric for the latter (see Propositions 5 and 7). Figure 3 displays the kernel smoothed

density functions of the time-series GMM estimators of the SDF parameters. The distributions of the

GMM estimators for parameters θ1, θ2 and θ3 are more disperse than the distributions of the XMM

estimators by orders of magnitude (see Figure 2). This is the finite-sample manifestation of the lack

of full-information identifiability for these SDF parameters discussed in Section 6.1. The distribution

of the GMM and the XMM estimates of the full-information identifiable parameter θ4 are similar.

Overall, Figures 2 and 3 show that the XMM estimator of the SDF parameter is preferable compared

to both the cross-sectional and the GMM estimators in this Monte Carlo experiment.

We show in Figure 4 the kernel smoothed density functions of the estimates of the American

option-to-stock price ratio for the four moneyness strikes k? of interest (solid line). For k? = 0.972,

0.986, 1 the bias is very small and the distribution is close to a Gaussian distribution. For moneyness

strike k? = 1.03, the distribution of the estimated option-to-stock price ratio has a peak close to the

true value but is truncated at the exercise value k? − 1 = 0.03. This truncation effect arises because

some estimated continuation values are below the exercise value. Truncation is negligible for the other

moneyness strikes since they are relatively far from the critical moneyness strike. For comparison

purposes, in Figure 4 we display by a dashed curve the smoothed density functions of the estimates

of the American option-to-stock price ratios obtained using the kernel density f̂ as estimator for the

historical transition of the state variables. This estimator accounts neither for the available option

prices nor for the no-arbitrage restrictions on stock and bond returns. The biases of the estimators

based on f̂ ∗ and f̂ are similar. However, for each considered moneyness strike, the option-to-stock

price ratio estimator based on f̂ ∗ features a smaller variance than the one based on f̂ . This finding

shows that incorporating the informational content of cross-sectionally observed option prices and

imposing the no-arbitrage restrictions for all assets improve substantially the accuracy of the estimators

of the option prices that are not currently observed on the market.

In practice, the number N of options to use in the estimation procedure depends on selection crite-

ria reflecting the assumed absence of arbitrage opportunities, as thresholds in daily trading activity and

ranges in moneyness strike and time-to-maturity.17 The larger is N , the larger is the number of restric-

tions and therefore the more efficient the estimators are expected to be. However, the computational

burden is also increasing in the number N and in the maximal time-to-maturity h̄ := max
j=1,...,N

hj of the

options. In our Monte Carlo experiment, the elapsed CPU time for the computation of estimate θ̂∗ is

rather stable w.r.t. N and linearly increasing w.r.t. h̄. For instance, for h̄ = 100 days-to-maturity and

17For example, Ronchetti [2011] reports that at any day in July and August 2008 only between 4 and 23 American put
and call options on the IBM stock traded on U.S. centralized markets have daily trading activity larger than 500 contracts,
time-to-maturity shorter than 300 business days, moneyness strike inside the range [0.75 : 1.25] and bid-ask spread smaller
than 100%.
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N = 8 options (with moneyness strikes as in Section 6.1), the computation of θ̂∗ requires on average

about 2 minutes, and less than 5 minutes in most repetitions. The elapsed CPU time for computation

of estimate f̂ ∗ is linearly increasing w.r.t. the numberN of options. For instance, withN = 40 options

(with moneyness strike ranging from 0.832 to 1.031) and h̄ = 20 days, the computation of f̂ ∗ requires

on average about 5 minutes, and up to 10 minutes in some repetitions.

7 Concluding remarks

In this paper we introduce a novel semi-parametric estimator of American option prices. The frame-

work involves a parametric specification of the SDF and is nonparametric w.r.t. the transition density

of the Markov state process. We introduce estimators of the SDF parameter θ0 and transition density

f0 by combining time-series and cross-sectional information from the relevant state variables and ob-

served American option prices, respectively. These estimators are used to get an estimator of the price

of an American option for a maturity and strike of interest by a dynamic programming approach. When

the number T of time-series observations diverges to infinity and the number N of cross-sectionally

observed option prices is fixed, the estimators are consistent and asymptotically normal. In a Monte

Carlo experiment we show that estimators combining time-series and cross-sectional information fea-

ture a superior performance compared to pure cross-sectional, or time-series, estimators.

If the parametric SDF model is misspecified, the estimators of the SDF parameter θ0 in Definitions

2 and 3, the estimator f̂ ∗ of the transition density f0 in Definition 4 and the estimators of functionals

of (θ0, f0) in Definition 5, are typically inconsistent. Indeed, in such a case, the imposed no-arbitrage

restrictions might be invalid. There exists an extensive literature on testing the correct specification

of unconditional moment restrictions derived from an asset pricing model, possibly after introducing

a given set of instruments. The tests are based on the Hansen statistic (Hansen [1982]), the Hansen-

Jagannathan (HJ) statistic (Hansen, Heaton and Luttmer [1995] and Hansen and Jagannathan [1997]),

or HJ statistics relying on information-theoretic discrepancy measures (see, e.g., Kitamura and Stutzer

[2002] and Almeida and Garcia [2012]). Specification tests for conditional moment restrictions in a

parametric framework are also available. For instance, under the maintained assumption that vector

θ0 is full-information identifiable, the results in Tripathi and Kitamura [2003] imply that a test of cor-

rect specification of the uniform capital market restrictions can be based on a suitably rescaled and

recentered version of the minimized time-series component of criterion Q∗T in Definition 3. In the

same setting, Nagel and Singleton [2010] test conditional asset pricing models via the Hansen statistic

with optimal instruments. When some components of vector θ0 are full-information unidentifiable,

and specification testing concerns also the local derivative market restrictions, the testing problem is
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more difficult. If the derivative market restrictions can be written as local conditional moment re-

strictions (for example for a cross-section of prices of European options), the results in Antoine and

Renault [2010] suggest the validity of standard overidentification tests. However, when the available

data include the prices of American options, the derivative market restrictions are not parametric mo-

ment restrictions. We conjecture that a test statistic can be obtained by combining the values of the

cross-sectional and time-series components of criterion Q∗T evaluated at the XMM estimator θ̂∗. The

derivation of such a test and of its asymptotic properties is left for future research.
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Figure 1: The cross-section of American option-to-stock price ratios at the current date t0 as a function
of the moneyness strike, for time-to-maturity h = 20 days. The DGP is the stochastic volatility model
with exponential-affine SDF defined in Equations (6.1)-(6.3). The values of the historical and SDF
parameters are given in Table 1. The value of the volatility of the stock return at the current date is
σ0 = 6.5 · 10−3. The solid line is the American option-to-stock price ratio function. The dashed line
is the early exercise-to-stock price ratio function. The crosses are the American option-to-stock price
ratios that are observed by the econometrician in each Monte Carlo repetition.

42



-1 -0.5 0 0.5 1 1.5 2
x 10-6

0

0.5

1

1.5

2x 106
SDF parameter θ1

 

 

True
CS
XMM

-0.2 -0.15 -0.1 -0.05 0 0.05 0.10

5

10

15

20

25
SDF parameter θ2

 

 

True
CS
XMM

-2 -1.5 -1 -0.5 0 0.5 1 1.50

0.25

0.5

0.75

1

1.25

1.5
SDF parameter θ3

 

 

True
CS
XMM

-1 -0.5 0 0.5 1 1.5 2 2.50

0.5

1

1.5

2
SDF parameter θ4

 

 

True
CS
XMM

Figure 2: The distributions of the estimated SDF parameters. In each panel, the solid line corresponds
to the XMM estimator θ̂∗ in Definition 3 with weighting matrices ΩT = IN+2 and Ω̃T = I2, and the
dashed line to the cross-sectional (CS) estimator θ̂ in Definition 2 with weighting matrix ΩT = IN+2.
The true parameter values are displayed by the dashed vertical lines.
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Figure 3: The distributions of the estimated SDF parameters by time-series GMM. The GMM estima-
tor of the SDF parameter vector corresponds to θ̂∗ in Definition 3 with weighting matrices ΩT = 0N+2

and Ω̃T = I2. The true parameter values are displayed by the dashed vertical lines.
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Figure 4: The distribution of the estimated American option-to-stock price ratios at the current date t0
for time-to-maturity h? = 20 days and four different moneyness strikes k?. In each panel, the solid
line is the distribution of the estimates when we use f̂ ∗ defined in Equations (4.9) and (4.10) for the
estimation of the American put pricing operator with ωT = 0. The dashed line is the distribution of the
estimates when we use f̂ defined in Equation (4.1). For k? = 0.972, 0.986, 1 the dashed vertical line
indicates the true value of the price ratios. For k? = 1.03 the dashed vertical line on the left indicates
the exercise value and the dashed vertical line on the right the true value of the price ratio. The peaks
of the distributions at the left vertical line correspond to estimated option-to-stock price ratios equal to
the exercise value.
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APPENDIX

A Regularity assumptions

In this appendix we list the additional regularity assumptions used to derive the theoretical results.

