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Microinformation, Nonlinear Filtering and Granularity

Abstract

The recursive prediction and filtering formulas of the Kairfitter are difficult to implementin
nonlinear state space models since they require the ugdztanfunction. The aim of this paper is
to consider the situation of a large numbesf individual measurements, called microinformation,
and to take advantage of the large cross-sectional sizet taged-form prediction and filtering
formulas at ordet /n. The state variables have a macro-factor interpretatitwe résults are ap-
plied to maximum likelihood estimation of a macro-paramedad to computation of a granularity
adjusted Value-at-Risk (VaR) for large portfolios. Thergrrity adjustment for VaR is illustrated
by an application of the Value of the Firm model [Merton (1§#dking into account both default

and loss given default.

Keywords: Kalman Filter, Nonlinear State Space, Granularity, VaditiRisk, Credit Risk, Loss
Given Default.
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Introduction

Let us consider a nonlinear state space model with obsengtj, t = 1,--- , T, and underlying
latent state variables;. We denote byY, (resp. F;) the information included in the current and
past values of variablg (resp. F'). The model is defined by (i) the state equation, which speeifi
the conditional probability density function (pdf) éf givenF, 1, Y, 1 asg(f:|fi_1), say; (i) the
measurement equation, which specifies the conditional pgf givenF;, Y, ash(y|f:), say.
Thus, the state variable is assumed to follow an autonomaurgdw process of order 1, and the
distribution of the observed variable depends on the infdion through the current state variables
only L. In such a nonlinear state space model, the joint pdf of tiseations (given some initial

condition) is:
T T
[ Tt 0900501 T W

and involves a multiple integral with dimension equal to pansizel” times the dimension of the
underlying state variables vector.

The nonlinear Kalman filter proposes a recursive computiaifavell-chosen conditional dis-
tributions. The filtering density provides the conditiopdf p( f;|Y;) of the state variablé; given
Y,;. The predictive density provides the conditional pdfypf; givenY,, denotedp(g:.1|Y:),
wherey, ., indicates a generic argument of variable;. Then the joint pdf of the sample ob-
servations is deduced by multiplying the successive ptiedidensities, evaluated at the observed
valuesy, ., =y, fort =0,1,--- T — 1.

Let us recall some recursions involved in the nonlinear Kadrilter. We have for instance:

P(We1lYe) = Ep(@u1|Fe, Y)Y ] =FE [/ R(Ges1| fr1)9(frgr | Fy) dfeia | Yo
= E[V(Ji41, F)| Y],

where:

U (Jir1, fr) :/h(?]tJrl|ft+1)g(ft+1‘ft)dft+l' (2)

Thus, we get the updating of the predictive distributionirthe filtering distribution:
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The integrals in (2) and (3) often have a small dimension autbidoe easily computed numerically.
However, this type of updating formula is difficult to implent in the general framework, since it
requires as input the functiofi — p(f;|Y:). Hence, it is necessary to temporarily store this func-
tion at each recursion. Three special cases are known, chvilhée nonlinear Kalman filter is sim-
plified, because only a finite number of scalars have to betagddhese are the Gaussian linear
state space model, initially considered by Kalman [Kaln860), Kalman and Bucy (1961)], the
model with qualitative state variable, at the core of theaf#@wa filter [Kitagawa (1987), (1996),
Hamilton (1989)], and state space models with finite-dinred dependence [Gouriéroux, Jasiak
(2002), Gouriéroux, Monfort (2011)].

This paper introduces another framework in which the nealirKalman filter can be (approx-
imately) solved in closed-form. Specifically, we considda@e numbermn of individual mea-

surements; = (y1¢, - - - , Yn)'» and assume that the measurement density is suchthaf,) =
Hh(yi,t‘ft>- The individual measuremenig, are i.i.d. conditional on the state variablgs
=1

Which can be interpreted as macro-factors (or as systemsiti€actors in financial applications).
2 Thus, our framework corresponds to a nonlinear panel streatith latent common stochastic
factors and homogenous loadings. By means of an asympimiansion when the cross-sectional
dimensionn tends to infinity, we show that it is possible to approximédte honlinear Kalman
filter in closed form at ordet /n.

We can contrast our methodology with the approaches thatleen proposed in the literature
to implement approximated numerical filters in general m@adr and/or non-Gaussian state space
models [see e.g. Arulampalam, Maskell, Gordon, Clapp (28@2an overview]. Simulation-
based approaches include sequential Monte-Carlo methatisas particle filtering, where the
filtering distribution is approximated by a discrete disttion with non-zero probability mass on a
set of random states [the “particles”; see e.g. Carpentéiod, Fearnhead (1999), Pitt, Shephard
(2001), Cappé, Moulines, Rydén (2005), Chapter 7, aneteates therein, as well as Johannes,
Polson (2009) for an overview with financial applicatiomslternative approximation methods are
the Extended Kalman filter, in which nonlinear state and mesasent equations are linearized by
means of a Taylor expansion, and the grid-based approaariah the state space is discretized
in a finite number of cells [see Arulampalam, Maskell, GordBlapp (2002), Sections VI A and

B, respectively]. In the specific framework considered is fraper, the major difference between
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our methodology and the above approximated filters is théterformer the approximation is not
ad-hoc but is derived analytically by means of an asympwtjgansion fom — oo. Moreover,
our approach is computationally straightforward, sinaoiés not involve simulation, and allows
for a control of the approximation error, which is of ordét /n).

The model and the approximate prediction and filtering fdem@are given in Section 1. The
special case of measurement model in an exponential fagrdigcussed in Section 2. Different ap-
plications of the prediction and filtering formulas to esdtion and risk management, respectively,
are considered in the remaining sections. SpecificallygrtiBn 3 we consider the estimation of a
macro-parameter in a model with Gaussian factor. For thimasion problem, we show that the
approximate nonlinear Kalman filter designed to computgdim distribution of the observations
is equivalent to a standard Kalman filter applied to an apprate linear state space model. By
using this approximate filter, we derive an efficient estonaf the macro-parameters, which does
not necessitate the computation of a high-dimensionajratas the maximum likelihood estima-
tor does. An application to the computation of the Valu&ketk (VaR) for a large homogeneous
portfolio is discussed in Section 4. Itis shown that the ¥add-Risk, that is the reserves introduced
to balance the risk of the portfolio, includes a componeuicimount for the nonobservability of the
common risk factor. In Section 5 the above methodology idiegpo Merton’s model for credit
risk [Merton (1974)], when both default and Loss Given D&f@uGD) are taken into account.
Section 6 concludes. Proofs are gathered in appendicesirfplicity, we focus on the most com-
mon case of a single factor. The results can be generalizeaiitiple factors, but the derivations

are notationally cumbersome at some steps.

1 Approximate Prediction and Filtering

1.1 The Nonlinear State Space Model

The observations are endogenous individual variaplgsfor ¢ = 1,--- ;n, ¢t = 1,--- T, and
exogenous variables;, for i = 1,--- ,n. The latter variables are indexed by individuainly
and correspond to time invariant individual characterssti The state variables, or factors;

are indexed by time only, and are unobservable. We denotehy= (y1+, -, ynt) [resp.



X = (2, , )] the set of cross-sectional observationsyqnesp. onz).
As usual, the nonlinear state space model is defined by mezasat and state equations, given

below in terms of conditional distributions.

State equation: The conditional distribution of; givenF;_;, Y;_;, X depends or;_; only, is

time-invariant, and admits a pdf ;| f,—,), fort =1,--- | T.

Measurement equations: Conditionally on the information sé&;, Y,;_;, X, the individual en-
dogenous variableg; ;, withi = 1,---  n, are independent. The distribution ¢f, givenF,,

Y:_1, X depends oif}, y; .1 andx; only, is time-invariant and admits the pdf:

h(yi,t‘ftayi,t—laxi) = hi,t(yi,t|ft)7 1= ]-7 N, = 17 e 7T'

This nonlinear state space model allows for exogenoushiasan the measurement equations,
introducing observable heterogeneity across individuatdso allows for both a micro-dynamics
by means of the individual lags in the measurement equatamtsa macro-dynamics by means of
the unobservable factors. The model includes as a spesrlntadels with repeated observations
when h; :(yi:| f:) = h(yielf:). In a parametric framework, functiorisand ¢ may depend on
unknown parameter values. They are not explicitly intralyexcept if necessary (see e.g. Section
3). Indeed, the prediction and filtering formulas are detifer fixed parameter values.

The value of the unobservable factGrcan be approximated by the cross-sectional maximum
likelihood (CSML) estimator defined by:

fn,t = arg mfaX Z log hi,t(yi,t|ft)- (4)
F—

Estimatefnyt provides an approximation of factor valyie which is consistent if the cross-sectional
sizen tends to infinity. However, it is not the most accurate ona&esit does not take into account
the lagged observations gfand the information on the factor dynamics. This crossiseat
approximation of the factor plays a crucial role in the dation of the prediction and filtering

formulas. Other cross-sectional summary statistics a@weful. Let us introduce the notation:

n

1 O log hi «(yi, fn
KR == a}(tp d t), p=23,4. (5)
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The quantity:
Ing = —Ky7, (6)

measures the accuracy f:{t as an approximation of;; the quantltyK(3 is involved in the bias
at orderl /n of estimatorfn,t. Under appropriate regularity assumptions, the quaetﬁigt are

Op(1), whenn tends to infinity.

