Supplementary Material on
”Efficiency in Large Dynamic Panel Models with Common Factors”,

Patrick Gagliardini and Christian Gouriéroux

This supplementary material provides the Limit Theorems for uniform stochastic conver-
gence (Appendix B) and the technical Lemmas (Appendix C) used in the proofs of Propo-
sitions 1, 2, 3, 5 and 6.

APPENDIX B
LIMIT THEOREMS

In Section B.1 we consider the uniform consistency of the cross-sectional factor approx-
imations (Theorem 1). We provide in Section B.2 the uniform convergence of time series
averages of factor approximations (Theorem 2). In Section B.3 we consider the uniform
convergence of nonlinear aggregates of cross-sectional and time series averages (Theorem 3).

The secondary Lemmas B.1-B.5 used in the proofs of Theorems 1-3 are provided in Section
B.4.

B.1 Uniform consistency of the factor approximations

In Limit Theorem 1 we give the convergence rate of the factor approximation fm(ﬁ) defined

in equation (3.3), uniformly across dates 1 < ¢ < T and micro-parameter values 3 € B.

THEOREM 1 Under Assumptions A.1-A.5, Assumptions H.1, H.2, H.5, H.6, H.7 (i)-(ii),
H.8-H.10 in Appendiz A.1, and if n,T — oo such that TV /n = O(1) for a value v > 1:

where f;(5) is defined in equation (4.3), 03 = ya+y3/2+2/d3s+1/2 and constants v2,v3 > 0,
ds > 0 are defined in Assumptions H.8-H.10.
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where 7 > 0 is a constant. We have to show that, for any > 0, there exists a value of r

J?n,t(ﬁ) - ft(ﬁ)H = 84 <, for n,T — oo such that 7"/n = O(1),
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v > 1. We have:
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Conditional on factor path f;, the estimator ﬁht(ﬁ) is the concentrated ML estimator of
“parameter” f; given the “nuisance” parameter 3, computed on the sample (v; ¢, ¥it—1), @ =

1,...,n. This sample is i.i.d. conditional on f;. Thus, the strategy of the proof is to first use a

Foal®) = 19)| 2 2 | ﬁ],
for given sample size n and date ¢, as a function of f;. Then, we compute the expectation of
this bound w.r.t. f;, and establish the asymptotic behaviour of the RHS of inequality (b.2).

large deviation result for i.i.d. data to get an upper bound for P {sup ‘
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By equation (3.3) we have f,, () = arg max— Z li+(a), where [; (o) = log h(Yi+|Yis—1, [; 5)
fern N

and a = (f',3"). To bound the probability P {sup
BeB

ﬁb,t(ﬁ) - ft(ﬁ)” > ey ]ﬁ] for a given

sample size n and date ¢, we use the large deviation result of Lemma B.1 in Appendix B.4.1.
We replace density /;(«) in Lemma B.1 by [;+(«), parameter set F by F,, and work with
the conditional distribution of the data (y;., 1) given the factor path f;.

Lemma B.1 differs from large deviation results for ML estimators derived in the literature
! since it makes fully explicit how the upper bound on the probability of large deviation of
the ML estimate depends on the distribution of the data and on the parameter set, for given

sample size. In available results, this dependence is partly hidden in some generic constants

FaalB) = £i8)]| 2 n | ﬁ}
is stochastic and depends on the factor path f;. Knowing the pattern of this dependence

in the bound. In our framework, the upper bound for P {Sup)
BeB

1See the classical results in Bahadur (1960, 1967) on the asymptotic behavior of the probability of large
deviation of ML estimates for a scalar parameter with i.i.d. data, the work along similar lines in e.g. Fu
(1982), Lemmas 2 and 3 for Sieve estimators in Shen and Wong (1994), the result used in the proof of
Theorem 1 in Chen, Shen (1998), p. 309, with weakly dependent data.



explicitly is necessary when the factor path is integrated out in the second step of the
proof. Moreover, Lemma B.1 allows to make explicit how the upper bound depends on the
parameter set F,,. This is necessary for the asymptotic analysis, since the parameter set F,,
is expanding w.r.t. n.

Let us check the conditions of Lemma B.1, and consider first the realizations of the
factor path f; such that f;(3) € F, for any 3 € B. Condition i) of Lemma B.1 is implied by
Assumptions H.1 and H.7 (i). Condition ii) of Lemma B.1 is satisfied from Assumption H.2.
Condition iii) of Lemma B.1 with ~;; = 4 is implied by Assumption H.9 and:

01og h(Yii|yis—1, [ 5)
opB, [y
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|ﬁ] < [log(n)] ™ Ry.

Let us now check Condition iv) of Lemma B.1. By the first-order condition defining the
dlog h(yi t|yis—1, f:(B); B)

ofe
theorem, we deduce that function f;(3) is differentiable w.r.t. 3, P-a.s., and:

pseudo-true factor value Ej |fe| = 0, and the implicit function

0/(5)
ap’

where the matrices I, ¢¢(5) and I; s5(3) are the (f, f) and (f, 3) blocks of the Hessian matrix

0” log h(yi.tlyie—1, £:(8); B)
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for a contant ¢ > 0, and sup ||Z; 3(8)| < ( m)l/Q, where processes ¢ and &7 are defined
BeB
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|ft] Moreover, we have sup ||I.;r(3) || < &y,
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in Assumption H.5. Therefore, we get:
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and M; < oo, P-a.s., from Assumption H.5. Finally, the bounds in equations (b.26) and
(b.27) are satisfied, since:
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where processes K; and I'; are defined in Assumptions H.8 and H.10.

From Lemma B.1 and the definition of ¢, in equation (b.1), we get:
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for any factor path such that fi(8) € F, for any 8 € B, where Vol(B) = /d)\ is the

B
Lebesgue measure of set B, and (1, Cy, C3 are constants independent of f; and n,T. Thus,

we get:
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BeB
< OIV 1(B)(1 m+qym+3¢/2 Cor2(1 1ajas _J
2 R,
+03%[1og<n)]252+wﬂ3a +1 {gg[ft(ﬁ) € f;;]} , (b.4)

for any factor path f;, P-a.s.

ii) Integrating out the factor path

By integrating out the factor path f;, we get from inequalities (b.2) and (b.4):
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Let us now bound these three terms and prove that they are o(1).