Assumption A 1. The support X = R× S ⊂ Rd of process (Xt) is compact.

Assumption A 2. The stationary pdf fZ of the process of variable Zt := [X ′t X
′
t−1]′ is of differentiability class

C ρ(R2d), for integer ρ ≥ 2, with uniformly continuous ρ-th order derivatives, and such that fZ > 0 in the

interior of the support X × X . The same conditions are satisfied by the stationary pdf fX of Xt.

Assumption A 3. The stationary pdf’s fZ and fX are such that
∫
X

∫
X

[
fZ(x̃, x)

fX(x̃)fX(x)

]q
fZ(x̃, x)dx̃dx < ∞

for real q > 1.

Assumption A 4. There exists a growing sequence of sets XT := RT × ST ⊂ X , for T ∈ N, and real

constants c1, c2 > 0 such that sup
x∈XT

P
[
Xt+1 ∈ XCT |Xt = x

]
→ 0, for T → ∞, inf

x,x̃∈XT
fZ (x, x̃) ≥ c1

log (T )c2

and inf
x∈XT

fX (x) ≥ c1

log (T )c2
.

Assumption A 5. The kernel functionK is a bounded and Lipschitz function on Rd such that
∫
Rd
‖x‖ρK(x)dx <∞ ,

where ρ is defined in Assumption A 2, and
∫
Rd
xjK(x)dx = 0, for any multi-index j ∈ Nd such that |j| ≤ ρ−1.

Assumption A 6. The bandwidth hT = o(1) is such that
log (T )2

Th3d
T

= o(1), Th2ρ
T = o(1), where ρ is defined in

Assumption A 2.

Assumption A 7. The parameter θ0 is in the interior of compact set Θ ⊂ Rp.

Assumption A 8. The SDF m(x; θ) is of differentiability class C 1(Θ) w.r.t. θ ∈ Θ, for all x ∈ X .

Assumption A 9. The SDFm(x; θ) satisfies: (i) E
[
|m(Xt+1; θ0)|2p

]
<∞ for real p > 1 such that 1/p+1/q =

1, where q > 1 is defined in Assumption A 3; (ii) sup
θ∈Θ
x∈X

E
[
|m(Xt+1; θ)|2+δ

∣∣∣Xt = x
]
<∞, for real δ > 0.

Assumption A 10. The matrix ΩT converges in probability to the positive-definite matrix Ω0.

Assumption A 11. The matrix Ω̃T (x) converges in probability to the positive-definite matrix Ω̃0(x), uniformly

in x ∈ X .

Assumption A 12. The weight ωT converges in probability to the non-negative scalar ω.

Assumptions A 1-4 concern the distribution of process (Xt). In particular, the condition of compact support

in Assumption A 1 simplifies the proofs and can be relaxed at the expense of additional technical burden.

Assumption A 2 is standard for kernel estimation. Assumption A 3 restricts the dependence between Xt and
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Xt−1 at the boundaries of the support. It is used to prove that the American put pricing operator A maps L2(Y)

into L2(Y) in Appendix C. Assumption A 4 constrains the decay behavior of the stationary densities of Xt and

[X ′t X
′
t−1]′ at the boundary of their supports. The sequence of sets XT , T ∈ N, is such that these densities

are bounded away from zero from below on XT and XT × XT , respectively, at an inverse logarithmic rate as

T increases. This sequence of sets is introduced to define trimmed versions of the kernel regression estimators

(see the proof of Proposition 4 in Appendix F.1) and controls for boundary effects.

Assumptions A 5-6 concern the kernel and the bandwidth. FunctionK is a kernel of order ρ, that is the same

as the differentiability order of the densities in Assumption A 2. The bandwidth conditions in Assumption A 6

are stronger than the standard ones used for d-dimensional kernel estimation. The first condition ensures that

the second-order terms in the Fréchet expansions are negligible asymptotically (see the proof of Proposition 5 in

Appendix F.2). The second condition is used to show that the bias of estimators constructed by averaging kernel

regression estimators over the conditioning value is asymptotically negligible (see the proof of Proposition 7 in

Appendix F.3). When hT = cT−η̄ for real constants c, η̄ > 0, Assumption A 6 is satisfied if
1

2ρ
< η̄ <

1

3d
.

Assumption A 7 is standard in parametric estimation. Assumptions A 8-9 concern the SDF. They involve

a differentiability condition w.r.t. parameter θ, as well as a uniform boundedness condition for higher-order

conditional moments of the SDF. Finally, Assumptions A 10-12 concern the weighting matrices in the criteria

to estimate vector θ, and the scalar weight in the criterion to estimate the density f in Definition 4. These

assumptions ensure well-defined large sample limits for these criteria and are used to prove uniqueness of the

minima of the large sample criteria.

B Proof of Proposition 1

At maturity, i.e. for h = 0, the American put option price is V (0,K, S, x) = (K−S)+ = S(k−1)+ = Sv(0, y).

The proof proceeds by induction w.r.t. h. Let us assume that the homogeneity property holds at time-to-maturity

h − 1, i.e., V (h − 1,K, S, x) = Sv(h − 1, y), with y = [k x′]′. From Equations (2.1) and (2.3), the definition

of moneyness strike and the Markov property of Yt under Q we get

V (h,K, S, x) = max
[
(K − S)+,EQ

[
V (h− 1,K, St+1, Xt+1)|St = S,Xt = x

]]
= max

[
(K − S)+,EQ [St+1v(h− 1, Yt+1)|St = S,Xt = x]

]
= Smax

[
(k − 1)+,EQ [ert+1v(h− 1, Yt+1)|Yt = y]

]
= Sv(h, y).

C Domain and range of the American put pricing operator

Let ϕ ∈ L2(Y) and define the operator E by

E [ϕ](y) := EQ [ert+1ϕ(Yt+1)|Yt = y] =

∫
X
m (x̃; θ0) er̃ϕ(ke−r̃, x̃)f(x̃|x)dx̃. (C.1)
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By the Cauchy-Schwarz inequality we get

|E [ϕ](y)| ≤
(∫
X
er̃ϕ(ke−r̃, x̃)2fX(x̃)dx̃

)1/2(∫
X
m(x̃; θ0)2er̃

f(x̃|x)2

fX(x̃)
dx̃

)1/2

,

for any y = [k x′]′ ∈ Y . Then we have∫
Y
|E [ϕ](y)|2 fX(x)

k2
dy ≤

(∫
R+

∫
X
er̃ϕ(ke−r̃, x̃)2fX(x̃)

1

k2
dkdx̃

)(∫
X

∫
X
m(x̃; θ0)2er̃

f(x̃|x)2

fX(x̃)
fX(x)dx̃dx

)
=

(∫
Y
ϕ(ỹ)2 fX(x̃)

k̃2
dỹ

)(∫
X

∫
X
m(x̃; θ0)2er̃

fZ(x̃, x)2

fX(x̃)fX(x)
dx̃dx

)
<∞, (C.2)

where we use the change of variable from k to k̃ = ke−r̃ and that the double integral over X × X is finite from

Assumptions A 1, A 3 and A 9 (i) and the Hölder inequality. Thus, E [ϕ] ∈ L2(Y). Since v(0, ·) ∈ L2(Y), it

follows that A [ϕ] = max [v(0, ·), E [ϕ]] ∈ L2(Y). Thus, operator A maps L2(Y) into L2(Y).