1.2 Approximate Filtering Formula

An approximation of the filtering distribution for factdr, is derived by means of the Laplace
method [see e.g. Jensen (1995)]. The form of the approxamagigiven in the next Proposition
1 (see Appendix 1 for the proof). This result extends the @xprate filtering distribution derived

in Gagliardini and Gouriéroux (2011) to a model with miatpramics and exogenous variables.

PROPOSITION 1: At order1/n, the conditional distribution of; givenY, F,_;, X is equal to
the conditional distribution of; givenY,, X only, i.e. to the filtering distribution. This distribu-

tion is Gaussian and is given by:

1

8logg 1 _

At order1/n, the filtering distribution ofF; differs from a point mass at the CSML estimétg.
By extending the notion of granularity introduced by Gor@p@3) in the context of portfolio
VaR computation, we call this distribution the granulaatjusted (GA) filtering distribution. The
variance of the GA filtering distribution shrinks to zero ate'l /n and the mean of the filtering
distribution differs fromfn,t by a term of ordet /n. The granularity adjustment involves the four

summary statisticg,, ;, foi_1, L, K°

nt

The dynamlcs of the Iatent factor impacts the filtering

f (fnt‘fnt 1) Flnally,
conditionally onY, and.X, the current and the lagged factdfsandF,_; are independent at order

1/n.

The Gaussian approximate filtering distribution in Proposil shares some common features

with the approximations considered in the literature orustitialman filtering [see e.g. Masreliez



(1975)]. However, it differs in several respects. Firstahust filtering the conditional distribution
of F;,, givenY, is assumed to be close to a Gaussian distribution, whereasg iinamework it is
the conditional distribution of’, givenY, which is almost Gaussiah Second, in robust filtering
the errors of the analytical approximations are typicalikmown®, while in our approach the
Gaussian approximation has been derived theoreticalbtbhey with its approximation error due to
the information contained in the cross-sectional obsemat Third, the robust filtering literature
mostly focuses on linear measurement and state equatitma®@n-Gaussian innovationswhile
our model fully allows for nonlinearities in both the measuent and state equations. Finally, the
approximation in Proposition 1 is not recursive, but dieat closed form. For instance, when
a new observation ., is received at daté’ + 1, the filtering distribution is directly recomputed
for this new date of interest by the explicit formula of Prejion 1. This computation requires
the data of date¥’ andT" + 1 only. Therefore, there is no disadvantage in terms of datage

compared to on-line methods providing recursive filterialyBons.

1.3 Approximate Prediction Formula

The approximate filtering formula in Proposition 1 can bedusederive the prediction formula at
orderl/n, that is, the conditional distribution @f . ; givenY,, X. More precisely, we have by the

law of iterated expectation:
p (gt+1|Yt7 X) - E [p (gt+1|Yt7 Ft7 X) ‘Yh X] - E [‘Ij(gt—i-lkyta Ft7 X)‘Yh X] )

whereWV (g1 |y, Fi, X) = p (941]Ye, Fy, X)) depends on the past throughand F; only because
of the assumptions on the state and measurement equatious, the derivation of the predictive
distribution can be performed in two steps. We first derivepproximation at ordet/n of the
conditional distribution ofy;,; giveny,, F; and X; then, F; is integrated out using its conditional
pdf givenY, and X in Proposition 1.

The conditional pdf ofy,., giveny, F;, X is:

\I’(gtﬂ\yt,ft,X) :/Hhz‘,t—i—l(gi,t—l—l|ft+1)g(ft+1‘ft)dft+1~
i=1

This pdf can be written as:

U(Gea|ye, fr. X) = /exp [Z log hit1(Gitr1|fre1) +10g g(freal fe) | dfesa- (7)

=1



The integrand can be expanded around the cross-sectigrakapation fn,m to get the result be-
low (see Appendix 2), wher@m is the CSML estimator of;,; based onj, 1, y;, X. Similarly,

we denote by nm, In,m the summary statistics with, ., replaced by the generic argument

@t+1-

PROPOSITION 2: At order1/n, the conditional pdf of,..; giveny,, F;, X is equal to:

U(Geslys, fr, X) = tht—i-l yzt+1|fnt+1> (fn,t+1|ft)

-[nt—i-l i=1

111
n |8

- exp

~ ~ 2
1- 0*log g(fris1lfe) dlog g(fr11lfe)
K(4) ] 2 4 ]_ n,t+ + n,t+

mittdn s + 5l af2, O frir

1=y =~ 8logg(fm+1\ft) 3)
+§ w1 Knii O fi 24 [K"tﬂ] In?ﬂ

—l—o(l/n)}

The normalization factom ensures that the integral &y, 1|y, f, X) w.r.t. ;44 is equal
to 1 at ordero(1/n). Alternatively, we may impose the exact validity of the umiass restriction
by normalizing the approximate density by its numericatgnal.

Then, the expression of Proposition 2 can be integrated thhe approximate Gaussian filtering
distribution of F; given in Proposition 1 in order to get the predictive pdf. Visain the following

result (see Appendix 3 for the proof):



PROPOSITION 3: At order1/n, the predictive pdf of;,; givenY;, X is equal to:

- o - ~ - .
PG| Y, X) = = H hi 11 (yi,t-l—l‘fn,t-l—l) Y <fn,t+1|fn,t)

n]n,t-l—l i=1

11~y + 5 /-~ 2 .
- eXp {E {gKfz,zH[n,fﬂ + ﬂ <K1(12+1> ]n,?+1
2

9%logg (fn,tJrl‘fn,t) N dlogg <]En,t+1|fn,t)

1
51
2 t+1 aft2+1 8ft+1

2

1, a2logg<fn,t+l‘fn,t)
+§[T;t

dlogyg <fn,t+1 |fn,t>
+
df? Ofi

dlogg (fn,tJrl‘fn,t) dlogg (fn,t‘fn,t71>
of of:
dlog g (fn,t—i-l‘fn,t) 1. (3)310gg (Jgn,H—l‘fn,t)

+3 n n
8ft+1 2 ot it 8ft

+[7;t1

L=y =@
o lita K +o(1/n)

We get a closed form expression for the predictive densiltys €xpression depends on summary
Statisticsfy i1, Iners Ko K1y Fats faioty Ine K%}, some of them being functions of the
selected argument. ;. The formula in Proposition 3 is simplified when the argun@nnterest
Uir1 = Yrr1 COrresponds to the observations, as for deriving the ja@nsdy function of the sample
(see Section 3). Indeed, in this case, we hBve1 = fris1s Inis1 = Lnisn andf(ff,’t)+1 = K§72+1.

In particular, we see that procegg) is a Markov process of order 2, upd6l /n).

2 Exponential Micro-model

The expressions for the filtering and prediction distribns in Section 1 capture the non-Gaussianity
of both the micro- and macro-dynamics. This effect is ilattd in this section for a model with

exponential micro-density.
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2.1 The Model
Let us assume that the conditional micro-density can beemras:
Pie(yie| fr) = exp [a(yie) fr + b(yie) +c(fo)] - (8)

This is an exponential family in which the factor value is t@monical parameter. The choice of
a canonical factor is useful to interpret the asymptotiusinents in the filtering and prediction

distributions. More precisely, we have the following pragdsee Appendix 4 for the proof):

PROPOSITION 4: For an exponential micro-model with canonical factgr, we have:

E
Moreover:
e L}
[—di‘;};”}?’” T~ —Skennestu(i)|Fi = il
{_ dzggt)} k d4§;t{t) —Excess Kurtosia(y; )| F; = fi].

Therefore, the adjustment at ordefn in the filtering distribution (Proposition 1) involves the
third-order derivative of the micro-density and containsoag other statistics the opposite of the
conditional skewness af(y; ), thatis,I,,;* K\"). Similarly, the adjustments in the predictive dis-
tribution (Proposition 3) involve both conditional skeveseand excess kurtosis measures, through
statistics/,,;* K\, I, K} and I, 2K\"). Skewness and excess kurtosis summarize the proper-
ties of the conditional distribution of the transfoer(y; ;) of the individual observation given the

factor value, that are involved in the adjustments at otder

2.2 Examples

We provide in Table 1 the canonical parameterization andtii@ summary statistics for standard

exponential families. For some of them (e.g., the Berndauthily), the canonical parameterization
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does not coincide with the usual parameterization. Froratfanc( f) and the cross-sectional ML

estimator of the factor valuﬁ,%’t, we can deduce the expressions of the statiéﬁ&ﬁ%.

Example 1: Gaussian family with factor in mean

For a linear Gaussian state space model, the measuremenssi@r thaty, ;, - -, yn¢ ~
IIN(f;,1) conditional onF; = f;, where the canonical factor valygis the conditional mean,
and the conditional variance is constant, equdl,tsay. The CSML estimator of the factor value
IS fn,t = % > v thatis the cross-sectional average of the observatiofetet. The statistics

K,(ft) are such thaf,, ; = —Kfft) =1 andK,(ft) —0forp > 3.