(a) From the Cauchy-Schwarz inequality, term I ,, 1 is such that:

. N . » t K 1/2
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The first expectation in the RHS is finite. Indeed, from inequality (b.3) and Assumption
H.5, we have P[M; > u] < by exp(—élugl), as u — oo, for some constants by, ¢, d; > 0.
Thus, the stationary distribution of process M; admits finite moments of any order, and
E[(1+ M;)*™21] < oco. To bound the second expectation in the RHS of (b.6) we use
Lemma B.2 in Appendix B.4.2, which provides a bound of the expectation E[exp(—uWW )]
from the tail behavior of the positive random variable W. Let us verify that the variable
W =W, = (1+T,/K;)/K; satisfies the condition of Lemma B.2. From Assumption H.10 we

have:

PW >u] < PIK;'>u/2+PK 2> u/2
< P > /2 + P[0y > (u/2)' 7]+ PR > (u/2)"%] < 3bs exp—es(u/2)™/1].

By applying Lemma B.2 with o = d3/4, we get:

FE {eXp (—QCQTZ[log(n)]H‘L/d?’#z/Kt)] < Crexp [_éQ(QCQTZ)dS/(d3+4) log(n)]
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for some constants Cy, Cy > 0. Thus, from inequalities (b.6) and (b.7), we get:
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(b) Let us now consider the second term in the RHS of inequality (b.5). From As-

R
sumptions H.9 and H.10, FE [#] < F [Rﬂ 2 g [IC;Q} /2 < o0. Then, from the condition
t

TV/n =0(1) for v > 1, we get I, 1+ = o(1).



(c) Finally, from Assumptions H.6 and H.7 (ii), we have:

P [U[ft(ﬁ) € fﬁ]] <P {Zlelg I£(B) = 7| < bpexp (—eary?) = bon ™.

BeB

Since T'/n* = o(1), we get I3, = o(1).

B.2 Uniform consistency of time series averages of factor

approximations

Limit Theorem 2 provides a uniform convergence result for time series averages of nonlin-
ear transformations of current and lagged factor approximations fn,t(ﬁ). These nonlinear
transformations can involve the macro-parameter . The uniformity property concerns both

parameters § € B and 6 € ©.

THEOREM 2 Let Assumptions A.1-A.5, H.1, H.2, H.4 (i), H.5, H.6, H.7 (i)-(ii), H.8-
H.10 hold, and assume that function G(f;, fi—1;0) satisfies the Regularity Condition RC.1
below. Then, if n,T — oo such that T" /n = O(1) for a value v > 1:

1 , : .

7 2 GFns(8). for1(9):0) = Bo [G(f(B), fmr(8); 0)

t=1
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= 0,(1).

Regularity Condition RC.1: The function G(Fy;0), where Fy = (f], f{_), is such that:
(i) G(F';0) is continuous w.r.t. F € R*™, for any 0 € ©. (ii) Forany f € B and 6 € O, we

have Ey [||G(F,(3);0)]]] < oo, where Fy(B3) = (fi(B)', fi—1(B)") and fi(B) is defined in (4.3).
Quec|G(F(5); 0)]

(ili) F |supsup <oo. (iv)P[&e > u] <bgexp (—cou®), asu — oo,

0cO BeB o(p',0")
Ovec|G(F; 0
for some constants bg, cs,ds > 0, where § ¢ = sup sup sSup ved o1 ) » for
0€0 BeB FcR2m:||F—F(B)||<n* oF
some n* > 0.
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Proof of Theorem 2: Let us denote F,(3) = (fm(ﬁ)’, fnyt,l(ﬁ)’> . We have:
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Let us now prove that the two terms in the RHS are 0,(1) uniformly in 8 € B,6 € ©.

i) Proof that supsup J; r(3,6) = 0,(1)
9€® BeB

We use the Uniform Law of Large Numbers (ULLN) in Newey (1991), Corollary 2.1. Then,

we get supsup Jy r(5,0) = 0,(1), if the two following conditions hold:
00 BeB

(a) Pointwise convergence: Jyr(B,60) = 0,(1), for all parameter values (3, 6) in set B x ©;

(b) Stochastic Lipschitz property:

G(R(B):0) ~ G (F(8):0) < B, (15— 1l + 16 9] (b:3)

T
~ 1
for all (53,0), (3,0) € B x © and some process B; such that T Z E[B;] = O(1).
t=1

Let us now prove conditions (a) and (b).

(a) Pointwise convergence: Since process (f;) is strictly stationary and mixing (Assumption
A.3), by Proposition 3.44 in White (2001) it follows that process (f;) is also ergodic. Morever,
for given 3 € B, the pseudo-true factor value f;(3) is a measurable function of the factor
path f; [Assumption H.4 (i) in Appendix A.1]. Now, we use that the strict stationarity and
ergodicity properties are maintained under measurable transformations, involving possibly
an infinite number of coordinates [Breiman (1992), Proposition 6.31]. Thus, process f;(3)
is strictly stationary and ergodic, for given 3 € B. Since, for given 6§ € O, the function
F — G(F};0) is continuous by Regularity Condition RC.1 (i), by the same argument it follows
that process G(F;(3);0) is strictly stationary and ergodic, for any given (3,6) € Bx©. Then,
Regularity Condition RC.1 (ii) and the ergodic theorem [Breiman (1992), Corollary 6.23]
T

1
imply that the sample average T Z G (Fi(B);0) converges to the population expectation
t=1



Ey |G (Fy(B);6)] almost surely, for any given (5,6) € B x ©. This implies J; 7(53,0) = 0,(1),
for any given (3,6) € B x ©.

(b) Stochastic Lipschitz property: Inequality (b.8) holds for all (53,0),(5,0) € B x © with
the strictly stationary process B; given by:

B, = supsup
0cO BeB

Ovec|G(F(B); 0)]
a(ﬁ/, 9/)/ ’
Moreover, from Regularity Condition RC.1 (iii), we have E[B;] < oo, and Condition (b)

follows.

ii) Proof that supsup J2,7(5,0) = 0,(1)
6cO BeB

Let € > 0 be given. We have:

P {sup sup Jonr(0,60) > 51 <P {sup sup sup ‘G(Fm(ﬁ); ) — G(Ft(ﬁ);G)H > 5] :
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for any n > 0. Thus, for n, = ¢[cg/ log n]l/ 4 where constants cg,dg > 0 are defined in

Regularity Condition RC.1 (iv), we get:
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<P [sup suwp ||£,48) - F(9)| > nn}
BEB 1<t<T
Ovec|G(F, 0
+TP |sup sup sup eclGIE, 6)] (, .9) H > =
0€0 BeB F:||[F—F,(8)|<n* oF T,
= PLTZT + P2,nT7



for large n and n* > 0 as in Regularity Condition RC.1 (iv). Now, P; ,r = o(1) from Limit
Theorem 1 in Appendix B.1. Moreover, from Regularity Condition RC.1 (iv), we get:

Py r < bgT exp (—66[5/%]‘16) =b¢T/n = o(1).