D Proof of Proposition 2

In this appendix we use the simplified notation A = Aθ,f , m(·) = m(·; θ), g = g(θ, f), EQ = EQ
θ,f , E = Eθ,f

and fQ
l−1 = fQ

θ,l−1. Moreover, we denote by FQ
Y (·|y) the conditional cdf of Yt+1 given Yt = y under the

risk-neutral probability measure.

D.1 Differentiability of g almost everywhere

Let us first consider the differentiability of g w.r.t. θ. The American put option-to-stock price ratio v(h, y) and

the holding-to-stock price ratio u(h, y) := EQ [ert+1v(h− 1, Yt+1)|Yt = y] depend on the SDF parameter θ for

any h > 0. For expository purpose, we omit this dependence in the notation. By Definition 1 and the linearity

of operator E defined in Equation (C.1), we can write the holding-to-stock price ratio as

u(h, y) = E [v(h− 1, ·)] (y) = E [max [v(0, ·), u(h− 1, ·)]] (y)

= E [max [0, u(h− 1, ·)− v(0, ·)]] (y) + E [v(0, ·)] (y). (D.1)

We know that u(h−1, y)− v(0, y) ≥ 0 iff k ≤ k?(h−1, x), where the critical moneyness strike k?(h−1, x) is

the solution of the equation k− 1 = u(h− 1, k, x) in k ∈ R+. From the implicit function theorem, k?(h− 1, x)

is differentiable w.r.t. θ. From Equations (C.1) and (D.1), we get

u(h, y) =

∫
X
m(x̃)er̃1{ke−r̃ ≤ k?(h− 1, x̃)}[u(h− 1, ke−r̃, x̃)− v(0, ke−r̃, x̃)]f(x̃|x)dx̃

+

∫
X
m(x̃)er̃v(0, ke−r̃, x̃)f(x̃|x)dx̃,
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for y = [k x′]′ and the indicator function 1{·}. For expository purpose, let us assume that ke−r̃ ≤ k?(h− 1, x̃)

iff r̃ ≥ r?(h− 1, k, σ̃), where r?(h− 1, k, σ̃) is the solution of the equation

ke−r̃ = k?(h− 1, r̃, σ̃) (D.2)

in r̃ ∈ R, for given [k σ̃]′ ∈ R+ × S .18 Then we have:

u(h, y) =

∫
S

∫ b

r?(h−1,k,σ̃)
m(x̃)er̃[u(h− 1, ke−r̃, x̃)− v(0, ke−r̃, x̃)]f(x̃|x)dr̃dσ̃

+

∫
X
m(x̃)er̃v(0, ke−r̃, x̃)f(x̃|x)dx̃, (D.3)

where b is the upper boundary of R. Let us now show that u is differentiable w.r.t. θ by induction. This is true

for h = 0. Now, let us assume that u(h − 1, ·) is differentiable w.r.t. θ. From Equation (D.2) and the implicit

function theorem, it follows that r?(h − 1, k, σ̃) is differentiable w.r.t. θ. Then, by the Leibniz integral rule

for differentiation of a definite integral applied to Equation (D.3) and Assumption A 8, u(h, ·) is differentiable

w.r.t. θ. By using Ah[v(0, ·)](y) = max [v(0, y), u(h, y)], we get that Ah[v(0, ·)](y) is continuous for all θ and

differentiable for all θ apart from the values such that v(0, y) = u(h, y). By replacing the differentiability w.r.t.

θ with the Fréchet differentiability w.r.t. f , and by following a similar argument, we can show thatAh[v(0, ·)](y)

is Fréchet-differentiable w.r.t. f , for all f , apart from the values such that v(0, y) = u(h, y).

D.2 Total differential of g w.r.t. the parameters

Let us consider a generic payoff-to-stock price ratio ϕ ∈ L2(Y) and the mapping (θ, f)→ E [ϕ]. The differential

of E [ϕ] w.r.t. (θ, f) is given by

δE [ϕ](y) =

∫
X
m(x̃)er̃ϕ(ke−r̃, x̃)δf(x̃|x)dx̃+

∫
X
∇θ′m(x̃)er̃ϕ(ke−r̃, x̃)f(x̃|x)dx̃δθ, (D.4)

where δf and δθ denote infinitesimal variations of parameters f and θ, respectively. Let us now consider the

mapping (θ, f) → Ah[v(0, ·)], for a given integer h ≥ 1, and compute its differential w.r.t. (θ, f) in terms of

the differential of E given in Equation (D.4). We write Ah[v(0, ·)](y) =
(
E ◦ Ah−1[v(0, ·)](y)− v(0, y)

)+
+

v(0, y), where ◦ denotes operator composition. The right derivative of function (·)+ is the indicator 1{· ≥ 0}.
Then, by the chain and product rules for differentiation and the total differential, we get

δAh[v(0, ·)](y) = 1C(h)(y)
(
δE [v(h− 1, ·)] (y) + E ◦ δAh−1[v(0, ·)](y)

)
, (D.5)

18This holds for instance when the transition density of Xt given Xt−1 does not depend on rt−1. The argument of the
proof extends easily when the set {r̃ ∈ R : ke−r̃ ≤ k?(h − 1, x̃)} can be written as the union of a finite number of
intervals, but the notation is more cumbersome.
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where we make use of the definition of the continuation region in Equation (2.4) and the expression of the

American put option-to-stock price ratio in Equation (2.6). We can iterate Equation (D.5) to get

δAh[v(0, ·)](y) = 1C(h)δE [v(h− 1, ·)] (y) + 1C(h)E ◦ 1C(h−1)δE [v(h− 2, ·)] (y)

+1C(h)E ◦ 1C(h−1)E ◦ 1C(h−2)δE [v(h− 3, ·)] (y) + . . .

+1C(h)E ◦ 1C(h−1)E ◦ . . . ◦ 1C(2)E ◦ 1C(1)δE [v(0, ·)] (y), (D.6)

where operator 1C(h)E is such that
(
1C(h)E

)
[ϕ] (y) = 1C(h)(y)E [ϕ] (y). By using v(h − l, ·) = Ah−l [v(0, ·)],

for 1 ≤ l ≤ h, we rewrite Equation (D.6) as

δAh[v(0, ·)](y) =
h∑
l=1

1C(h)E ◦ 1C(h−1)E ◦ . . . ◦ 1C(h−l+2)E ◦ 1C(h−l+1)δE ◦ Ah−l [v(0, ·)] (y).

Thus, the total differential of vector g w.r.t. f and θ is given by

δgj =

hj∑
l=1

1C(hj)E ◦1C(hj−1)E ◦ . . .◦1C(hj−l+2)E ◦1C(hj−l+1)δE ◦Ahj−l [v(0, ·)] (yj), if j = 1, . . . , N. (D.7)

D.3 Fréchet derivative of g w.r.t. the historical transition density

To compute the Fréchet derivative of the vector g w.r.t. f , we replace δE in Equation (D.7) from Equation (D.4)

with δf(x̃|x) = ∆f(x̃|x) and δθ = 0. Let us focus on the quantity 1C(hj)E ◦ . . . ◦1C(hj−l+2)E ◦1C(hj−l+1)δE ◦
Ahj−l [v(0, ·)] (yj), for some integers l and hj such that 1 ≤ l ≤ hj , and let us write it explicitly. For l = 1 this

quantity is equal to

1C(hj)δE ◦ A
hj−1 [v(0, ·)] (yj)

= 1C(hj)(yj)

∫
X
Ahj−1[v(0, ·)](kje−rt+1 , xt+1)m(xt+1)ert+1∆f(xt+1|x0)dxt+1. (D.8)

Let us now consider the case l ≥ 2. First, operatorA is applied hj− l times to discount the payoff-to-stock price

ratio v(0, ·) from t+ hj back to t+ l. Second, 1C(hj−l+1)δE is applied to discount from t+ l back to t+ l− 1:

1C(hj−l+1)δE ◦ Ahj−l [v(0, ·)] (yt+l−1)

= 1C(hj−l+1)(yt+l−1)

∫
X
m(xt+l)e

rt+lAhj−l[v(0, ·)](kt+l−1e
−rt+l , xt+l)∆f(xt+l|xt+l−1)dxt+l.