Example 2: Bernoulli family with stochastic probability

For qualitative observations in the Bernoulli family, wevba, ¢, - - -,y ~ i.i.5(1, p;) con-
ditionally on F; = f;, where the canonical factor valygis related to the conditional probability
pe by fi = log [p:/(1 — p)]. The CSML estimator of the factor valuefs, = 10g [fn+/(1 — Jn.)],
wherey,,; = %ZL i+ Is the cross-sectional frequency. The statisf(éljg are such thaf,, ;, =
K8 = G0 = Gue)s Ky) = =Gne(1 = Fng) (1 = 2Ge) ANAKL) = —F (1 = Ge) (1 — 67 +
2054)-

In Example 2 with the Bernoulli family the canonical factbr= log [p/(1 — p)] admits real
positive and negative values, but in other cases the caaldattor is constrained. For instance, in
the exponential family in Table 1, the canonical factoe A is positive, as well as in the Gaussian
model with volatility factor. This feature has implicat®ifor the specification of the transition
distribution of the factor. A Gaussian autoregressive dyioa is appropriate for a factor admitting
values onR, while for instance an Autoregressive Gamma dynamics [@oaurx, Jasiak (2006)]

is appropriate for a factor admitting positive values.

3 Approximate ML Estimation of Macro-parameters

The approximate prediction formulas can be used to defineiegifi estimation methods. In
this section we consider a parametric nonlinear state spack| with macro-parameters only.
Thus, the measurement density (v ;| f:) is assumed known, whereas the state transition density

g(filfi—1;0) is parameterized by the unknown parameter vegiorhis setting is appropriate to
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address ML estimation in the models with exponential maeosity presented in Table 1 (see
Section 2) and allows for simple interpretations of the agpnate log-likelihood function (see
Sections 3.2 and 3.35.

3.1 The Granularity Adjusted Maximum Likelihood Estimator

The standardized log-likelihood function of observatiéns ..., yr) conditional on the initial ob-

servationy, is equal to:
T
1
Lor(0) = 7 Z log (1| Y1, X3 6), 9

where the predictive densipy(y:|Y;_1, X; 0) has a complicated expression, which involves high-
dimensional integrals, or equivalently the recursive stdghe nonlinear Kalman filter. Therefore,

the maximum likelihood estimator of parameter

enT = arg maax ‘CnT(e)? (10)

is difficult to compute numerically.

However, from Proposition 3 we deduce that the log-liketitidunction can be written as:
L (0) = L37(0) + 0,(1/n), (11)

where the granularity adjusted (GA) log-likelihood fumctiis given by:

T
1
ES?(H) = TEIOgPSA(?Jt‘Yth?e)a (12)

13



andpS4(y,|Y,_1, X; 0) is the approximate predictive density at ordén, such that:

logpfA(yt\Yt_l,X;H) X 10gg<fn,t‘fn,t—1;‘9>

1 62log9<fn,t|fn,t,1;9)

2

dlogg (fmt‘fn,tfl;e)

_|_

on ™ af? af,
~ ~ N N 2
[ 9oy <fn,t|fn,t—1; 9) dlogy (fn,t\fn,t_l; 9)
+% n,t—1 aft%l + aft—l

1, Ologg <fn,t|fn,t—1; 9) dlogg <fn,t71|fn,t72; 9)

+-1
n n,t—1

Ofi—1 Ofi_1
+i[_2K(3) 0 logg (fn,t‘fn,t—l; 9) N 1[_2 K(3) 8log q (fn,t|fn,t71; 0)
2n n,t n,t 8ft 2 n,t—l n,t—l 8ft71 9

(13)

where symbobc means equality up to terms independent.of he GA log-likelihood function in
(12) provides a closed-form approximation of the exactlikglihood function at ordeb,(1/n)
which is simple to compute. It only involves the statistjf;,g, I, and Kffz This suggests to

consider the approximate ML estimator that maximizes thel@Alikelihood function.
DEFINITION 1: The GA ML estimator df is:
b = argmax LI(6). (14)
It is proved in Gagliardini, Gouriéroux (2010) that the GA_Mstimator differs from the true
ML estimator by a term negligible at ordéyn, i.e.,0Sr — 6,7 = 0,(1/n). In particular, the GA

ML estimator inherits the consistency and first-order asytinp efficiency properties of the true

ML estimator whem, T — oo and7®/n = O(1) for a valueb > 1.

3.2 Gaussian Factor

Let us now consider the special case of a Gaussian factondgaaMore precisely, let us assume

that the factor follows a stationary Gaussian autoregresspdel:

Fy=p+y(Fo = p) +ny/1— 2, (15)

14



where the innovations aeg ~ 71N (0, 1) and the autoregressive coefficienis such thaty| < 1.

The stationary distribution aof; is Gaussian with meam and variance)?. The transition pdf is:

2
9(filfe1:0) = %72}1 —5 O {— i = gﬁ;(z(f;)— ) } ’ (16)
where the macro-parametee= (u, v, n?)" is unknown. Then, the log-densilyg g (fn,t\fn,t_1; «9)
and its partial derivatives in the RHS of (13) are polynosial f,,; — i — v(fnt—1 — p) and
frie1 — i — y(fni_s — 1) Of degree less or equal to This explains why the GA log-likelihood
function is equivalent to the logarithm of a Gaussian pdfftglr— h— V(fn,H —p),t=1,--- T,
with granularity adjustments for the mean and the varias@meriance structure at ordefn (see

Appendix 5). We get the next result:

PROPOSITION 5: In a model with Gaussian autoregressive factor and macnaipeeterd only,
a GA ML estimator of) can be obtained by maximizing the likelihood function of @imae-
inhomogeneous) Gaussian ARMA(1,1) model:

gn,t:,u"i_ﬁ)/(gn,tfl_ +77\/1_7€t+71—ni/2 \/—;i 21ut 15 t:1,~'~,T, (17)

where the observations afg; = f,. + -1, 1K(3

n,t?

and the shocks:;), (u,) are mutually inde-

pendent/ /N (0, 1) processes.

The computation of the log-likelihood function of the ARMRB() process (17) does not require
the numerical inversion of a matrix of large dimension. kediethe(7",T") conditional variance-
covariance matrix of,, ;, t = 1,--- ,T,isQ, = n*(1 —~*)Idr + %Bn, whereB,, is the symmetric
(T, T) matrix with elements equal th; ; ++21,,;_, in position(¢, t), =1, {_, in positions(¢t—1,¢)

and(t,t — 1), and zeros otherwise. At ordéfn, we have:

1 1

Ildr — ——
o YT nn*(1 — 42)?

Ol -
n*(1 —92)

n

B,. (18)

3.3 Approximate Linear Kalman Filter

Let us finally give an equivalent statement of PropositiomSerms of an approximate linear

Kalman filter.
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PROPOSITION 6: In a model with Gaussian autoregressive factor and macnaipeterd only,
a GA ML estimator of) can be obtained by applying the standard Kalman filter to thedr

Gaussian state space model with state equation:

Ft:M+’V(E—1_N)+77v1—725t7 gtN]IN(()?l)v (19)
and measurement equation:

Sy = Fy + — Ut, u, ~ IIN(0,1), (20)

\/— nt
wheret, , = fo, + = L KS).

ontn,t

By replacingF; in (19) by its expression derived from (20), we recover thaursive equa-
tion (17) in Proposition 5. Equivalently, (19)-(20) is thadar state space representation of the
ARMA(1,1) process of Proposition 5. The granularity adjosht in the measurement equation
(20) concerns both the mean and the variance. Whereas th@GAriance corresponds to the
usual asymptotic variance gﬁ,t, the GA for the mean is not correcting for the biasfpj at order
1/n. The reason is that the GA maximum likelihood estimatored#ffrom the unfeasible maxi-
mum likelihood estimator of by a term of order smaller than'n. The GA for mean is introduced
to recover the bias at ordéyn of the unfeasible ML, which is not equal to zero. The estimato
of macro-parametet in Proposition 6 computed with the linear Kalman filter dif@umerically
from the estimator in Proposition 5, when the latter is cotagiy using the approximate inverse
variance-covariance matrix (18).

Let us illustrate the result in Proposition 6 with the two mdes introduced in Section 2.

Example 1: Gaussian family with factor in mean (cont.)

Let us consider the linear Gaussian state space model N( f;, 1) where the factoy; follows
the Gaussian autoregressive dynamics (16). Sipee= 1 and Kfft) = 0, the macro-parameter
0 = (u,v,n*) can be estimated by applying the standard Kalman filter omipeoximate linear

state space model with state equation (19) and measuremeatian:

for=F,+ u, ~ IIN(0,1), (21)

1
—u s
N
where fm = yn¢ IS the cross-sectional average. The granularity adjustowiterns the variance

only.
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Example 2: Bernoulli family with stochastic probability (cont.)