The conclusion follows.

B.3 Uniform consistency of nonlinear aggregates

THEOREM 3 Let Assumptions A.1-A.5, H.1, H.2, H.4 (i), H.5, H.6, H7 (i)-(ii), H.8-
H.10 hold, and assume that functions a and ¢ satisfy either the Regularity Condition RC.2,
or the Regularity Condition RC.3, below. Then, if n,T — oo such that T" /n = O(1) for a

value v > 1:

n

IS o (23 alin v s s (3).8) | = Eolo ()| = o), (0.9)
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=1

sup
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where 1 (3) = Eo [a(Yie, Yii-1, f1(8), B)| fe] -

Limit Theorem 3 provides a Uniform Law of Large Numbers (ULLN) for nonlinear ag-
gregates of panel data. These nonlinear aggregates involve a combination of linear and non-
linear time-series and cross-sectional transformations, which explains the novelty of Limit
Theorem 3 compared to other ULLN in the literature. More precisely, the nonlinear aggre-
gates correspond to the time series average of the nonlinear transformation by mapping ¢
of the cross-sectional average of random matrices a(a;¢, Yit—1, fnyt(ﬁ), () depending on data
Yit, Yit—1, factor approximation fnt(ﬁ) and micro-parameter (3. The large sample limit of
such an aggregate is the time-series expectation of the transformation by mapping ¢ of the
cross-sectional expectation pi(5).

We distinguish two sets of regularity conditions. Regularity Condition RC.2 requires
that mapping ¢ is Lipschitz continuous. Regularity Condition RC.3 relaxes this condition
and allows to apply Limit Theorem 3 for instance when mapping ¢ corresponds to matrix
inversion, or the log-determinant function, on the set of positive definite matrices (see the
proofs of Lemmas 1 and 6 in Appendices C.1 and C.6). Regularity Condition RC.3 also
introduces tail conditions on the stationary distribution of the reciprocal of the smallest

eigenvalue of the positive definite matrix p, () uniformly w.r.t. g € B.



Regularity Condition RC.2: The functions a and p are such that:

(1) (1) Eo [Zlelg ||a<Y;,taft(ﬁ)7ﬁ)H4:| < 00, where iy = (Yir, Yir—1)"-

“up 0 vec alYiy, £(8),8)]||*
BeB 85/
(iii) For any B € B: w(B) = Eola(Yis, fi(B), B)| fi] is a measurable function of the
factor path f;.

(iv) P &7 > u] < brexp (—c7ud7), as u — oo, for some constants by, cy,d; > 0, where
iz = sup By [[la(¥iu, £i(8), B)IP1]:

€
(v) P[&s > u] < bgexp (—08ud8), as u — 00, for some constants bg,cg,dg > 0, where

0 vecla(Yiy, f,B)]
af’

(2) The function ¢ is Lipschitz continuous and such that Ey[||¢o(u:(03))]]] < oo, for any
0 eB.

(i) Eo

< Q.

1,8 = sup By sup
peB JeR™: | f—fe(B)I<n*

2
|ﬁ], with n* > 0;

Regularity Condition RC.3: The functions a and @ are such that:

(1) Regularity Condition RC.2 (1) holds. Function a(Y, f,3) admits values in the set of
(r,7) symmetric matrices, for some r € N. Moreover:
(i) we(B) = Eo [a(ﬁ}t,ft(ﬁ),ﬁﬂﬂ e U, for any t and B € B, P-a.s., where U is the
open subset of positive definite (r,r) matrices.

(ii) P[&0 > u] < bgexp (—09ud9), as u — 00, for some constants by, cy, dyg > 0, where

o = (éng /\t(ﬁ)> and M\(B) > 0 is the smallest eigenvalue of matriz p.(5);
€

(2) The function ¢ : U — R is such that:
(1) o is Lipschitz continuous on any compact subset of U.
(i) |e(w)| < Cioll2]|°Y(2), for any w,z € U such that w = (Id + A)z, ||A] <1/2,
where constants Chg, y10 satisfy Crg > 0, y10 < 2, and function ¢ : U — R is such that

Eo[suply(1:(8))]*] < o0
BeB

We first prove Theorem 3 under Regularity Condition RC.2. Then, we give the proof
under Regularity Condition RC.3.

10



B.3.1 Proof of Theorem 3 under Regularity Condition RC.2

Let us write:

% S (% Z a(Yig, fni(B), B)) — Eo [ (1:(8))]
= e ()~ Bolo (u (9))

T Z{ ( (Vi £(5). ﬁ)) - ¢ (u (ﬁ))}
—i—%Z{ ( mem(ﬁ) ﬁ)) — ¥ <%Za(nvtvft<ﬁ)’ﬁ)>}

Js0(B) + Janr(B +J5nT(5) (b.10)

where Y;; = (Yit, ¥it—1). The component Js () is the time series average of a nonlinear

transformation of process p (3). The component Jy,7(3) accounts for the discrepancy
1 n

between the cross-sectional average — Za(Yivt, fi(B),B) and the conditional expectation
n

i=1
e (B) = Eola(Yig, fi(3), B)] fi]. The component Js,, r(53) is induced by the approximation of

the pseudo-true factor value f,(() with the estimator f, (). Let us prove that these three

components are o,(1), uniformly in 3 € B.

i) Proof that sup|Js;r(5)| = 0,(1)
BeB

The proof of this uniform convergence is similar to part i) in the proof of Limit Theorem
2 in Section B.2. We replace p;(3) for Fy(3), and mapping ¢ for mapping G(-;6), and
use Regularity Conditions RC.2 (1i)-(1iii) and (2). Since the mapping ¢ is independent of

parameter 6, there is no sup over 6 € © here.

ii) Proof that sup|.Jy, r(5)| = 0,(1)
BeB

Let us now consider term Jy ,, 7(3) in the RHS of equation (b.10). Let £ > 0. The condition
|z —y|| < L/eimplies |p(x) — ¢(y)| < e, since function ¢ is Lipschitz continuous, with

11



Lipschitz constant L, say [Regularity Condition RC.2 (2)]. Thus, we get:

T n
1 1
P |sup |= — a(Yis, , — >
ERHE AT B
- o
< P |supsup |I— Z [a(Yig, [u(8), B) — m(B)]]| =2 L/e| = P
| BEBI<I<T n-=
To bound probability P ., let us define for any ¢ > 0 the event:
1 n
D nr(6) = {sup sup |I— Z [a(Yie, fi(8), B) — m(B)]|| < 5} : (b.11)
BEBI<t<T || T " —

In Lemma B.3 (i) in Appendix B.4.3 we show that P[$2; ,, 7(0)] — 1, as n,T" — oo such that
T/n — 0, for any § > 0. Since P, =1 —P[Qy ,, 7(L/¢c)], we get that P, . — 0 as n, T — oo,
T/n — 0, for any ¢ > 0. It follows that sup|Jy, r(3)| = 0,(1).