Third, 1C(hj−l+2)E is applied to discount from date t+ l − 1 back to date t+ l − 2:

1C(hj−l+2)E ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, ·)] (yt+l−2)

= 1C(hj−l+2)(yt+l−2)

∫
X
m(xt+l−1)ert+l−11C(hj−l+1)(kt+l−2e

−rt+l−1 , xt+l−1)
(∫
X
m(xt+l)e

rt+l

· Ahj−l[v(0, ·)](kt+l−2e
−rt+l−1−rt+l , xt+l)∆f(xt+l|xt+l−1)dxt+l

)
f(xt+l−1|xt+l−2)dxt+l−1.
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Fourth, operators 1C(hj−l+3)E , . . . ,1C(hj)E are applied successively to discount from t+ l − 2 back to t:

1C(hj)E ◦ . . . ◦ 1C(hj−l+2)E ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, ·)] (yj)

=

∫
Y
. . .

∫
Y
1C(hj)(yj) . . .1C(hj−l+2)(yt+l−2)eRt,l−2

∫
X
m(xt+l−1)ert+l−11C(hj−l+1)(kt+l−2e

−rt+l−1 , xt+l−1)

·
(∫
X
m(xt+l)e

rt+lAhj−l[v(0, ·)](kt+l−2e
−rt+l−1−rt+l , xt+l)∆f(xt+l|xt+l−1)dxt+l

)
·f(xt+l−1|xt+l−2)dxt+l−1dF

Q(yt+l−2|yt+l−3) . . . dFQ(yt+1|yj).

By rearranging the terms, the RHS of the previous equation is equal to

1C(hj)(yj)

∫
X

∫
X
m(xt+l)ζ(hj , l, xt+l, xt+l−1; yj)∆f(xt+l|xt+l−1)dxt+ldxt+l−1,

where function ζ is defined as

ζ(hj , l, x, x̃; yj) := m(x̃)er+r̃
∫
Y
. . .

∫
Y
1C(hj−1)(yt+1) . . .1C(hj−l+2)(yt+l−2)1C(hj−l+1)(kt+l−2e

−r̃, x̃)

·eRt,l−2Ahj−l[v(0, ·)](kt+l−2e
−r̃−r, x)f(x̃|xt+l−2)dFQ(yt+l−2|yt+l−3) . . . dFQ(yt+1|yj). (D.9)

Thus, we get

1C(hj)E ◦ . . . ◦ 1C(hj−l+1)δE ◦ Ahj−l [v(0, ·)] (yj) = 1C(hj)(yj)

∫
X

∫
X
m(x)ζ(hj , l, x, x̃; yj)∆f(x|x̃)dxdx̃,

(D.10)

for l ≥ 2. From Equations (D.8) and (D.10) we deduce the Fréchet derivative of gj w.r.t. f :

〈Dgj ,∆f〉 = 1C(hj)(yj)

∫
X
m(x)erAhj−1[v(0, ·)](kje−r, x)∆f(x|x0)dx

+1C(hj)(yj)

hj∑
l=2

∫
X

∫
X
m(x)ζ(hj , l, x, x̃; yj)∆f(x|x̃)dxdx̃,

for j = 1, . . . , N . To conclude the proof, we rewrite function ζ in terms of a risk-neutral expectation using

er+r̃1C(hj−l+1)(kt+l−2e
−r̃, x̃)Ahj−l[v(0, ·)](kt+l−2e

−r̃−r, x)

= EQ
[
ert+l−1+rt+l1C(hj−l+1)(Yt+l−1)Ahj−l[v(0, ·)](Yt+l)

∣∣∣Xt+l = x,Xt+l−1 = x̃, Yt+l−2 = yt+l−2

]
.

Moreover, by the Markov property of Yt and Xt under Q, and Assumption 2, we have the following equalities:

fQ(yt+l−2, . . . , yt+1|xt+l, xt+l−1, yt) =
fQ(xt+l, xt+l−1, yt+l−2, . . . , yt+1|yt)

fQ(xt+l, xt+l−1|yt)

=
fQ(xt+l−1|xt+l−2)fQ(yt+l−2, . . . , yt+1|yt)

fQ(xt+l−1|xt)
=
m(xt+l−1)f(xt+l−1|xt+l−2)fQ(yt+l−2, . . . , yt+1|yt)

fQ(xt+l−1|xt)
,

51



where we use the same symbol for different probability densities and omit the subscript to simplify the notation.

Hence:

m(x̃)f(x̃|xt+l−2)dFQ
Y (yt+l−2, . . . , yt+1|yj) = fQ

l−1(x̃|x0)dFQ
Y (yt+l−2, . . . , yt+1|Xt+l = x,Xt+l−1 = x̃, Yt = yj).

Thus, from Equation (D.9) and the Law of Iterated Expectations, we get

ζ(hj , l, x, x̃; yj) = fQ
l−1(x̃|x0)EQ

[
1C(hj−1)(Yt+1) . . .1C(hj−l+1)(Yt+l−1)eRt,l

· Ahj−l[v(0, ·)](Yt+l)
∣∣∣∣Xt+l = x,Xt+l−1 = x̃, Yt = yj

]
.

Equation (3.7) follows.

D.4 Gradient of g w.r.t. the SDF parameter

The gradient of the vector g w.r.t. θ is obtained by replacing δE in Equation (D.7) with the expression in Equation

(D.4) for δf(x̃|x) = 0 and δθ = dθ. By similar arguments as in Appendix D.3 we get Equation (3.8).

E Proof of Proposition 3

The differential w.r.t. the historical transition density f of the functional Lagrangian in Equation (4.7) is

δL = δDT (f, f̂)− ωTλ′δg(θ̂∗, f)− ωT ν ′0
∫
X

ΓU (x; θ̂∗)δf(x|x0)dx− ωTµ0

∫
X
δf(x|x0)dx

−
∫
X
f̂X(x̃)ν(x̃)′

∫
X

ΓU (x; θ̂∗)δf(x|x̃)dxdx̃−
∫
X
f̂X(x̃)µ(x̃)

∫
X
δf(x|x̃)dxdx̃. (E.1)

Let us compute explicitly the first two differential terms in the RHS of Equation (E.1). The differential of the

criterion DT is

δDT (f, f̂) =

∫
X
f̂X(x̃)

∫
X

(
1 + log

(
f(x|x̃)

f̂(x|x̃)

))
δf(x|x̃)dxdx̃+ ωT

∫
X

(
1 + log

(
f(x|x0)

f̂(x|x0)

))
δf(x|x0)dx

=

∫
X
f̂X(x̃)

∫
X

log

(
f(x|x̃)

f̂(x|x̃)

)
δf(x|x̃)dxdx̃+ ωT

∫
X

log

(
f(x|x0)

f̂(x|x0)

)
δf(x|x0)dx,

where we use that f ∈ F satisfies the unit mass constraint and hence
∫
δf(x|x̃)dx = 0 for any x̃ ∈ X . We

get the expression of the differential δg(θ̂∗, f) from Proposition 2 by replacing θ with θ̂∗ and ∆f with δf into

Equation (3.7), and using the definition of vectors γS and γL:

δg(θ̂∗, f) =

∫
X
γS(x; θ̂∗, f)δf(x|x0)dx+

∫
X

∫
X
γL(x, x̃; θ̂∗, f)δf(x|x̃)dxdx̃.
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Then, the differential of the functional Lagrangian L is

δL =

∫
X
ωT

(
log

(
f(x|x0)

f̂(x|x0)

)
− λ′γS(x; θ̂∗, f)− ν ′0ΓU (x; θ̂∗)− µ0

)
δf(x|x0)dx

+

∫
X

∫
X

(
log

(
f(x|x̃)

f̂(x|x̃)

)
− ωT

f̂X(x̃)
λ′γL(x, x̃; θ̂∗, f)− ν(x̃)′ΓU (x; θ̂∗)− µ(x̃)

)
f̂X(x̃) δf(x| x̃)dxdx̃.