Let us now consider the model with dichotomous observatjpns: (1, p;), where the canon-
ical factor f, = log[p;/(1 — p;)] follows the Gaussian autoregressive dynamics (16). Bygusin
It = Unt(1 — ypny) and [;inft) = 2y, — 1, the measurement equation of the corresponding

approximate linear state space model becomes:

N 1 1
fot + E(gn,t —-1/2)=F + %[gn,t(l — gn,t)]_l/Quta u; ~ IIN(0,1),

wherefm = log[yn+/(1 — y,+)]. The granularity adjustment concerns both the mean and the
variance. In particular, the variance granularity adjwesthcan be large whey, ; is close to either

0, orl.

4 Granularity Adjustment for Value-at-Risk (VaR)

The filtering formulas are also useful for evaluating theitdldal capital reserves to introduce in
the current regulation to account for the unobservabilitthe systematic component of the risk.
These reserves are usually computed from a quantile of theitcanal distribution of the future
portfolio value, called conditional Value-at-Risk (VaR)Me define the standardized quantile for
an homogenous portfolio, derive the approximation at otderof the conditional distribution of
the future portfolio value, where is the portfolio size, and deduce thg¢n approximation of the

required level of reserves.

4.1 The Problem

The need for tractable approximation formulas in factor eledvith large cross-sectional size
appeared first in Basel 2 regulation for credit risk [BCBSQ2)). Let us consider a large homoge-

nous portfolio ofn financial risks. The total portfolio risk at+ 1 can be written as:

Wit = Z Yit+1, (22)
=1
where the individual riskg; ;1,7 = 1, - - - ,n, are assumed to satisfy the assumptions of the non-

linear state space model in Section 1.1, with underlyingpfag; . ;. For expository purpose, we

include neither exogenous variables, nor lagged obsensin the measurement equations. When
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the risk variables correspond to asset values, the VaRlalesiel o, with o € (0, 1) and close to

0, is the opposite of the quantile of levelof the predictive distribution ofV,, .., called Profit
and Loss (P&L) distribution. When the risk variables cop@sd to credit losses, the CreditVaR
is computed for a confidence lewele (0, 1) close tol, and corresponds to thequantile of the
Loss and Profit (L&P) predictive distribution &F,, ... In the sequel we focus on the second inter-
pretation. It is usual to “standardize” the VaR by considgithe VaR per individual asset, which
corresponds to the (opposite of the) quantile at levet 1V, ;1 /n. This quantityl’ aR,, :(«), say,
depends on the portfolio size and on the informatiory, available at timeg. The VaR can be
easily computed from the associated cumulative distidoutiinction (cdf) ofiV,, ;.1 /n. Let us

first focus on this function.

4.2 Approximation of the Predictive cdf of the StandardizedPortfolio Risk

We consider the future portfolio value per individual ass@) By applying the Central Limit

Theorem conditional on the future factor vallig ;, we can write for large::

o(Fit1)
\/ﬁ

Wi /n ~m(Fyq) + Z, (23)

where:
m(ft+1) = E[?/i,tJrl‘FtJrl = ft+1]> UQ(ftH) = V[?/i,tJrl‘FtJrl = ft+1]> (24)

andZ is a standard Gaussian variable independef of, Y;. Whenn tends to infinity, the aver-
age of the individual risks at+ 1 tends tom(F;, 1), which is a stochastic variable. Indeed, due to
systematic risk factof; ;, the risk cannot be entirely diversified by increasing thefpbo size.
The termsn(F;,;) ando(Fi, ) (resp.Z) in the RHS of approximation (23) show the effect of cur-
rent systematic (resp. unsystematic) risks. By a standardiant expansion conditional dn. +,

it is seen that the RHS of (23) provides an approximation lier¢donditional Laplace transform
(moment generating function) &¥,,,.,/n givenF..,, Y, at ordero(1/n). Then, by the Fourier
Transform Inversion formula [see Duffie, Pan, SingletorO), we also get an approximation at
ordero(1/n) for the conditional cdf o#V,, .., /n under mild regularity conditions. Therefore, we
use the approximation in the RHS of (23) for our purposes.

(if) Let us now consider the cdf of the standardized futuretfpbo value W, ;1 /n given
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F:, Y, Z. From expansion (23) we have:

PWhii/n < wlF, Yy, 2] = /“ (For)+ 2820 7, 9(fera| Fo)dfria 4 o(1/n)
= al(w, Fy,Z/\/n) + o(1/n), say. (25)
Under mild regularity conditions, functiai(w, f, ¢) is continuously differentiable w.r.t. the argu-
mentsf ande ate = 0 (see below). Function summarizes the joint effect of lagged systematic
risk and current unsystematic risk on the future portfaké for largen.
(iii) We deduce that the predictive cd, ;(w) := P [W,, +1/n < w|Y,] of the standardized

portfolio value giveny, is:
Foi(w) = E [a(w, Fy, Z//n)|Y] + o(1/n).

At this step, we can use the approximate filtering formularwpBsition 1. We get:

1 1
Fus) = B [a (1. o by + =122, 222 ) V1] + o1, (26)
. . . . . _,0logg
where variableZ* is standard Gaussian conditional ¥p while y,, ; = Im o/ (fnt\fnt 1) +
t

1
QIan(?’ is the GA mean for the filtering distribution anii; /n the GA variance. Since the

Laplace approximation is purely numerical and does notw@aticfor the stochastic feature of the
observations, variables* andZ are independent conditional of °.
Then, we can expand equation (26) at ortélén. SinceE[Z] = E[Z*| =0, E[ZZ*] = 0,

E[Z?] = E[(Z*)?] = 1, we get:

p 1 da p

Fn,t(w> - CL(U}, fn,h 0) + _8_f(w7 fn,t7 O)Mn,t
1 0%a A 0%a A
|i]ntlaf2 (U),fn,t,O) + @(w,fn,t,O)} +0(1/n) (27)

In the above expression we distinguish three components:

The leading term:
a(w, fn,tu 0) =P [m(Ft-l—l) < w‘Ft = fn,t = oo,t(w)7 (28)

is the cdf of W,, .., /n evaluated atv and computed for a portfolio of infinite size, with

perfect knowledge of the current factor value, identifiedhvy‘fw Indeed, whem = ~o
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the portfolio value per individual assBt,, ;. /n equals the individual conditional expected
valuem(Fi;1). Thus, the predictive cdf,, ; corresponds to the conditional distribution of
m(F,11) givenF;, = fn,t [see e.g. Vasicek (1987, 1991), Schoenbucher (2002) intia sta
framework, and Lamb, Perraudin, Van Landschoot (2008) ipreachic framework]. This is

the Asymptotic Single Risk Factor (ASRF) model in Basel ii@ology;

2

1
a first GA equal to—g Z(

but still assumes a perfect knowledge of the current facbrey

. 1 0%
the second GA_@f (W, frt,0) it + I: 72

between the information sefB;, Yt) andY,, that is, the unobservability of the common risk

w, fn,t, 0) is introduced to account for the finite size of the portfolio,

—(w, fn,t, 0) takes into account the difference

factor.

Due to the independence betwegmand Z*, there is no need for cross GA.

4.3 Granularity Adjustment of the Standardized VaR

Finally, the GA of the VaR is directly deduced from (27) by bppg the Bahadur’s expansion.
Let us denote by, ; (resp. Q) the quantile function corresponding 16, ; (resp. ), and
assume that the densitfs, ;(w) = dF.(w)/dw exists and is strictly positive. The quantile
()~ and the pdff., ; are called Cross-Sectional Asymptotic (CSA) quantile adift i@spectively.
The Bahadur’'s expansion gives the difference between theapnate and theoretical quantile
functions in terms of the difference between the approx@aat theoretical cdf’s. It has been first
derived in Bahadur (1966) for studying the asymptotic proge of the empirical quantile. In our
setting it is applied to quantileg,, ; and@) ;. We have:

o Ful@ue]—a
Q",t(a) QOO,t( ) foo,t [Qoo,t(a)] + (1/ ) (29)

The GA for the quantile and for the standardized VaR are nbthby replacing, ; and Fi, ; by
their expressions using (27) and (28). In particular, thef@Gthe VaR is still at ordet /n and
accounts for both the portfolio size and information efatiscussed for the cdf.