BeB

iii) Proof that sup|Js,7(3)| = 0,(1)
BeB

Let us finally consider term J5, r(f) in the RHS of equation (b.10). Let € > 0 be given.
Then:

1 ] — . 1<
P _Zlég T ; {90 (ﬁ o~ G(Emh,t(ﬁ%ﬁ)) — ¢ (g ;a(Yi,t, ft(ﬁ%ﬁ)) } > 5]
- o A
< P _?égli?% E ZZI [G(Yz’,t; fn,t(ﬁ),ﬁ) - a(Yi,t,ft(ﬁ),ﬁ)} > L/€ = P2,a-
To bound probability Ps., let us define for any § > 0 the event:
1 < ;
Qa1 (8) = {2‘;21??% > (Vi Jua(8),8) = Vg, fi(9), B) ||| < a} S (b1

In Lemma B4 (i) in Appendix B.4.4 we show that P[Qs,,7(J)] — 1, as n,T" — oo such that
T/n — 0, for any § > 0. Since Po. = 1 =P [Qq,, 7(L/c)], we get that P, — 0 as n, T — oo,
T/n — 0, for any € > 0. It follows sup|Js,r(5)| = o0p(1).

BeB
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B.3.2 Proof of Theorem 3 under Regularity Condition RC.3

Under Regularity Condition RC.3, matrix function ¢ is defined on the subset & C R"™" of
positive definite (r,r) matrices. Therefore, the LHS of equation (b.9) is well-defined only

1 & .
when — > a(Yiy, fas(B),8) €U for any 1 <t < T and 3 € B.

=1

i) Let us first prove that this event occurs with probability approaching (w.p.a.) 1. Let
n > 0 be given. In Lemma B.5 in Appendix B.4.5 we prove that there exists a compact
set L C U such that P[{u:(0),5€ B} CK] > 1 —mn. Let further 6 > 0 be such that
{z € SR™" : dist(z,K) < 6} C U, where SR™" is the set of (r,r) symmetric matrices and

dist(x,K) = in}fé |z — v is the distance of matrix z from set K. Then:
ye

n <
=1

Pn,T = P [{lza(n,tafn,t(ﬁ))?ﬁ)?l StSTaﬁEB} Cu

> P|({1u(3),8 € B} € )\ 2unr(8/2) | r(5/2)]
> P{u(B),8 € B} CK]+P[Q1nr(6/2)] +P[Qonr(6/2)] — 2
> P[Q1ur(0/2)] +P[Qonr(6/2)] —1—n,

where events €y ,, 7(6/2) and Qy,, 7(9/2) are defined in equations (b.11) and (b.12). From
Lemmas B.3 (i) and B.4 (i) in Appendices B.4.3 and B.4.4, respectively, it follows that

limsup P, > 1 — 1. Since constant 7 > 0 can be chosen arbitrarily small, we get that
n,T'— oo

1 < A
lTim P, = 1. Therefore, the event {— Z a(Yis, foi(0),0),1 <t <T,B € B} C U occurs
n,I'— o0 n

=1

w.p.a. 1.
ii) We can focus on this event in the rest of the proof. Let €, > 0 be given. We have to
prove that:
1w (1
lim sup P SUp | 7 > e (5 > a(Yie, fai(B), 6)) — Eo[p (1(8))]| = 8] <n.  (b.13)
i =00 € t=1 i=1

Let us introduce a globally Lipschitz approximation of function ¢. More precisely, let Iy C U

be a compact set and let ¢ be a Lipschitz continuous function on U such that

@ =pon Ky and |@| < |p| onU. (b.14)

13



Such a function exists by Regularity Condition RC.3 (2i). Then inequality (b.13) follows if

function ¢ can be chosen such that:

T n
41, = limsup P |sup %;w (ﬁ;“ Yir, fui(8 ﬁ)) Eo[@ (m(B)]| = e/3| < /2,
(b.15)
1 < 1 & 1 &
Ay = 1;’mTi1i£>P[21£ f;[ (E;a Yigs fi(B ) (5261 Yt fus(B ﬁ))] 28/3]
<n/2, (b.16)
and:
Az = sup [ Eo [¢ (1(8))] — Eo [ (1(8))]] < /3. (b.17)

BeB

The proof proceeds as follows. We first show that A; . = 0, which implies inequality (b.15).
Then, we derive upper bounds for As ., and As. From those bounds we prove that inequalities
(b.16) and (b.17) hold.
i) Proof that A,. =0

From the definition of the globally Lipschitz approximation in (b.14), and Regularity Condi-
tions RC.3 (1), (2ii), function ¢ is Lipschitz continuous and such that Ey [|@(u:(5))|] < oc.

Indeed, we have:

Eo[lp(r (B < Eo [le(u(B))]] < CroEo [l (B[ (re (B

where function 1 is defined in Regularity Condition RC.3 (2ii). Then, from the Cauchy-

Schwarz inequality, we get:

By [ (B < Cuoo (@) Eo [[m (8) ] < oo,

for any 5 € B. Hence, functions (a, ) satisfy Regularity Condition RC.2. Thus, we get
Ay . = 0 by applying Limit Theorem 3 under Regularity Condition RC.2.

14



ii) Upper bound for A,

Let us now consider term A, . in inequality (b. 16) Slnce @ = @ on set Ky [see (b.14)], in
the event that defines Ay, only the dates ¢ with — Z (Y, fnt(ﬂ) () € K{ contribute to

the sum. Moreover, we have |p — @| < 2|p| on set L{ [see (b.14)]. Therefore, we have:

( ZCL ment )) —¢ (%Za(ﬁ,t,fn,t(ﬁ),ﬁ)” '

<2 sup% D1 {% > alYis fas(B),8) € lCi} ? (% > ol fn,tw),ﬁ)) ‘ - (b.18)

i=1 =1

Let us now bound the RHS of inequality (b.18) in two steps.
a) Let Ky C Ky be a compact set, and 6 > 0 a scalar, such that:

dist (KCy, KS) > 26, (b.19)

where dist (ICq, Kf) = ;cmfelcc

Tre
the event Oy, 7(6) N Qs 7(d) occurs, where Q,;, (), 7 = 1,2, are defined in equation

x — y|| denotes the distance between sets Iy and K. When

n

1 .
(b.11) and (b.12), respectively, we have |—Za(l@,t,fn,t(ﬁ),ﬁ) —w(B)|] < 20, P-a.s., for

n “—

=1
any t = 1,...,T and [ € B. By condition (b.19), we get:
1 - £ C C
ﬁ Za(}/i,tu fn,t(ﬁ)7ﬁ) € ’Cl = Mt(ﬁ) € ,CQ)
i=1