By the optimality condition in Equation (4.8) and the fundamental lemma of the calculus of variations we get

log

(
f̂∗(x|x0)

f̂(x|x0)

)
− λ̂′γS(x; θ̂∗, f̂∗)− ν̂ ′0ΓU (x; θ̂∗)− µ̂0 = 0, (E.2)

for a.e. x ∈ X , and

log

(
f̂∗(x|x̃)

f̂(x|x̃)

)
− ωT λ̂

′γL(x, x̃; θ̂∗, f̂∗)
/
f̂X(x̃)− ν̂(x̃)′ΓU (x; θ̂∗)− µ̂(x̃) = 0, (E.3)

for a.e. x, x̃ ∈ X with x̃ 6= x0. From Equations (E.2) and (E.3) we get

f̂∗(x|x0) = f̂(x|x0) exp
(
µ̂0 + λ̂′γS(x; θ̂∗, f̂∗) + ν̂ ′0ΓU (x; θ̂∗)

)
,

for a.e x ∈ X , and

f̂∗(x|x̃) = f̂(x|x̃) exp
(
µ̂(x̃) + ν̂(x̃)′ΓU (x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂∗)
/
f̂X(x̃)

)
,

for a.e. x, x̃ ∈ X with x̃ 6= x0. By imposing the unit mass constraints, Equation (4.9) follows. Finally, by

imposing that the empirical counterpart of System (3.5) holds for (θ̂∗, f̂∗), System (4.10) follows.

F Large sample properties

In this section we denote by Aθ,f and Eθ,f the operators A and E with generic parameters θ, f .

F.1 Proof of Proposition 4

For technical reasons, the empirical operators used to define the components of the sample counterpart G(θ, f̂)

of the local restrictions are based on a trimmed kernel estimator of the historical transition density. More

precisely, we have G(θ, f̂) = [Ef̂ [ΓU (Xt+1; θ)|Xt = x0]′ g(θ, f̂)′]′. Here, Ef̂ [ΓU (Xt+1; θ)|Xt = x0] =∫
XT

ΓU (x; θ)f̂(x|x0)dx and the components of g(θ, f̂) are defined through the pricing operator Aθ,f̂ such that

Aθ,f̂ [ϕ](y) = max
[
(k − 1)+, Eθ,f̂ [ϕ](y)

]
, where

Eθ,f̂ [ϕ](y) =

∫
XT
m(xt+1; θ)ert+1ϕ(ke−rt+1 , xt+1)f̂(xt+1|x)dxt+1
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and (XT ) is the sequence of sets defined in Assumption A 4. We prove Proposition 4 by checking the Assump-

tions (i)-(iv) of Theorem 2.1 in Newey and McFadden [1999].

i) Let us consider the limit criterionQ0(θ) = G(θ, f0)′Ω0G(θ, f0), for θ ∈ Θ, that is the asymptotic limit of the

criterion QT minimized by θ̂ (see Definition 2). This criterion is uniquely minimized at θ0 by the identification

condition in Assumption 5 and since Ω0 is positive-definite (Assumption A 10).

ii) The set Θ is compact by Assumption A 7.

iii) The criterion Q0(θ) is continuous. Indeed, the mapping θ → E0[ΓU (Xt+1; θ)|Xt = x0] is continuous and,

as shown in Appendix D.1, the functions gj , for j = 1, . . . , N , are continuous w.r.t. θ as well.

iv) Let us verify that QT (θ) converges to Q0(θ) uniformly in θ ∈ Θ. By uniform convergence of kernel

estimators (see, e.g., Hansen [2008]) and Assumptions A 1, A 2, A 4-6 and A 9, we can show that

sup
θ∈Θ

∥∥∥Ef̂ [ΓU (Xt+1; θ)|Xt = x0]− E0[ΓU (Xt+1; θ)|Xt = x0]
∥∥∥ = op(1). (F.1)

Let us now consider the uniform convergence of g(θ, f̂). For this purpose, let us start with some definitions and

a lemma. Let a, b > 0 be such that kj ∈ [e−a, ea], for all j = 1, . . . , N , and R ⊂ [e−b, eb] (see Assumptions 1

and A 1). We consider the sets YT := [e−a, ea] × XT and Y ′T := [e−(a+b), ea+b] × XT . The supremum norm

of a continuous scalar function ϕ ∈ C 0(Rd+1) on set YT is defined as ‖ϕ‖YT ,∞ := sup
y∈YT
|ϕ(y)|. The supremum

norm on set Y ′T is defined similarly.

Lemma 1. Let ϕθ ∈ L2(Y)∩C 0(Y) be a scalar function that may depend on parameter θ ∈ Θ and is such that

sup
θ∈Θ

y∈[e−a,ea]×X

E0

[
ϕθ(Yt+1)2

∣∣Yt = y
]
<∞. (F.2)

Let ϕ̂θ be an estimator of ϕθ such that sup
θ∈Θ
‖ϕ̂θ − ϕθ‖Y ′T ,∞ = op(1). Then, under Assumptions A 1, A 2, A 4-6

and A 9, we have sup
θ∈Θ
‖Eθ,f̂ [ϕ̂θ]− Eθ,f0 [ϕθ]‖YT ,∞ = op(1).

Proof. See Section H.1 of the supplementary materials.

We use the uniform convergence of the kernel estimator to prove Lemma 1. Let us now write the American put

pricing operator as

Aθ,f [ϕ] = v(0, ·) + (Eθ,f [ϕ]− v(0, ·))+ (F.3)

and do similarly for its estimator Aθ,f̂ [ϕ]. Since |max [t, 0]−max [s, 0]| ≤ |t− s|, for all t, s ∈ R, we get from

Lemma 1 that for any ϕθ satisfying Inequality (F.2)

sup
θ∈Θ
‖ϕ̂θ − ϕθ‖Y ′T ,∞ = op(1) ⇒ sup

θ∈Θ
‖Aθ,f̂ [ϕ̂θ]−Aθ,f0 [ϕθ]‖YT ,∞ = op(1). (F.4)
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Lemma 2. Under Assumption A 9, if

sup
θ∈Θ

y∈[e−a−b,ea+b]×X

E
[
Ahθ,f0

[v(0, ·)](Yt+1)2
∣∣∣Yt = y

]
<∞,

for h ∈ N, then

sup
θ∈Θ

y∈[e−a,ea]×X

E
[
Ah+1
θ,f0

[v(0, ·)](Yt+1)2
∣∣∣Yt = y

]
<∞. (F.5)

Proof. See Section H.2 of the supplementary materials.

By Lemma 2, we can iterate h ≥ 1 times the Implication (F.4) starting with ϕθ = ϕ̂θ = v(0, ·) and a sufficiently

large moneyness strike support, and get

sup
θ∈Θ
‖Ah

θ,f̂
[v(0, ·)]−Ahθ,f0

[v(0, ·)]‖YT ,∞ = op(1).

We deduce that sup
θ∈Θ

∥∥∥g(θ, f̂)− g (θ, f0)
∥∥∥ = op(1). Then, from Equation (F.1), vector G(θ, f̂) converges to

G(θ, f0) uniformly in θ ∈ Θ. By Assumption A 10, QT (θ) converges to Q0(θ) uniformly in θ ∈ Θ.