Under suitable regularity conditions, the second-ordetigdaderivative of functiom(w, f, )

w.r.t. toe at0 can be expressed in terms of the conditional distributi@isohg the measurement
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and state equations. For instance, let us assume thatdametis one-to-one. Then:

O f0) = % { Faoa) B [ (Fep)lm(Fiv) = w, Fy = fo] }

Oc?
_ % { froa(w)o?[mL(w)]}. (30)

The expression of the second-order derivative of functiappeared first in Martin, Wilde (2002)
in a static framework, building on the local analysis of VaRGouriéroux, Laurent, Scaillet (2000)
[see also Tasche (2000)]. Equation (30) in the dynamic freonleis obtained from the result in
Martin, Wilde (2002) by conditioning oft; = fnt By combining equations (27), (29) and (30),

we get the following Proposition:
PROPOSITION 7: If functionm(.) is one-to-one, the VaR at risk levels such that:
1
VaR, () = Qoorlar) + E[GAm‘sk,t(Oé) + GAfiri(a)] + o(1/n),

where the GA for the finite portfolio size is:

1 (dlog foor(y) o 4 dUQ[m_l(y)]}
GA,is =y — ’
k(@) 5 { a0 o [m™(y)] + dy B

and the GA for filtering the current factor value is:

1 19, A 1 0?
GAfipi(a) = ————— { a [Qoot(@), frt, 0] + —J} ¢

"t O] 0y 31t 5 731Qa(0) o 01} |

For a static factor model witl(f) = f, the GA for filtering the current factor value is equal

to zero, and the GA for finite portfolio size reduces to:

where@,, and f,, are the quantile and the pdf éf, respectively. This formula corresponds to the
GA derived in Wilde (2001), Martin, Wilde (2002), Gordy (2®004). Proposition 7 shows how

the GA formula is extended and decomposed in models with ardinsystematic factor.
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4.4 Examples

Let us now derive the GA in two examples with exponential mHdensity (see Section 2.2).

i) Linear Gaussian state space model

Let the variableg, ; follow the linear Gaussian state space model with measureegeiations:
Yir=Fi+ou, i=1,...,n, (31)

and state equation:
Fy=p+y(Foy — p) +ny/1 — 7%, (32)

where(u; ), ¢ = 1,...,n, and(e;) are independent/ N (0, 1) processes, and| < 1. The factor
F; follows a stationary Gaussian AR(1) process, with a statipulistribution given byV (1, n?)
and an autoregressive parameter equaj.torhe conditional distribution of;; ; given F;, = f;
is GaussianN(f;, %), and hence the functiom(.) is given bym(f) = f, while the func-

tion o?(f) = o? is constant. By using that the distribution 8f,, conditional onF, = f; is

N (u+y(fe — ), n*(1 —~%)), we deducer(w, f,0) = @ (w — K _17(]62_ m). By inversion
n -7
w.r.t. w, we get the CSA VaR:

Qoot(@) = 1+ Yoy — 1) + /1 — 72071

where the factor approximatiof)m = Yy IS the cross-sectional average at daté_et us now

derive the GA's. From Proposition 7 the GA for the finite polit size is:

1 o?
GAigri(a) = =——=®(a),
k() Wi (@)
and the GA for the filtering of the factor value is given by:
o? 1 R
GAygii(a) = 7 [_”chl(@) - 5n,t} )
ny/1—~2 12
fnt —h—= V(fnt 1 )
1=

i) Nonlinear state space model for qualitative variables

wheres,, ;, =

denotes the standardized residual of the state equation.

Let us consider a portfolio of (zero-coupon) corporate lsondh maturity at + 1 and unitary

nominal value, and denote by, ; the issuer default indicators. Under the assumption of zero
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recovery rate}V,, ,.1/n is the portfolio loss per individual loan at+ 1. Let us assume that the
dichotomous variableg ;,, are suchthay; ; ., = 1, if y;,,, <0, andy;,; = 0, otherwise, where
the latent variableg;, ,, correspond to the log of the asset-to-liability ratios af thsuers at date
t+1. The variableg;, are assumed to follow the linear Gaussian state space n®iJef32). This
defines a nonlinear state space model for dichotomous Vesigh. The measurement equation is
such that the default indicatgr; is Bernoulli distributed3(1, p;) conditional on the factor value

F; = f;, with conditional default probability:
pp=7P [?Jz',t =1|F, = fil] = P[Fi + Ot < 0[Fy = fi] = @ (= fi/o). (33)

We get a probit model with factor. The cross-sectional faafgproximation at dateis given by
fn,t = —o®!(y,.), thatis a nonlinear transformation of the cross-sectidaetdult frequency,, ;,

while functionsm(.) ando(.) are given by:

m(fe) = @(=fi/o), o*(f) =@ (=fi/o)[1 = (=fi)o)].

Moreover, since the conditional probability of defapitin (33) involves the ratig; /o only, the
distribution of the observable variables depends on threetsral parameters, that aigo, n/c
and~.

Let us first compute the function(w, f, 0). Since functionn(.) is monotonically decreasing,

we have:

a(w, f,0) = Plm(Fi1) <w|F = fi] = P [Fiy1 > —0® ' (w)|F; = fi]

g (o@*(w) +p —u)) |
Wi

By inverting this function w.r.tzw and evaluating it af; = fm we get the CSA VaR:

Qur(0) = @ <_:u+’7(fn,t — ) +ny1—9207 (1 — a)) ' (34)

g

By the equivariance property of the VaR, the quanfllg ;(«) in (34) corresponds to the transfor-
mation by functionn(.) of the(1—«)-quantile of the Gaussian distribution &f, ; givenF, = fnt
Let us now derive the GA of the quantile. From Propositiorhé, GA for finite portfolio size is:

Qoo t(@)[1 = Qoo r(a)]
¢ (27 Qoo (@)])

1
GArisk,t(a) - 5 {

1—7

(n i =07 () — <I>_1[Qoo,t(oz)]> + 2Qo0 () — 1} :
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and the GA for filtering the current factor value is:

gn,t(l - gn,t) g
n

GAmele) = 2000 Qmd) G s (20— o1 - )

- an,t —1/— 3 —1/—
———— 02 (Unt)] = 5P (Ynst) ¢ -
Gl ()] - 30 ()}

5 The Value of the Firm Model with Recovery

In this Section we consider a Value of the Firm model [Mert@874), Vasicek (1991)] with
a single dynamic risk factor and a non-zero recovery rate. fit¥e introduce the model, then
derive the cross-sectional approximation of the factaneaind the filtering distribution, and finally

compute the granularity adjustment of the portfolio VaR.

5.1 The model

Let A;, and L,, denote the asset of firmat datet, and the firm liability maturing at datg

respectively. The percentage loss of the debt holder attdate

A, A\ T
Yix = ]IAi,t<Li,t <1 - Lf) = <]' - Lf) . (35)

The loss variabley; ; is the product of the default indicatdr,, ,.;,,, that is equal tal, when

the asset value is below the liability, afdotherwise, and of the percentage Loss Given Default
(LGD), thatis1 — % 10 At a given date and for given liabilityZ, ;, the second equality in (35)
corresponds to the interpretation of the Idssy; ., incurred by the debt holder as the payoff of a
put option written on the firm asset with strike equal to tladility [Merton (1974)].

Let us assume that the log asset/liability ratios of the fifall®w a linear single risk factor

(SRF) model:

log <21:z) = F, + ouy, (36)
where F; is a systematic risk factor common across firmg, ~ [IN(0,1) are unsystematic
(idiosyncratic) risks independent over time and acrosssfiamd independent of fact¢f;), and

o is the unsystematic (idiosyncratic) volatility. Factdr;) follows a stationary Gaussian AR(1)

process:
Fy=p+y(Fo = p) + /1 =2, (37)
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where the innovations aeg ~ 71N (0, 1) and the autoregressive coefficienis such thaty| < 1.
Parameterg, andn are the mean and volatility of the stationary distributidn/®, respectively.
The specification (36)-(37) extends the SRF model introdumyeVasicek (1991) and considered
in Basel 2 regulation [BCBS (2001)] to a dynamic frameworkeTunobservable factdr, has a
linear effect on the latent asset/liability ratios by meahthe drift only. However, our interest is
in the individual risksy; ;. Conditional on facto#;, both the mean and the varianceyf depend
on the factor. Thus, we get a model for the observable vasabith both stochastic meamn( F,)
and stochastic volatility (F;) (see Section 5.3).

The dynamic SRF model involves four structural parametassusual, it is interesting to in-
troduce an alternative parameterization, which is easranferpretation and calibration purposes.

The unconditional Probability of Defauk D and asset correlatignare given by*

1
PD = Plog (Ai,t/Li,t) <0]=9o <_\/ﬁ> ) (38)
and:
2
p = corr [log (Air/Liyt),1og (Aji/Ljr)] = he Z_ o2’ (39)

for i # j, respectively. Moreover, the unconditional Expected ¢pptage) Loss Given Default
(ELGD) is defined by:

Aus | Auy
FLGD =F |1 —— ’ 1]. 40
¢ [ Lot | Lus = } (40)

SinceELGD - PD = E [(1— A;;/L;)"] andlog(A; /L) ~ N(u,n* + o?), we deduce that
ELGD - PD is equal to the price of a put option in the Black-Scholes redt volatility

. 1 . .
parameter/n? 4+ o2 and risk-free rate: + 5(772 + ¢?), divided by the price of the zero-coupon
bond at the same maturity; we get [see Geske (1977) and Appéhd

L_ 2+2
Vitte Y ”)

; (
1
ELGD =1 — exp {u + 5(772 + 02)} (41)
o 1
N
Equations (38), (39) and (41) define a one-to-one mappingdsat the structural parameters
(u,m, o) and the new parametef® D, p, ELG D). Indeed, we have (see Appendix 6):

= —T(Ifl(PD), n="1yp, o=T71-p, (42)
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wherer > 0 is the unique solution of the equation:
1
PD — exp 572 — & Y(PD)r| ®[®(PD)— 7] = ELGD - PD. (43)