P-a.s., for any t = 1,...,T and § € B. It follows:

1 ;
1 {ﬁ Za(Yi,ta fnt(B),B) € /Cf} < {m(B) € K5} <1—1{(m(B),B € B) C Kz}, (b.20)
i=1
for any 5 € B, since 1{u(5) € K3} = 1 for some § € B holds if, and only if,
L{((5), 8 € B) C Ko} = 0 holds.

b) Define for § > 0 as above the events:

n

% Z [a(Yie, fi(B), B) — ()]

1
Qs 7(0 sup su
o (0} = {ﬁe&qum)

< 5} , (b.21)
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and:

Qunr(d) = {sup sup ——

BEBL<I<T >\t

%Z [ Yn,fm ), ) — a(n,t,ft(ﬁ)aﬁ)}

< 5} , (b.22)

where \(3) is as in Regularity Condition RC.3 (1ii). In Lemmas B.3 (ii) and B.4 (ii) in
Appendices B.4.3 and B.4.4, respectively, we prove that P[Qs,, 7(5)] — 1 and P[y ,, 7(0)] —
1, as n,T — oo, T/n — 0. When the event s, 7(6) N Qy,7(d) occurs, with § < 1/4,
we have have ||[A(B)| < 2§ < 1/2, P-as., for any t = 1,...,T and § € B, where A(f) =

1O ;

= Z a(Yit, fur(8),8) — /Lt(ﬁ)> (11:(8))~". Thus, from Regularity Condition RC.3 (2ii) we

n

i=1

get:

< Cho lpe (B ¢ (1e(5)) - (b.23)

¢ (% Za(i@,t,fn,twm))

From inequalities (b.18), (b.20) and (b.23) we get that, when event ﬁ?zlﬂmycp(é) occurs,

we have:

© (% Za(Yi,t; ﬁm(ﬁ):ﬁ)) —¢ (% Za(n’t’fn’t(ﬁ)’ﬁ)>] ‘

sup
peEB |+ 45 i=1 i=1
2C10
< TP 2o (= H{(ulB).8 € B) < Ko sup (B v ()
t=1 €

It follows that:

P Zlég %Z ¢<i2a(ﬁt7fnt( ) (%Za mem ))] 25/3]
< 3 PI0)]
+P 2(;10 D (1=1{(u(B), 8 € B) C Ks}) sup e (B) 1 (11e(B)) > 5/3]

N 66;10E {(1 — 1{(m(5), 8 € B) C K3}) %Lellg [ (BN 2 (Mt(@)} ;

by the Markov inequality. By taking the limit for n,7 — oo such that 7//n — 0, from

16



Lemmas B.3 and B.4 we get:

6Cho

AQ,E S

B (1= 1(u9). € B) € Kabysup L 9)1™ (50|

By the Minkowsky and Cauchy-Schwarz inequalities, we have:

E [(1 ~L{((0).5 € B) € K} sup ) o <ut<5>>}

IN

1/q
(L= PLu(),0 € B) € )7 [suplln(5)] 7% (1(5)

Y

/} 1/(qq")

1/(p'q)
< <1—P[{ut<ﬂ>,ﬁes}c/czn“pE[;ggm(ﬁnw’} E{Zggwm(ﬁ))qq

with p,q,p’,¢ > 1 such that 1/p +1/¢ = 1 and 1/p' +1/¢ = 1. Fix ¢ € (1 and

p = 4/(v10q). We get:

4
)

60 (1 B ().8 € BY C Ka)) 7 o, (b.24)

AQ,E S

710/4 A 1/g—v10/4
where C1; = F {sup“/n(ﬁ)”ﬂ E {SUP@ZJ (e(B)) }
BeB BeB

RC.3 (1) and (2ii).

< oo by Regularity Conditions

iii) Bound of A;

Let us now bound Aj defined in the LHS of inequality (b.17). By similar arguments as
above:
Ay <2010 (1 = P[{ (), 8 € BY C Ka))? Oy (b.25)

iv) Proof of inequalities (b.16) and (b.17)

From Lemma B.5 in Appendix B.4.5, we can fix Ky, Iy and 6 such that P [{u:(3), 5 € B} C k3] >
_ p p

1 —min { (%) : (W) } and condition (b.19) hold. Then, from inequalities (b.24)

and (b.25), inequalities (b.16) and (b.17) follow, and the proof is concluded.
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B.4 Secondary Lemmas

B.4.1 Lemma B.1

Lemma B.1 provides a large deviation inequality for sup || fn(ﬁ) — f(B)]| in finite sample,
BeB

where fn(ﬁ) denotes the ML estimator of parameter f with sample size n, and f(3) denotes

the pseudo-true value of parameter f, for given value of the nuisance parameter 5 € B.

Lemma B.1: Let n be given and let data y;, for i = 1,....n, be i.i.d. with density h(y;, )
parametrized by o = (f', "), where the parameter of interest is f € F C R™, and the
nuisance parameter is § € B C R%. We denote by ag = (f}, 5})" the true parameter value.

Let us consider the concentrated ML estimator of parameter f defined by:

~

fu(B) = arg max Ln(f,8),

for any B € B, where L,(f,3) = ! g li (o) and l;(o) = logh(y;, ). Denote L(a) =
n
i=1

Ey[li(a)], and A =F x B. Let us assume:

i) The set F is compact and convex, and the set B is compact.

it) For any given [ € B, the function L(f,[) is uniquely mazimized w.r.t. f € F at

f(B) = ar§ rgax L(f,B). The true values of parameters fo € F and By € B satisfy fo = f(5o),
€

0%1;(f(8B), )

and the matriz Ey {— ] 1s non-singular, for any § € B.

afof’
1 . Y11
iii) There exists a constant 11 > 2 such that R = Ey {sup %@MQ) < Q.
acA &4
. . . . _ of(B)
iv) The function f(3) is differentiable and such that M = sup a5 < 00
peB

Then, there exist constants Cy, Cy, C3 > 0 (depending on parameter dimensions m and q, but
independent of parameter sets F, B and of the parametric model) such that for any constant

e>0:

P 3 > o] < ewvoB)aEpym Conet— N Cyem—2R
21611; fu(B) —f(ﬁ)H _5} < C1Vol(B)(1+M) o P (— one m)‘i“ 3E rik
where: KL .