F.2 Proof of Proposition 5

We prove Proposition 5 in two steps.

a) First, we show that there exists an open neighborhood Θ0 ⊂ Θ such that θ0 ∈ Θ0 and the criterion QT (θ) is

differentiable w.r.t. θ ∈ Θ0 w.p.a. 1.

b) Second, by the consistency of estimator θ̂, we deduce that θ̂ ∈ Θ0 w.p.a. 1. From part a), it follows that θ̂

satisfies the first-order condition ∇θQT (θ̂) = 0 w.p.a. 1. Hence, we can follow the approach in the proof of

Theorem 3.2 in Newey and McFadden [1999] to prove Equation (5.3) and conclude.

Let us first prove part a). Since yj ∈ Cθ0,f0(hj) for all j = 1, . . . , N , by using the consistency of estimator

f̂ and the fact that the continuation region Cθ,f (h) depends continuously on θ and f , for given h ≥ 1, we deduce

that there exists an open set Θ0 ⊂ Θ such that θ0 ∈ Θ0, and yj ∈ Cθ,f̂ (hj) for all j = 1, . . . , N and θ ∈ Θ0,

w.p.a. 1. By the argument in Appendix D.1, this implies that gj(θ, f̂) is differentiable w.r.t. θ ∈ Θ0, for all

j = 1, . . . , N , w.p.a. 1. By using that Ef̂ [ΓU (Xt+1; θ)|Xt = x0] is differentiable w.r.t. θ, part a) follows.

For part b), let us check the conditions of Theorem 3.2 in Newey and McFadden [1999].

i) The true parameter value θ0 is an interior point of Θ0 by part a).

ii) Vector G(θ, f̂) is differentiable w.r.t. θ ∈ Θ0, w.p.a. 1, as shown in part a).

iii) Let us now show thatG(θ0, f̂) is asymptotically normal. Let us introduce the quantity ∆f̂(x|x̃) := f̂(x|x̃)−
f0(x|x̃). From Equation (3.6) and Proposition 2 we get

g(θ0, f̂) =

∫
X
γ̄S(x)∆f̂(x|x0)dx+

∫
X

∫
X
γL(x, x̃; θ0, f0)∆f̂(x|x̃)dxdx̃+Op

(
‖∆f̂‖2∞

)
.
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Then, by using that the first two components of G(θ0, f̂) are equal to
∫

Γ̄U (x; θ0)∆f̂(x|x0)dx, we get

√
ThdTG(θ0, f̂) =

√
ThdT

∫
X

Γ̄S(x)∆f̂(x|x0)dx

+
√
ThdT

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃+Op

(√
ThdT ‖∆f̂‖

2
∞

)
. (F.6)

From the uniform convergence of kernel density estimators (see, e.g., Hansen [2008]), the supremum norm

of ∆f̂ is such that ‖∆f̂‖∞ = Op

(√
log (T )

Th2d
T

+ hρT

)
, for integer ρ defined in Assumption A 2. Then, the

remainder term in the RHS of Equation (F.6) is such that

Op

(√
ThdT ‖∆f̂‖

2
∞

)
= Op

(√
ThdT

(
log(T )

Th2d
T

+ h2ρ
T

))
= op(1), (F.7)

under the bandwidth conditions in Assumption A 6. Equations (F.6) and (F.7) yield Equation (5.4). More-

over, from the asymptotic normality of kernel density estimators (see, e.g., Aı̈t-Sahalia [1992]), the asymptotic

distribution of the first term in the RHS of Equation (F.6) is√
ThdT

∫
X

Γ̄S(x)∆f̂(x|x0)dx
D→ N

(
0,

K
fX(x0)

ΣS(x0)

)
, (F.8)

where the bias term vanishes asymptotically under Assumption A 6 on the bandwidth. Let us now consider the

second term of the RHS of Equation (F.6). The integration w.r.t. x̃ ∈ X increases the convergence rate, i.e.∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃ = Op

(
log (T )√

T
+ hρT

)
= op

(
1/
√
ThdT

)
, (F.9)

from the bandwidth conditions in Assumption A 6. Thus, the second term of the RHS of Equation (F.6) is

negligible as T →∞ and √
ThdTG(θ0, f̂)

D→ N
(

0,
K

fX(x0)
ΣS(x0)

)
. (F.10)

iv) By a similar argument as in Appendix D.1, the function ∇θ′G(θ, f0) is continuous w.r.t. θ ∈ Θ0 and, by a

similar argument as in Appendix F.1, we have sup
θ∈Θ0

∥∥∥∇θ′G(θ, f̂)−∇θ′G(θ, f0)
∥∥∥ = op(1).

v) Finally, the matrix J ′0Ω0J0 is nonsingular since J0 = ∇θ′G(θ0, f0) is full column-rank (Assumption 6) and

Ω0 is positive definite (Assumption A 10).

Then, the same arguments as in the proof of Theorem 3.2 in Newey and McFadden [1999] imply Equation

(5.3), and by using Expression (F.10) the conclusion follows.

56



F.3 Proof of Proposition 7

The first order condition for estimator θ̂∗ is

hdT

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ̂∗, f̂

)
+

1

T

T∑
t=1

Ef̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂

[
ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]
= 0.

By the mean-value theorem, there exists θ̃ between θ̂∗ and θ0 (componentwise) such that

hdT

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ0, f̂

)
+

1

T

T∑
t=1

Ef̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt]

+

(
hdT

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩT

[
∇θ′G

(
θ̃, f̂
)]

+

+
1

T

T∑
t=1

Ef̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂

[
∇θ′ΓU

(
Xt+1; θ̃

)∣∣∣Xt = xt

])(
θ̂∗ − θ0

)
= 0.

By multiplying the two sides of the last equation by TR′T , where RT := [T−1/2R1

(
ThdT

)−1/2
R2], and using

that R−1
T

(
θ̂∗ − θ0

)
=

(√
T (η̂∗1 − η1,0)′

√
ThdT (η̂∗2 − η2,0)′

)′
, we get

HT

 √
T (η̂∗1 − η1,0)√
ThdT (η̂∗2 − η2,0)

 = −ThdTR′T
[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ0, f̂

)

− 1

T

T∑
t=1

TR′TEf̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt] , (F.11)

where

HT := ThdTR
′
T

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩT

[
∇θ′G

(
θ̃, f̂
)]
RT

+
1

T

T∑
t=1

TR′TEf̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂

[
∇θ′ΓU

(
Xt+1; θ̃

)∣∣∣Xt = xt

]
RT .

By using that J̃0(x)R2 = 0 for a.e. x ∈ X , we get HT = H + op(1), where matrix H is given by:

H =

 H1,1 0

0 H2,2

 :=

 R′1E0

[
J̃0(Xt)

′Ω̃0(Xt)J̃0(Xt)
]
R1 0

0 R′2J
′
0Ω0J0R2

 .
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Moreover, in the RHS of Equation (F.11) we have

1

T

T∑
t=1

TR′TEf̂

[
∇θ′ΓU

(
Xt+1; θ̂∗

)∣∣∣Xt = xt

]′
Ω̃T (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt] =

 Ψ1,T

0

+ op(1)

and

ThdTR
′
T

[
∇θ′G

(
θ̂∗, f̂

)]′
ΩTG

(
θ0, f̂

)
=

 0

Ψ2,T

+ op(1),

where

ΨT =

 Ψ1,T

Ψ2,T

 :=

 1√
T

∑T
t=1R

′
1J̃0 (xt)

′ Ω̃0 (xt) Ef̂ [ΓU (Xt+1; θ0)|Xt = xt]

R′2J
′
0Ω0

√
ThdTG

(
θ0, f̂

)  .