The LHS of equation (43) is the Black-Scholes put optiongas a function of volatilityr =
\/m and for given risk-neutral probability’ D, that the put is in the money at maturity.
Thus, the solution of equation (43) is similar to an implied volatility. Noteahbothr and
depend onPD and ELG D only. To summarize, the dynamic SRF model can be parametkinz
terms of unconditional probability of defaultD, asset correlatiop, expected loss given default
ELGD, and the autoregressive coefficient of the fagtor

The one-to-one relationship between structural paraméter), o) and reduced form param-
eters(PD, p, ELGD) is especially important for calibration. Indeed, histafiestimates oD,
pandELGD are easily obtained in practice and, by inverting the retegthip, we deduce consis-
tent estimates of the structural parameters. As an illistrawe give in Table 2 the values of the
structural parameters corresponding to some values oktheed form parameters suggested by
the Basel Committee [see BCBS (2001)], i.e. Basel impliedcsural parameters. Specifically,
the values).45 and0.75 for ELGD correspond to senior classes on corporate, sovereigns and
banks not secured, and subordinated classes on corparageeigins and banks, respectively. The
values0.12 and0.24 for p are the minimal and maximal asset correlations consider&asel 2,
respectively, for debt without guarantees, while- 0.50 is the value of asset correlation for guar-
anteed debt. The valuess% and5% for P D are representative for yearly default probabilities of
obligors in rating classes BB and B in Fitch, respectivetyn® of the parameter values in Table 2

are used in the illustrations of the next subsections.

5.2 Cross-Sectional Factor Approximation and Filtering Dstribution

Let us first write the dynamic SRF model as a nonlinear stadeesmodel. From equations (35)

and (36) the loss variable is such that:
Yii = [1 — exp(F, + oui,)]".

Thus, the measurement equations correspond to a Gaussiameyession model with endoge-

nous variabldog(1 — v;,), meanf, and variances?, and are characterized by the conditional
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density [Tobin (1958)]:

ﬁh(yz‘,t\ft): H E¢ (log( 5”) )1_%J H O(f /o), (44)

11y, >0 1:y4,4=0

while the state equation is the Gaussian AR(1) model (37).
Let us now compute the cross-sectional factor approximaditd derive the approximate fil-
tering distribution of the unobservable factor value. Thess-sectional maximum likelihood ap-

proximation of the factor value at datés given by:

20

1:9;,¢>0

faz = arg max {12 > log(l—yis) — £+ (n—ny) log q>(ft/<f)} : (45)

wheren; = Z 1,, >0 denotes the number of defaults at datédt corresponds to the ML factor
=1
approximation in a Tobit model with factor. The factor appnoation f,, ; is the solution of the

nonlinear first-order condition:
1 A R
— > llog(1 = yin)] = ni(fas/0) + (n = n)A(far/o) = 0,
o 1:y4,¢>0

where:

A) = 5,

(46)

denotes the inverse Mill’s ratio. From Proposition 1 theragpnate filtering distribution of; is

Gaussian with density (see Appendix 6):

N(]En,t—i—% Ilf“ ’:](ﬁf:t)l o ;IngKﬁ’],%Img), (47)
where the quantities, , = — k%) and k%) are given by:

e A (B () s ()]}
and:
K2 - (1 ) (o) 1 [ ()] [ ()] .

respectively. The quantities, ; and K, (3 . depend on the information at datehrough the factor

approximationfn,t and the default frequenay,/n only. Moreover, the quantltleﬁ%t, I, and
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K (32 involve parameter only. The other structural parametersn and~ impact the filtering
g == 1(fas1 — 1)
V1=

distribution through the standardized residéigl = and the conditional

standard deviation,/1 — 2. 2
In Figure 1 we display the conditional distribution Bf given F;_; = p and the approximate

filtering distribution of F; for different values of the cross-sectional dimensigrthat aren =

50, 100 and1000. The micro-information is such that the cross-sectionetdiaapproximations
are fnyt = fn,t_1 = u and the default frequency is/n = PD. The structural parameters are
such thatELGD = 0.45, PD = 5%, p = 0.12 andvy = 0.5 (see Table 2). When gets
larger, the filtering distribution features a smaller vaga and peaks at the cross-sectional factor
approximationfn,t, as an effect of the increasing micro-information. The mafdhe approximate
filtering distributions differs frorrfnyt because of the bias adjustment.

In Figure 2 we investigate the effect of the micro-inforration the mean and the standard
deviation of the filtering distribution of;; for n = 100. Whenn,/n = PD andé,; = 0, the
mean of the filtering distributions is closefgt and the standard deviation is increasing Wﬁ;,g
(upper left Panel). Wheﬂt = pandé, , = 0, the filtering distribution of the facta¥; is not very
sensitive to the default frequenay/n (upper right Panel). Finally, wheﬁ,t = pandn;/n = PD,
the mean of the filtering distribution is decreasing w.ihe standardized residua| ; (lower left
Panel). For given cross-sectional factor approximaﬁp{) the mean of the filtering distribution
is larger (resp., smaller) thafy , whené, ; < ¢ (resp.,é,; > ), wherec = —77\/7[ 1KY

is close to zero. Since the coefficient ﬁ{t in the mean of the fllterlng distribution of; is
1 I
np(l=a) | | |

mean of the filtering distribution of;. This effect is more pronounced when the autoregressive

< 1, a cross-sectional shock y’r;“ at datet is transmitted less than fully to the
coefficient is large and close 1o(lower right Panel).

5.3 The Granularity Adjustment for Portfolio VaR

Let us first derive the functions(f;,1) ando?(f..1) [see equations (24) in Section 4.2]. Condi-

tional on the future value of the factéi_ ;, the loss variable:

Yirp1 = [ —exp(Fipq + Uui,t+1)]+>
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corresponds to the payoff of a European put option with striktime-to-maturityl and current
value of the underlying asset equaldo(F;.1), in the Black-Scholes model with volatility pa-

rametero and risk-free rate?/2. Then, we have (see Lemma 1 in Appendix 6):

m(fip1) = Bl <Frjo(l —exp(Fy + o)) Fror = fira]
2

= O(—fi11/0) —exp (ft—H + %) P (= fry1/0—0), (50)

which corresponds to the Black-Scholes price of the pubopdivided by the zero-coupon bond
price of the same maturity. The function is monotone decreasing, since the variaplg
is decreasing w.r.t.F,,;. To compute the derivative of functiom, let us writem(f,,1) =

f:oii*l/”[l — exp(fi+1 + ou)]¢(u)du. Then, the derivative of functiom is given by:

dm(fev1) il
i et |

2

exp(on)o(u)du = —exp ( frer+ G ) @ (~fuusf7 = 0) <0,

(51)
which is the delta of the put multiplied byp(f;11). The functiono?(f,.,) is given by (see
Appendix 6):

2

02(ft+1) = m(fir1)[1 — m(fiy1)] — exp (ft+1 + %) P (—fiy1/0 —0)

+exp(2fi11 + 20°)® (= fiy1 /o — 20). (52)

This is the variance of the payoff of a short-term put optiothwtrike 1 and underlying asset price

exp(F;41) in the Black-Scholes model. Finally, the derivativesdf f;, ;) w.r.t. fi,; is given by

(see Appendix 6):
2 2
M = —2exp <ft+1 + U—) (= fir1/o —0)[1 = (= fi+1/0)]
dfi+1 2
+2exp (2f1 +20%) @ (—fr1/0 —20) = 2exp (2fir1 + 0%) [ (— fir1 /o — o).
(53)

Functionsm(f;;1) ando?(f;,1) as well as their first-order derivatives involve micro-paeder
o. These functions are displayed in Figure 3 for a value abrresponding tov LGD = 0.45,
PD = 5% andp = 0.12 (see Table 2).

Let us now compute the functiar{w, fnyt, 0) [see equation (28) in Section 4.2]. We have:

@(wa fn,t;o) = P[m(FtH) < w|Ft = fnt] = P[Ft+1 > mfl(w)‘Ft = fnt] (54)
_ @<_m“@0—u—ﬂﬁ¢—m>, (55)
nv1—22
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wherem ! denotes the inverse of function and we used that: is monotone decreasing. The

conditional pdf ofm(F,.,) givenF; = fm is obtained by differentiating functiodw.r.t. w and is

given by:
_ 8a(w, fmh 0) _ 1 mil(w> — K= V(fn,t - M) dmil(w)
Jooa(w) = ow __77 1—~2 <_ ny/1—~2 ) dw
A exp (—m_l(w) - 0—2)
nv1—72 nV1—77

()

The next Proposition 8 gives the CSA VaR and the GA in the Valuthe Firm model with

where we used (51).

dynamic factor and non-zero recovery rate (see Appendix théoproof).
PROPOSITION 8: (i) The CSA VaR at confidence lewgk given by:

Qoot(a) =m [QL,,(1—a)], (57)
where:
Qos(l— @) = p+v(fup — 1) +1y/1 = 7207 (58)

functionm is defined in (50), angfn,t IS the cross-sectional factor approximation in (45).