K = inf 2K L(f, f(8); 5) -0, (h.26)

—= 11 1
peB fer A1) |If — f(B)]]
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KL(f, f(B);8) = L(f(8),8) — L(f,3) is the Kullback-Leibler discrepancy between f and

f(B) for given B € B, the scalar T is given by:

I' =supky
acA

0log h(y;, )
of

2
< 00,

with Vol(B) = / d\ is the Lebesgue measure of set B.
B

(b.27)

Proof of Lemma B.1: Let us first relate probability P {sup 1£n(B) — F(B)|| > 5} to the
peB

probability of large deviations of the empirical process associated with the log-likelihood

function.

i) Probability of large deviation of the likelihood process

Define the set:

FuB)={feF:2e>|f - f(B) =2 e},

for any k =1,2,---, and g € B. Then, we have:

P |sup || f.(8) — F(B)] > ¢
BeEB

Moreover, for any integer k:

BEB fej'—k(ﬁ)

IN
=

FE€FK(B)

~

U { sup Ln(fa ﬁ) > Ln(f(ﬁ)aﬁ)
LBeB

P [U {fn(ﬁ) € fk(ﬁ)}] < P U { sup Ln(f,8) > Ln(fﬂ(ﬁ)aﬁ)}]
LBeB

/

= Plsup sup (L.(f.0)— L.(f(5),0)) >

BB feFi(B)

19
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Now, let us introduce the sets:

A ={(f,0): feF(B),eB}CA k=12,.., (b.29)

and the mapping 7 that maps o = (f’, 3') into m(a) = (f(B), ). ? Thus, we have:

P fsup 1(9) ~ 79 > <] < ZP s (L (@) -~ Lufn(@)] 2 0]
Define: .
¥, (0) = L () — Ly (r(0) ~ [L(0) = Lin(@)] = -3 i), (b30)

where ¢;(a) = li(a) — li(m(«@)) — Ey [li(a) — ;(7(a))]. Then, we have:

P _sup [L, (o) — Ly, (m())] > 0]

_OcE.Ak

< Psup (Ln(a) = Ly (7(a)) = [L (o) = L(n(e))]) = inf (L (7(a)) = L(a))}

LaEAL acAy

= P _sup U, (a) > inf KL (omr(a))} ,

Lac Ay a€A
where K L(a, (o)) = L(mw(ev)) — L(a) = KL(f, f(8); 3). Now, from the definitions of sets
Fi(B) and A in (b.28) and (b.29), respectively, we get:

inf KL (a,m(a)) = inf inf K(f, f(B);5)

acAy BEB feF(B)

1 2
> lnf lnf KL , : > —,C 2k718 ,
T BeB feF|f—f(B)||>2k1e (f, £(B); B) = 5 ( )
where constant K is defined in (b.26). Thus, we get:
P |sup [1£.(8) - F(B)I| > 5} Z[[D [Sup o> ). .
BeB oy
where: 1
M= 5K (@) (b.32)

2Geometrically, the set Ay consists of two strips of width 2¥~'e in the (f,3) plane, which are parallel
to the curve f(3), 3 € B, with a distance 2¥~'¢ from the latter. The mapping 7 is the projection onto the
curve f(0), B € B, along the f-axis.
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To bound the series in the RHS of inequality (b.31), let us decompose the likelihood empirical

process ¥, («) as:

U, (o) =¥, (a) + R, (o),

where:

B (0) = 3 [1(0) ~ ()] 1{U; < B} [[ia) ~ k(x(a))] 1 {U; < B)] = —sz ,

- ' (b33)

with:
U; = sup 810%(%@) , B=¢1 (b.34)

acA «

and:

Ry, (o) = %Z li(a) = li(m ()] 1{U; > B} — E[[li(e) — li(7 ()] 1{U; > B}].  (b.35)
Thus, we have:

P{Zlelg 1£.(8) = F(B)] >6} ZP&% ()| = % }+ZPL§£IR ()] Z%/\k .

(b.36)

ii) Bound of the second series in the RHS of inequality (b.36)

Let us first bound the second series in the RHS of inequality (b.36). By using that
| — ()| < 2F¢ for any a € Ay, from (b.28) and (b.29) we get:

IR, ()] < 2Fe (% iUil {U; > B} + E[U1{U; > B}]) :

by the mean value Theorem. Thus, from equations (b.32) and (b.35), we have:

IA
=
o |

1
P | sup |By (a)] = M

ac Ay

2k e (% iw {Ui > B} + E U1 {U; > B}]) > 1)\k]

i=1

1« 1
= P|- 1{U; > B} + E[U;1{U; > B}]) > —K2*
n;wmv>}+[Ugm>m_wKs
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By using:
E[U1{U: > BY] < B VE[UM1{U, > B} < Re™ ™,

1

from condition iii) and B = ¢~!, and by using the Markov inequality, we get:

1 16 32ReM1—2
P > | < 2B \U1{U; > B}| < —.
g 101 ] < (g 2 i (0> 21 < S5
Thus, we get:
- 1 ZLU32ReM 2 3R 2
E P > — < = . .
o [ﬁélfk [ (a)] 2 2A’“} = Zk:l 2kIC K (b-37)

iii) Bound of the first series in the RHS of inequality (b.36)

Now let us consider the first series in the RHS of inequality (b.36). Let us introduce a
covering of set Ay defined in (b.29) by means of N = Ny, balls B (aj,n), j = 1,2,--- , N,

with center a; = o and radius:

1 K 92ke3,

A1+ M (b.38)

=" =

The number, centers and radii of the balls may depend on index k, but we suppress this
dependence to simplify notation. By Fubini’s Theorem, the Lebesgue measure of set A is
such that:

Vol(Ay) = /A k d\ = /B /f k(ﬁ))\(df))\(dﬁ) < Gy, (2%) /B A(dB) = Cy, (27¢)" Vol(B),

where set Fi(3) is defined in equation (b.28), and C,, is a constant depending on dimension

m only. Thus, we can chose the number N € N of balls covering set A;, such that:

(b.39)

~ 1 m+q
N < C:;JquOl(Ak)n_(m“) < 64m+qV0l(B)C’m7q5_2m_3q ( + M) ’

K
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where C*

g Then, for o € A:

is a constant depending on m + ¢ only, and émq = C~’mC’f;1 g

‘\ifn (a)‘ < max. ‘\Ifn (O[j)‘ + sup

a,a/eAk:Ha—o/ ||§n

+2nB(1 + M),

< max ‘\I/n (o)

since B = ¢! bounds the U; in the definition of ¥, [see equations (b.33) and (b.34)], and
1

|7(e) — ()] < (1 4+ M)||F — B [see Condition iv)]. Using 2nB(1 + M) = Z)xk from

equations (b.32) and (b.38), we get:

A

\ 3
> —’“] gNsuplP’U\Ifn(m\ > 2k
4 aEAy 4

(b.40)

P {sup

acAy

\iln(oz)‘ > ﬁ} < IP’{ max
2 j N

3 1 .
Let us now bound P U\Dn (a)‘ > 4—1)\;@} for « € Ai. Since VU, () in (b.33) is an average

of zero-mean independent random variables, we can use Bernstein’s inequality [see Bosq
(1998), Theorem 1.2]. Let us first check the conditions of this theorem. We use that
| — m(a)|| < 2% for any a € Aj. Then, from equation (b.34), for any a € A, we have:

1/31-(04)‘ = |[li(e) = li(m(a))] 1{U; < B} = E[[li(a) - Li(w())] 1 {U; < B}]| < 2B2%e = 27,

(b.41)
and:
B[] = Vo) ~ L@ 1{U: < BY] < By [I(0) ~ k(r(a))f]
< | (M) | b
To bound sup Fy ( ”i(l“)‘i — iézg‘ﬁ‘))'ﬂ we use:
) = () = (7. 9) ~ 5@, 0) = [ PIOLALZION) 1 piyar,
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by the convexity of set F in condition i) of Lemma B.1. Then, we get:
(@) = L(m(@))]  _ /1
loe=m(a)]| = Jo

< (/01

Then, by the Cauchy-Schwarz inequality, for any a € Ay we have:

SECINE

where constant I is defined in equation (b.27). Thus, from inequality (b.42), for any o € Ay

3li(f(ﬁ)+7 f f(B H

oLi(f(B) +T(f f(9)),5)
of

1/2
d7'> .

H oL(f(B) +7(f — F(5). B
af

Ey

]dTSF,

we have:
E [&i(g)Z] < T (2%). (b.43)

By applying the Bernstein’s inequality [see Bosq (1998), Theorem 1.2], and using the defini-
tion of \; in equation (b.32), we get:

rlfco] %]

IA

n(A/4)?
2 exp (__4F(2k5) +_2( )2k+1>

Ak
4
< 2exp (—71522’“_12F n IC) (b.44)

for any a € Aj. Thus, from inequalities (b.39), (b.40) and (b.44) we get:

1 B 1 m-+q
Z P {Sup )\ —)\k} < 6492V 0l(B)Cy g2 ( il M)
ac Ay 2 IC
o0 IC2
~Zexp (—n522k12—) .
p r+x
Now, by using that:
Zexp (—m—:QZk_lQH—’C) S exp (—kn€22_121_‘—i_—’c)
k=1 k=1
1 K2
2 12
T exp ( ne T IC>
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and:

> 212L7
ne?

if ne?27 12— _ >1 ;
i ne T+K = , we get
> . 1 2 (1+M\"™ . nmia K?

P b, ‘ > _\| < Vol - g2 K2
; Lésgl)k (a) —2]“} VO(B)e—l( 6l ) T exp< ne oK)

(b.45)
’C2
if ne?2 2 —— > 1.
P Ty T
iv) Conclusion
Thus, from inequalities (b.36), (b.37) and (b.45) we get:
. nm+q 2

P {Sup 1/n(B) = fF(B)] >e| < CyVol(B)(1+ M)™H exp (—02n52 ) + Cae™ 2

BeB el r+x

’C2
1 2 <1
+ {C’gna i = },
. 2e 1\™ . 19 . . .
where C] = 1\ & Cing, Co = 2777 and C3 = 32. Finally, by using the Bernstein’s
6 —

trick 1{z < 1} < e'™*, we get:
P lsup 1.08) = £ > 2| < CoVal(BY Ay exp (—Cone2 L5 ) 4 oyem—2R

ﬁeg n >0 = p 2NE K 3 K

where Cy = C} + e, for n large and ¢ small enough.

B.4.2 Lemma B.2

Lemma B.2: Let W be a positive random variable such that P[W > u] < C exp (—Cau?),
for any u € R sufficiently large and some constants Cy,Cy, 0 > 0. Then Elexp (—uW™1)] <
o) exp (—égug/(1+9)), for any u € R sufficiently large and some constants C4, Cy > 0.
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Proof of Lemma B.2: Let Z = W~! and £ > 0. We have:

Elexp(—uW™)] = Elexp(—uZ)] = /06 e f(z)dz + /OO e f(2)dz

= e “F(e)+u /E e "*F(2)dz + /OO e " f(2)dz, (b.46)
0 €

where f and F' denote the pdf and cdf of Z, respectively, and we apply integration by part.
The second integral in the RHS of equation (b.46) is such that:

/ e f(z)dz < e‘“a/ f(z)dz < e ™.
Thus, the conclusion follows if we show that:
I(u) = u/ e F(z)dz < Csexp (—C4u9/(1+9)) , (b.47)
0

for some constants Cs, Cy > 0. Now, for € > 0 small enough, we have F(z) =P[W >1/z] <
Ciexp[—Cs(1/2)Y], for z < e. Thus:

I(u) < C’lu/oE exp [—uz — Cy(1/2)? dz = C, /0“5 exp [—y — Ca(u/y)?] dy.

For large u and any a € (0,1) we get:

@ ue

) < G [ exploy = Calufu]dy+C [ exploy = Calu/n))dy

@ ue

C’le_C?“(la)g/ eXP(_y)d?/+Cl/ exp(—y)dy
0 u

a

IN

— (1-a)e @ _
S 016 Cou —i—C’le v —C’le e,

Then, for a = o/(1 + p), the bound in (b.47) follows, and Lemma B.2 is proved.

B.4.3 Lemma B.3

Lemma B.3: Suppose Assumptions A.1-A.5, and Assumption H.1 in Appendixz A.1 hold.
Then:

(i) Under Regularity Condition RC.2 (1) in Section B.3, we have P [, 7(0)] — 1 asn,T —
00, such that T'/n — 0, for any 6 > 0, where the event Q0 ,, 7(0) is defined in equation (b.11).
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(ii) Under Regularity Condition RC.3 (1) in Section B.3, we have P[Q3,7(0)] — 1 as
n,T — 0o, T'/n — 0, for any § > 0, where the event Qs3,1(J) is defined in equation (b.21).

Proof of Lemma B.3: We provide the proof of Lemma B.3 (ii) only, since the proof of
Lemma B.3 (i) is similar after replacing \;(3) in event Qs3,, r(J) with 1.