Therefore, we get  √
T (η̂∗1 − η1,0)√
ThdT (η̂∗2 − η2,0)

 = −H−1ΨT + op(1), (F.12)

As in Lemma A.1 in Gagliardini, Gouriéroux and Renault [2011] we have ΨT
D→ N (0,W ), where

W =

 W1,1 0

0 W2,2

 :=

 R′1E0

[
J̃0 (Xt)

′ Ω̃0 (Xt) ΣU (Xt)Ω̃0 (Xt) J̃0 (Xt)
]
R1 0

0 R′2J
′
0Ω0ΣS (x0) Ω0J0R2

 ,

and the bias vanishes asymptotically since Th2ρ
T = o(1) in Assumption A 6. Hence,

√
T (η̂∗1 − η1,0) and√

ThdT (η̂∗2 − η2,0) are asymptotically normal, independent, with asymptotic variances

AsVar
[√

T (η̂∗1 − η1,0)
]

= H−1
1,1W1,1H

−1
1,1 and AsVar

[√
ThdT (η̂∗2 − η2,0)

]
= H−1

2,2W2,2H
−1
2,2 ,

respectively. By the standard argument for the efficient GMM, these asymptotic variances are minimized by

choosing Ω0 = ΣS (x0)−1 and Ω̃0(x) = ΣU (x)−1, for any x ∈ X . Proposition 7 follows.

F.4 Proof of Propositions 8 and 9

In this section we sketch the derivation of the asymptotic distribution for the estimators of the density f̂∗, of the

Lagrange multipliers λ̂, ν̂0 and ν̂(x), for x 6= x0, and of functional â∗.

F.4.1 Asymptotic expansion of the density estimator

Let us consider the tilting function in Equation (4.9) and derive its first-order Taylor expansion. Since f̂ and f̂∗

converge in probability to f0, vector θ̂∗ to θ0, Lagrange multipliers λ̂, ν̂0 and ν̂(x) to 0 and weight ωT to ω, we

keep only the terms of first-order in the Lagrange multipliers estimators. For x̃ = x0 we have

exp
(
ν̂ ′0ΓU (x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂∗)

)
' 1 + ν̂ ′0ΓU (x; θ0) + λ̂′γS(x; θ0, f0) = 1 + Λ̂′ΓS(x),
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where Λ̂ = [ν̂ ′0 λ̂
′]′ and ΓS is defined in Equations (5.1), so that∫

X
f̂(x|x0) exp

(
ν̂ ′0ΓU (x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂∗)

)
dx ' 1 + Λ̂′E0 [ΓS(Xt+1)|Xt = x0] = 1.

Similarly, for any x̃ 6= x0 we have

exp
(
ν̂(x̃)′ΓU (x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂∗)
/
f̂X(x̃)

)
' 1 + ν̂(x̃)′ΓU (x; θ0) + ωΛ̂′Γ̄L(x, x̃),

where Γ̄L is defined in Equations (5.1). Then, since E0 [ΓU (Xt+1; θ0)|Xt = x̃] = 0 for a.e. x̃ ∈ X , we have∫
X
f̂(x|x̃) exp

(
ν̂(x̃)′ΓU (x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂∗)
/
f̂X(x̃)

)
dx ' 1 + ωΛ̂′E0

[
Γ̄L(Xt+1, x̃)|Xt = x̃

]
.

Thus, we can approximate the tilting function for the value x̃ = x0 of the conditioning volatility factor as

exp
(
ν̂ ′0ΓU (x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂∗)

)
∫
X
f̂(x|x0) exp

(
ν̂ ′0ΓU (x; θ̂∗) + λ̂′γS(x; θ̂∗, f̂∗)

)
dx

' 1 + Λ̂′ΓS(x), (F.13)

and for any other value x̃ 6= x0 as

exp
(
ν̂(x̃)′ΓU (x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂∗)
/
f̂X(x̃)

)
∫
X
f̂(x|x̃) exp

(
ν̂(x̃)′ΓU (x; θ̂∗) + ωT λ̂

′γL(x, x̃; θ̂∗, f̂∗)
/
f̂X(x̃)

)
dx

' 1 + ν̂(x̃)′ΓU (x; θ0) + ωΛ̂′ΓL(x, x̃),

(F.14)

where ΓL is defined in Equations (5.1). By inserting Approximations (F.13) and (F.14) into Equation (4.9) and

keeping only the first-order terms in the estimators we get Approximation (5.8).

F.4.2 Asymptotic expansion of the Lagrange multipliers

Let us consider the constraints in System (4.10). They can be rewritten as:
∫
X

ΓU (x; θ̂∗)f̂∗(x|x̃)dx = 0, for a.e. x̃ 6= x0,

G(θ̂∗, f̂∗) = 0.
(F.15)

The expansion of the LHS of the first equation of System (F.15) around (θ0, f0) is:∫
X

Γ̄U (x)∆f̂∗(x|x̃)dx+ J̃0(x̃)
(
θ̂∗ − θ0

)
+Op

(
‖θ̂∗ − θ0‖2

)
= 0, (F.16)

for a.e. x̃ 6= x0, where the 2 × p Jacobian matrix J̃0(x̃) is defined in Proposition 7 and is such that J̃0(x̃) =

E0

[
Γ̄U (Xt+1)∇θ′ log (m(Xt+1; θ0))|Xt = x̃

]
. Similarly, the expansion of the LHS of the second equation in
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System (F.15) around (θ0, f0) is:

〈
DG(θ0, f0),∆f̂∗

〉
+ J0

(
θ̂∗ − θ0

)
+Op

(
‖∆f̂∗‖2∞

)
+Op

(
‖θ̂∗ − θ0‖2

)
= 0, (F.17)

where matrix J0 is defined in Assumption 6 and is the sum of the matrices defined in Equations (5.2).

We use Proposition 2 and Approximation (5.8) and keep only the leading terms to approximate the first term

in the LHS of Equation (F.17) as

〈
DG(θ0, f0),∆f̂∗

〉
=

∫
X

Γ̄S(x)∆f̂∗(x|x0)dx+

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂∗(x|x̃)dxdx̃

'
∫
X

Γ̄S(x)∆f̂(x|x0)dx+

∫
X

∫
X

Γ̄L(x, x̃)fX(x̃)∆f̂(x|x̃)dxdx̃

+

[ ∫
X

Γ̄S(x)ΓS(x)′f0(x|x0)dx+ ω

∫
X

∫
X

Γ̄L(x, x̃)ΓL(x, x̃)′f0(x|x̃)dxfX(x̃)dx̃

]
Λ̂

+

∫
X

∫
X

Γ̄L(x, x̃)ΓU (x; θ0)′f0(x|x̃)dxν̂(x̃)fX(x̃)dx̃

=
〈
DG(θ0, f0),∆f̂

〉
+

(
ΣS(x0) + ω

∫
X

ΣL(x)fX(x)dx

)
Λ̂ +

∫
X

ΣL,U (x)ν̂(x)fX(x)dx. (F.18)

Similarly, we use Approximation (5.8) to approximate the first term in the LHS of Equation (F.16) as∫
X

Γ̄U (x)∆f̂∗(x|x̃)dx '
∫
X

Γ̄U (x)∆f̂(x|x̃)dx+ ωΣU,L(x̃)Λ̂ + ΣU (x̃)ν̂(x̃), (F.19)

for x̃ 6= x0. Then, we use Equation (3.6) and replace Approximation (F.18) in Equation (F.17), and Approxima-

tion (F.19) in Equation (F.16), to get a linearization of the constraints in System (F.15):
∫
X

Γ̄U (x)∆f̂(x|x̃)dx+ ωΣU,L(x̃)Λ̂ + ΣU (x̃)ν̂(x̃) + J̃0(x̃)
(
θ̂∗ − θ0

)
' 0,

G(θ0, f̂) +

(
ΣS(x0) + ω

∫
X

ΣL(x)fX(x)dx

)
Λ̂ +

∫
X

ΣL,U (x)ν̂(x)fX(x)dx+ J0

(
θ̂∗ − θ0

)
' 0,

(F.20)

for x̃ 6= x0. We now solve System (F.20) w.r.t. the Lagrange multipliers. Since matrix ΣU (x̃) is invertible for

any x̃, we can solve the first approximation of System (F.20) w.r.t. ν̂(x̃):