(i) The granularity adjustment ié[GATisk,t(a) + GApiert(a)], where the GA for risk is:
n

1 1 Qi (1 —a)
o) = 1 (o b= )

2. dm o (1 —ay L\nv1 g

dft+1 ’

2 * d02 *

Q51— o) + g1 - a>1} | (59)

dft+1
the GA for filtering is:
. o dm ) L e Y e

GAginde) =~ Q1 awn,t{n (o)) - LIRS }

(60)

and where functions\[.|, dm/[.|/df:1, o?[.] and do?[.]/df:,1 are given in (46), (51), (52) and

(53), respectively, the summary statistics and (32 are given in (48) and (49), and,,; =
fnt—ﬂ ”Y(fnt 1= 1)

n1—92
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By the equivariance property of the quantile function uneemotone decreasing transfor-
mations, thew-quantile Q. () is the transformation by functiom of the (1 — «a)-quantile
j;oyt(l — «) of the Gaussian distribution of,,; given F; = fnt The CSA VaR depends on
the unconditional mean and volatilityn of the systematic factor, on its autoregressive coefficient
v, as well as on the factor approximati(fg,t, through the Gaussian quantilg_ (1 — «). It
depends on the idiosyncratic volatility parametethrough transformatiom. The GA for risk
involves parameters, i, o andy and depends on the information through the Gaussian geantil
Q% +(1 — «) only. Similarly, the GA for filtering involves the four struzal parameters and de-
pends on the information throug@gt(l — «a), the standardized residual ; and quantitied,, ;
and k%)

In Figure 4 we display the CSA VaR, the risk and filtering comgais of the GA, as well as
the GA VaR forn = 100 andn = 1000, as functions of the cross-sectional factor approximation
fn,t. The default frequency at datds n;/n = PD and the lagged value of the cross-sectional
factor approximation i§n7t_1 = p. The parameters are such ttafLGD = 0.45, PD = 5%,

p = 0.12 andy = 0.5 (see Table 2). The confidence levelas= 0.995. The CSA VaR is
decreasing w.r.t.fn,t, since larger factor values imply larger asset/liabildgios. The patterns
of the GA components for risk and filtering are very differefihe GA for risk admits positive
values and is decreasing w.rftm over the displayed range of factor valugs- 37, 1« + 3|, while
the GA for filtering admits both positive and negative valaed is increasing w.r.tfnyt. Indeed,
Whenfnyt is large, the standardized residdal is also large and positive, and thus the mean of the
approximate filtering distribution is smaller th&nyt (see Figure 2). This granularity adjustment
in the filtering distribution implies a less optimistic factvalue at daté compared tcfm, which
yields an upward adjustment for the portfolio VaR. For a fabid of » = 100 contracts, the GA is
large and relevant for most values of the cross-sectioMﬁapproximatiorfn,t. Forn = 1000,
the GA is about%-10% of the CSA VaR for moderate to large valuesfg,ft, and is mostly due to
the filtering of the unobservable factor value.

In Figure 5 we display the CSA VaR, the GA VaR and the risk anerfiig GA components for
PD = 1.5%. Compared to Figure 4, the CSA VaR is smaller for the corredpmy factor values,
the GA for risk is slightly smaller and the GA for filtering iarger. This results in granularity

adjustments that are very large for portfolio size= 100, and abouR0% of the CSA VaR for
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moderate factor values when= 1000.

The last Figures 6 and 7 illustrate the dynamic features & @8l GA VaR. The third Panel in
Figure 6 provides a simulated path of the factor and its esestional approximation. We observe
that fn,t has some tendency to smooth the underlying factor valueg. tWh upper panels are
describing the evolution of the losses with zero and noo-recovery rates. When the non-zero
recovery rate is taken into account, the loss is smaller ama@bgher. The corresponding evolution
of the VaR measures and their components are displayed imé=ify The GA VaR is larger and
smoother than the CSA VaR. Moreover, whereas the risk cosmgaf the granularity adjustment
is always positive and rather stable in time, its filteringngmnent varies quite a lot in time and
can eventually take negative values. Table 3 displays tlesge€) autocorrelograms of the CSA and
GA VaR series computed by Monte-Carlo simulation. The GA ‘¥aRes is more persistent.

Finally, it is necessary to check if the GA VaR is preferalddite CSA VaR in terms of the
frequency and dynamic pattern of violations. In Table 4 weorethe values of different summary
statistics associated with predictability test proced{i@acomini, White (2006)]. More precisely,

the conditional VaR satisfies the conditional moment reisbm:
P [Wmﬂ/n S VaRn7t(a)|Yt] = = FE []IWn,t+1/nZVaRn,t(Oé) — (1 — Q)‘Yt} =0.

Thus, a battery of specification tests can be introduced hgidering the unconditional moment

restrictions:
E & (W, /n=var @ — (1 - a))] =0,

where, is a selected instrument function of the informatin We provide in Table 4 the values
of different such statistics, computed by Monte-Carlo. Wlhige instrument is constagt = 1
(second row of Table 4), we get the standard criterion fopest validation in Basel 2, that corre-
sponds to the frequency of violations in excess of the nomisialevel 1 — a. Other instrumental
variables are selected in rows 3-8 of Table 4, and the reatdtslisplayed in terms of correlation
betweenlyy, .., /n>var..(a) — (1 —a) and these instruments. It is immediately seen that the salue

of the summary statistics are significantly smaller in absoValue for the GA VaR.
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6 Concluding Remarks

Recently there have been several developments in thetliteran nonlinear factor models with
individual observations and macro-factors. These devedoyis are especially relevant in Finance
and Insurance when large homogenous portfolios of indalidantracts, such as loans, mortgages,
revolving credits, Credit Default Swaps, life insuranceatcacts, are involved. This paper shows
how the difficulties encountered with nonlinear Kalman rs@ns can be solved by an appropriate
use of the micro-information. The granularity principléléaved in this paper consists in expand-
ing the quantity of interest with respect tgn, wheren is the cross-sectional dimension. The
term of order0 in 1/n corresponds to the Asymptotic Single Risk Factor modet; ithato the
virtual case of an infinite cross-sectional size; the nesthtef order1/n provides the granular-
ity adjustment. We have developped this principle for theriihg and predictive distributions in
nonlinear state space models with a large number of measatesquations. Then, we have seen
how the results can be applied for the approximation of thgimam likelihood estimator of a

macro-parameter in a factor model, and of the condition& ¥ha large homogenous portfolio.
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Figure Legends

Figure 1: The Figure displays the conditional distributionfgfgiven F;_; = p = 3.05 (solid line)
and the approximate filtering distribution 6 for different values of cross-sectional dimensign
that aren = 50 (dashed line)y = 100 (dashed-dotted line) and= 1000 (dotted line). The micro-
information is such thaf‘n,t = fn,t,l = pandny/n = PD, for all n. The structural parameters
are such thabk LGD = 0.45, PD = 5%, p = 0.12 and~y = 0.5 (see Table 2).

Figure 2: The Figure displays the mean of the approximate filteringgidigtion of F; (solid lines),
and the2.5% and97.5% quantiles of the approximate filtering distribution Bf (dotted lines),
as a function of different micro-information sets fer= 100. In the upper left Panel, we set
n:/n = PD andé,; = 0 and Ietfnyt vary. The structural parameters are such fiatG D = 0.45,
PD = 5%, p = 0.12andvy = 0.5 (see Table 2). In the upper right Panel, Weﬁgtz @ =3.05
andé,,; = 0 and letn;/n vary. In the lower left Panel, we sépt = pandn;/n = PD and leté,, ;
vary. Finally, in the lower right Panel the same situatiodigplayed as in the lower left Panel but

with v = 0.95.

Figure 3: The four Panels display the patterns of functiom&f;, 1), dm(fii1)/dfii1, 0%(fis1),
anddo?(fi41)/df.41, respectively. The structural parameteis such thatt LGD = 0.45, PD =
5%, p = 0.12 (see Table 2).

Figure 4: The left Panel displays the CSA VaR (dashed line), the GA \@R = 100 (solid line)
and the GA VaR for, = 1000 (dotted line) as functions of the cross-sectional fact@ragimation
fn,t. The middle and right Panels display the GA component fé;, aad the GA component for
filtering, respectively. The information setis such thatn = PD andfn,t,l = u. The confidence
level isa = 0.995. The structural parameters are such théatGD = 0.45, PD = 5%, p = 0.12

andy = 0.5 (see Table 2). In particular, the unconditional factor misan= 3.05.

Figure 5: The left Panel displays the CSA VaR (dashed line), the GA \@R = 100 (solid line)
and the GA VaR for, = 1000 (dotted line) as functions of the cross-sectional fact@ragimation
fn,t. The middle and right Panels display the GA component fdt;, asd the GA component for

filtering, respectively. The information set is such thatn = PD andfn,t_l = u. The confidence
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level isa = 0.995. The structural parameters are such tHaG D = 0.45, PD = 1.5%, p = 0.12

and~ = 0.5 (see Table 2). In particular, the unconditional factor misan= 4.799.