ν̂(x̃) ' −ΣU (x̃)−1

(∫
X

Γ̄U (x)∆f̂(x|x̃)dx+ J̃0(x̃)
(
θ̂∗ − θ0

)
+ ωΣU,L(x̃)Λ̂

)
, (F.21)

for x̃ 6= x0. We insert Approximation (F.21) into the second approximation of System (F.20) and omit the

negligible terms:

G(θ0, f̂) +

(
ΣS(x0) + ω

∫
X

ΣL⊥U (x)fX(x)dx

)
Λ̂ +

(
J0 − JL‖U

) (
θ̂∗ − θ0

)
' 0, (F.22)

for the (N + 2) × p matrix JL‖U := E0

[
ΣL,U (Xt)ΣU (Xt)

−1Γ̄U (Xt+1)∇θ′ log (m(Xt+1; θ0))
]
. By inverting

Equation (5.7), i.e. θ = Rη, and using Equation (F.12) with Ω0 = ΣS(x0)−1 and Ω̃0(x) = ΣU (x)−1, for any
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x ∈ X , we get

θ̂∗ − θ0 = R1 (η̂∗1 − η1,0) +R2 (η̂∗2 − η2,0)

' −R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1G(θ0, f̂) ' −P

∫
X

ΓS(x)∆f̂(x|x0)dx, (F.23)

for the p× (N + 2) matrix P := R2

(
R′2J

′
0ΣS(x0)−1J0R2

)−1
R′2J

′
0ΣS(x0)−1. Approximation (F.22) yields

Λ̂ ' −A
∫
X

ΓS(x)∆f̂(x|x0)dx, (F.24)

for the (N + 2)× (N + 2) matrix A defined as

A :=

(
ΣS(x0) + ω

∫
X

ΣL⊥U (x)fX(x)dx

)−1 (
IN+2 −

(
J0 − JL‖U

)
P
)
. (F.25)

Finally, we use Approximations (F.21) and (F.23) to approximate ν̂(x̃), for any x̃ 6= x0, as

ν̂(x̃) ' ΣU (x̃)−1

((
J̃0(x̃)P + ωΣU,L(x̃)A

) ∫
X

ΓS(x)∆f̂(x|x0)dx−
∫
X

Γ̄U (x)∆f̂(x|x̃)dx

)
. (F.26)

F.4.3 Asymptotic distribution of the Lagrange multipliers

Let us first derive the asymptotic distribution of Λ̂. From Approximation (F.24), by using Expression (F.8) we

get √
ThdT Λ̂

D→ N
(

0,
K

fX(x0)
AΣS(x0)A′

)
.

Let us now consider estimator ν̂(x), for any x 6= x0. By a similar argument as for Expression (F.8), we

deduce that the two integrals in Approximation (F.26), standardized by the appropriate rate of convergence, are

asymptotically normal and independent, since they involve different conditioning values in ∆f̂ . Then we get√
ThdT ν̂(x)

D→ N (0,Σν(x)) ,

for any x 6= x0, where the 2× 2 matrix Σν is defined as

Σν(x) =
K

fX(x0)
ΣU (x)−1

(
J̃0(x)P+ωΣU,L(x)A

)
ΣS(x0)

(
J̃0(x)P+ωΣU,L(x)A

)′
ΣU (x)−1+

K
fX(x)

ΣU (x)−1.

F.4.4 Pointwise asymptotic normality of the estimator of the historical transition density

From Approximation (5.8) and the asymptotic distribution of the Lagrange multipliers is Section F.4.3, Equation

(5.9) follows. Then, we deduce Proposition 8 by standard results on the pointwise asymptotic normality of the

kernel density estimator (see, e.g., Bosq [1998]).
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F.4.5 Asymptotic distribution of the functionals of the historical transition density

From Equation (5.10) and Approximation (F.23) we get

â∗ − a0 ' −∇θ′a(θ0, f0)P

∫
X

ΓS(x)∆f̂(x|x0)dx+
〈
Da(θ0, f0),∆f̂∗

〉
. (F.27)

Let us focus on the last term of the RHS of Approximation (F.27) and proceed in a similar way as done in Section

F.4.2. From Equation (4.13) for direction ∆f̂∗ and state variables vector x? = x0, Approximation (5.8) and a

similar argument as for Equations (F.9), we get the following approximation of the Fréchet derivative:

〈
Da(θ0, f0),∆f̂∗

〉
'
∫
X
αS(x)∆f̂(x|x0)dx+

∫
X

ΣαL,U (x)ν̂(x)fX(x)dx

+

(
ΣαS ,S(x0) + ω

∫
X

ΣαL,L(x)fX(x)dx

)
Λ̂.

Moreover, from Approximation (F.26) and a similar argument as for Equations (F.9) we have∫
X

ΣαL,U (x) ν̂ (x) fX(x)dx '
(
ω

∫
X

ΣαL,U (x) ΣU (x)−1 ΣU,L (x) fX(x)dxA

+JαL‖UP

)∫
X

ΓS(x)∆f̂(x|x0)dx.

Thus, by using Approximation (F.24) we get

〈
Da(θ0, f0),∆f̂∗

〉
'

∫
X
αS(x)∆f̂(x|x0)dx+

(
JαL‖UP − ΣαS ,S (x0)A

−ω
∫
X

ΣαL,L⊥U (x) fX(x)dxA

)∫
X

ΓS(x)∆f̂(x|x0)dx.

By using that (B1 +B2)−1 = B−1
1 − (B1 +B2)−1B2B

−1
1 for any invertible matrices B1 and B2, the matrix A

defined in Equation (F.25) can be written as

A =

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1

−
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

= ΣS (x0)−1 −
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

−ω
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΣL⊥U (x) fX(x)dxΣS (x0)−1 .

Thus, we get

〈
Da(θ0, f0),∆f̂∗

〉
'

∫
X

(
αS(x)− ΣαS ,S (x0) ΣS (x0)−1 ΓS(x)

)
∆f̂(x|x0)dx

+ωΣαS ,S (x0)

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΣL⊥U (x) fX(x)dx

·ΣS (x0)−1
∫
X

ΓS(x)∆f̂(x|x0)dx+ JαL‖UP

∫
X

ΓS(x)∆f̂(x|x0)dx
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+ ΣαS ,S (x0)

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

∫
X

ΓS(x)∆f̂(x|x0)dx

− ω

∫
X

ΣαL,L⊥U (x) fX(x)dx

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΓS(x)∆f̂(x|x0)dx

+ ω

∫
X

ΣαL,L⊥U (x) fX(x)dx

·
(

ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
P

∫
X

ΓS(x)∆f̂(x|x0)dx.

Then, from Approximation (F.27) we get

â∗ − a0 '
∫
X

(
αS(x)− ΣαS ,S (x0) ΣS (x0)−1 ΓS(x)

)
∆f̂(x|x0)dx

+
(
ωB(ω) + C(ω)P

)∫
X

ΓS(x)∆f̂(x|x0)dx, (F.28)

where the matrix B(ω) is defined as

B(ω) := ΣαS ,S (x0)

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 ∫
X

ΣL⊥U (x) fX(x)dxΣS (x0)−1

−
∫
X

ΣαL,L⊥U (x) fX(x)dx

(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1

and the matrix C(ω) as

C(ω) :=

(
ΣαS ,S + ω

∫
X

ΣαL,L⊥U (x) fX(x)dx

)(
ΣS (x0) + ω

∫
X

ΣL⊥U (x) fX(x)dx

)−1 (
J0 − JL‖U

)
+JαL‖U −∇θ′a(θ0, f0),

for any ω ≥ 0. The integrand αS − ΣαS ,SΣS(x0)−1ΓS in the first term in the RHS of Approximation (F.28) is

the residual of the projection of αS onto ΓS , and hence orthogonal to ΓS . Then, by a similar argument as for

Expression (F.8) and using that J0 − JL‖U = JS + JL⊥U , we deduce that the difference â∗ − a0, standardized

by the appropriate rate of convergence, is asymptotically normal with variance given in Equation (5.13).
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