Figure 6: The upper and middle Panels display a simulated time sefrgsfault frequencies and
percentage portfolio losses, respectively. The lower Pdisplays the corresponding time series
of factor values (circles) and cross-sectional factor apipnations (squares). The portfolio size
ism = 100. The structural parameters are such thdétGD = 0.45, PD = 5%, p = 0.12 and

~v = 0.5 (see Table 2). In particular, the unconditional factor misan= 3.05.

Figure 7: The upper Panel displays a simulated time series of CSA VaBh@tl line) and GA
VaR (solid line) for portfolio size» = 100 and confidence level = 0.995. The middle and lower
Panels display the corresponding time series of GA risk dtatifig components. The structural
parameters are such thaf.GD = 0.45, PD = 5%, p = 0.12 andy = 0.5 (see Table 2).
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Notes

This model is sometimes called Hidden Markov Model (HMM) hetliterature [see e.g.

Cappé, Moulines, Rydén (2005) for a review on inferencidiM].

2This model is extended in Section 1 to allow for the effectbafgenous regressors and lagged

observations in the measurement equation.

3The approximate filtering and predictive distributionsatibon 1 derived in the paper are also
valid when observable macro-variablgs say, are introduced in the state equation, and possibly
time dependent individual exogenous variablgs say, are introduced in the measurement equa-
tions. However, as usual in state space models, the filtardgoredictive distributions at horizon

strictly larger than 1 require the specification of the dyreanof the variables; ; andz;.

4The terminology CSML is convenient but a bit abusive sindg micro-densityh; +(vi | fi; B)
depends on an unknown micro-parametethe CSML estimatog‘?n,t(ﬁ) also depends of. In
some sense we are concentrating the micro log-likelihondtion with respect tg; considered as

a “nuisance” parameter.

SSee Bates (2009), p. 25, for approximations written on timeeseonditional distribution as
ours. These approximations are used in the numerical imgaléattion of an algorithm that updates
the Laplace transform of the filtering distribution when fbant dynamics of observations and

latent states is affine.
®Except in the special model of contamination considerecthick, Mitter (1994).

’Except for instance Cipra and Rubio (1991), who take int@aota nonlinear measurement

equation with additive non-Gaussian innovations.

8When the model involves both a micro-parameter vegtiorthe measurement density; (v; «| f:; 3)
and a macro-parameter vecton the transition density( f;| f;—1; #), the analysis of the properties
of the ML and approximated ML estimators is remarkably mammplicated. Indeed the ML esti-

mators of parameteysandéd feature different rates of convergence. This general casteidied in
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Gagliardini, Gouriéroux (2010) by using a different apgrb to approximate the likelihood func-
tion. Specifically, in Gagliardini, Gourieroux (2010) thate space representation is not exploited
and an asymptotic expansion of the log-likelihood functisrderived by applying the Laplace

approximation to the integral w.r.t. the full factor pathweent = 1 andt = 7.

*More precisely, variabl&* corresponds to the change of variabte = \/ﬁI}l,/f(Ft — fn,t —

1 . o : :
—y,¢) in the conditional expectation w.r; givenY,.
n

9The results in this section are easily extended to the mgdek= 14,,.;,, <1 - 62%)
where) is a parameter such that< 6 < 1 [Eom, Helwege, Huang (2004)]. In this model, when
the firm is in default and the assets are liquidated, only dredp!; , can be recovered by the debt
holder, and the liquidation co$t — §) A; ; is lost. Whend = 1, we get model (35), while in the
other extreme case= 0, we get the standard Value of the Firm model with pure defaudt zero

recovery rate [see Example ii) in Section 4.4].

1These summary statistics have to be distinguished from tlogiditional counterparts given
the observed histories of individual risks. The latter oaespath dependent due to the unobserv-
ability of the factor and the nonlinear dependence of théiddal risks(y; ;) with respect to the
factor. Thus, model (35)-(37) implies both conditionaldrescedasticity and dynamic conditional

correlation in the underlying log asset/liability ratios.

2We have noted in Section 5.1 that parameters andn are easily calibrated (see e.g. Table 2).
Thus, the factor value at datecan be estimated by considering the cross-sectional Mimasbir
of f; given in (45) witho replaced by its calibrated approximatiq“i;{,t, say. Then, the remaining

structural parametey is easily deduced from the historical correlation betwﬁgnand f;H.
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Table 1: Canonical parameters and summary statistics in expnential families.

) Canonical Cross-sectional )
Family Functionc(f) Transforma(y)
parameter ML
Bernoulli R Un
f=10g (32) | fus = log (1 . ) o(f) = —log(L+expf) | aly) =y
8(17 p) ~ Ynit
Poisson . -
f=logA o =108 Yy o(f) =—expf aly) =y
PN
Exponential . ~
f=2A fot = 1/Uny c(f) =log f aly) = —y
v(L,A)
Gaussian . - )
f=m fn,t:yn,t C(f):_f /2 a(y):y
N(m, 1)
Gaussian ) . 5 . L
f=1/o fnt=1/05, c(f) = 3log f aly) = —3y
N(0,0%)

, 1< 1O ,
In the third columng,, ; = — > y;; andé2, = — ) y?, denote the cross-sectional mean and second-order
n ’ n ?

=1

moment, respectively, at date

i=1
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Table 2: Reduced form and structural parameters.

Reduced form parametefis Structural parameters
ELGD PD p I i o

0.12 4799 0.766 2.074

045 15% 0.24 | 4799 1.083 1.928

0.50 4.799 1.564 1.564

0.12 3.050 0.642 1.739

0.45 5% 0.24 | 3.050 0.908 1.616

0.50 3.050 1.311 1.311

0.12 | 16.993 2.713 7.346

0.75 15% 0.24 | 16.993 3.836 6.827

0.50 | 16.993 5.537 5.537

0.12 | 10.669 2.247 6.085%

0.75 5% 0.24 | 10.669 3.178 5.65%

0.50 | 10.669 4.587 4.587
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Table 3: ACF and cross ACF of CSA VaR and GA VaR.

I Corr(Xy, Xi—) Corr(Y,Y) Corr(Xy,Yi) Corr(Yy, Xiy)
0 1 1 0.86 0.86
1 0.37 0.55 0.34 0.63
2 0.18 0.24 0.17 0.27
3 0.09 0.12 0.08 0.13
4 0.04 0.06 0.04 0.07
5 0.02 0.03 0.02 0.03
6 0.01 0.02 0.01 0.02
7 0.01 0.01 0.01 0.01
8 0.01 0.01 0.00 0.01
9 0.00 0.01 0.00 0.01
10 0.00 0.01 0.00 0.01
11 0.00 0.01 0.00 0.00
12 0.00 0.00 0.00 0.00

. 1 .
The series are&; = Qo (o) andY; = Qoo t(a) + —[GArisi (o) + GAypir(a)]. The portfolio
n
size isn = 100 and the confidence level is = 0.995. The structural parameters are such that
ELGD = 0.45, PD = 5%, p = 0.12 andy = 0.5 (see Table 2). Correlations are computed by

Monte-Carlo simulation on time series of length= 100000.
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Table 4: Backtesting of CSA VaR and GA VaR.

CSA GA

E[H)] 0.008 —0.001

Corr (Hy, Hy_1) —0.007 —0.004

Corr (Hy, Hy_s) 0.002 —0.000

Corr <Ht, fn,t,1> 0.054 —0.022
Corr (Ht, fnyt_Q) 0.005 0.002
Corr (Hy, Wi i—1/n) —0.034 0.019
Corr (Hy, Wi t—2/n) —0.002 0.002

The indicator H; = 1w, ,/n>VaR..,_1i(a)
VaR, —1(a) = Qoot—1(c) for the CSA VaR and/aR,, 1—1(a) = Qoot—1(a) +
%[GAmk,tq(a) + GAyit—1()] for the GA VaR. The confidence level is =
0.995. The structural parameters are such thatGD = 0.45, PD = 5%, p = 0.12

and~ = 0.5 (see Table 2). All quantities are computed by Monte-Cartouation on

a time series of lengti’ = 100000.
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Figure 1. Conditional distribution of}; given F;_; and approximate filtering distribution df;
given the micro-information.
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Figure 2: The effect of micro-information on the approximéltering distribution off;.

6
6
.
| s
0
0 -2
1 2 3 4 5 0.02 0.04 0.06 0.08

En,t En,t

47



Figure 3: Functionsn(f;, 1) ando?(f.1) and their first-order derivatives.
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Figure 4: CSA and GA VaR as a function of the cross-sectiaaabf approximation D = 5%.
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Figure 5: CSA and GA VaR as a function of the cross-secti@wbf approximation? D = 1.5%.
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Figure 6: Time series of simulated default frequenciestfplor losses, systematic factors and
cross-sectional approximations of the factor.

Time series of default frequency n:/n
0.25 T T T T T

0.151-

0.051

0 \ \ \
0 10 20 30 40 50 60 70 80 90 100

Time series of percentage portfolio loss W, ¢/n

0.2 T T T T T

0.151- ]

0.051

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

51



Figure 7: Time series of simulated CSA VaR, GA VaR, and GA &sH filtering components.
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APPENDIX 1: Proof of Proposition 1

(i) Let us first derive the conditional distribution 6§ givenY;, F;_1, X. Its density is:

LT hie il fo)g(f