Let us define W,, () = % Z [a(Yis, fi(5), B) — pe(5)]. Then:
i=1

T

c . ”Wn,t (5)” HWnt( )H
P[Qs,7r(0)] = L/_sup sup WZ&] <ZP[\/_BEBWZ§

BEB 1<t<T

Wt ()]
Vi ses M(B)

Let us denote by W; ;.. (8), for j,l =1, ..., 7, the elements of the (r, ) matrix W,,, (). Since

- 7P| >4,

| Wi B)|° = Z W1t ()%, we have:

Jl=1

T

[Wae (B)] } [ (Wiine (B)] 0
P LR e ) Paplnt V)L 5 2
ey 2 2P| 2
Thus, we have to show that:

|W]lnt<5)| é_)
T [\/_ﬁezs () ZT] . (b-48)

forany j,l =1,...,7
Let us write W;,,,.(5) as:

Wj,l,n,t(ﬁ) = % Z (aj,l(Y;,ta ft(ﬂ)7ﬁ)l {Ui,t < Bn} - K [%JO@Mﬁ(ﬁ)ﬁ)l {Ui,t < Bn} ’M)

Z aj1(Yit, fo(B), B)1{Use > Bo} = E [a,(Yie, 1(8), O)1{Uss > Bu} | f])

I/Vj,l,n,t (ﬁ) + Rj,l,n,t (6)7 <b49)
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where a;; denotes the element (7,1) of matrix function a,

Ui = sup la(Yis, fi(B), B)|l, and B, = 4(;\/5. (b.50)
Then:
(Witne (B) _ 0 ‘Wmt 5)‘ 5
e v I b vt

|lent(5)| i
NG o

Let us now bound the two terms in the RHS of inequality (b.51).

+TP { } . (b5l

i) Bound of the second term in the RHS of inequality (b.51)

Let us first bound the second term in the RHS of inequality (b.51). By using that
1 n
|Rjine (B)] < Tn Z (Ui {U;y > B,} + E [U; 1 {U;y > B, } ]M) uniformly in 8 € B, and

the Markov inequaﬁty conditional on f;, we get:

R ,n,t 5 1
[ 2] = TP (G e 012 5o
47"TE E [Us1{U;; > By} | fi]
) infgep A () '

Moreover, by the Minkowsky inequality, Regularity Conditions RC.2 (1i) [which is implied
by Regularity Conditon RC.3 (1)] and Regularity Condition RC.3 (1ii), we get:

B U5 ]

B’ | —t b —_
inf 3 Ae(3)

— n

E[U;1{Uss > Bu} | 2]
infﬁeB At(ﬁ)

1/4 3/4
< BB {sup At(ﬁ>—4] E [sup la(Yae, £48), D)
BeB BeB

= 0O(1/n).
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Thus, since T'/n = o(1), we get:

TP sup |lent(ﬁ)| > 5

\/_ ses M3 T | = O(T'/n) = o(1). (b.52)

ii) Bound of the first term in the RHS of inequality (b.51)

Let us now bound the first term in the RHS of inequality (b.51). To control the supremum
over B, let us introduce a finite covering of the compact set B C RY by means of M open
balls B (8,,€) with center 3,, and radius e, m = 1,..., M. We let M = My and € = ep
depend on sample size T', such that e — 0, My — oo and My = O (5;‘]). We have:

Wiane (9] _ Wit ()]
sup ————— max sup —————
ses M(B) T meledrgepnen (D)
<  max —)Wj’l’n’t (ﬁm)’ + sup Wiine (5) _ Wiini (8)
~ m=l,.,.Mp )\t(ﬁm) ﬁw@IEB:Hﬁ,_ﬁHSaT )\t(ﬁl) )\t(ﬂ)
Thus, we get:
SupM > _ < ]P’ L Sup Wj’l’n’t (ﬁ/) _ I%J:n:t (/8> > i
\/_,GGB A(B) T2 T \/ﬁ/@ﬁ’;”ﬁ’_gHSET A(3) A(B) | T Ar
M P 1 VT/j,l,n,t (5)‘ S ) A4 A
su —_— > —| = , say.
! Beg Voo A(B) T Ar A
(b.53)
i) Bound of term Ay in inequality (b.53)
By the Markov inequality we have:
W' n / V; n
A < —E sup s (7) _ Wiina (6) . (b.54)

TV sl | M(B) A(6)
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To bound the expectation we use:

Wiinst(8) Wit (6)‘ ) )

sup N < sup [\(3)7'] sup it (B) = Wjine(B
19-pli<er | Ae(5) M(B) b uld) ]na'—ﬁnsET sinal) = Witna(F)
tsup [Wine(B)] sup  [A(B) ™" = A(B) 7.
BeB 18"=Bll<er

(b.55)

From the definition of W;y,,,(3) in equation (b.49), we have:

sup [W14(5) Z fsup o (Ve 109001 + B [supla i, 50909011 5]}
BeB —1 BeB

(b.56)

and:

sup  [Wyia(8) = Wygne(9)
5’ ~ ﬁ||<€T
31}60 (}/zhft(ﬁ)?ﬁ)]H |: 81}60[ (Y;tmft H :|}
. + F
2 | ] e s I

(b.57)

Moreover, for any (3, 3" € B such that ||5' — 3| < er:

IN(B) = N(B)7 = sup &' (F) e —  sup  2'w(8) '
z€R:||z]|=1 z€R™:||z]|=1
< sup |2 ((B)7 = (B) ) 2] = 1 (B) 7 = 11(B) o

z€R™:||z||=1

where ||.||,, denotes the matrix operator norm. Since matrix norms are equivalent, we have:

e (B0 = (B)Mop < (897 = pe(B) 7

X _ ovecla (Y4,
< caupln(9) P fsup | 2T
BeB BeB

op'

H ’ft:| er,

and sup||p:(8) 7| < ¢™*sup [M\(B) '], for some constants c¢*, ¢ > 0. Thus, we get:
BeB peB

ovecla (Yiy, fr(B
op

IA(B) = M(B) 7| < Cra sup [M(B) B {Sup
BeB peB

H |ft} er, (b58)
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where Clo = ¢*(c¢**)2. From bounds (b.54)-(b.58) and the Cauchy-Schwarz inequality, we
get:

A< 28 s ) [sup | 2 E SO £
3B 3B
+8C12T€TE {E {sup ’|a<)/;,t7ft(6>,ﬁ)” ’ﬁ] Sup)\t(ﬁ)sz {Sup dvecla (qulft H ‘ftH
0 BB BeB BeB o)e]
. SClgraT’ (b.59)
where:
1/2 . 97 1/2
Cis = FE {sup)\t(ﬁ)z} E |sup dvecla (Yiz, £1(6), 0)] ]
BB BeB o
1/2 1/4
+Cual [suph(8)] B [sup o (i 5(5). 1]
BeB BeB
41 1/4
-E |sup Ovecla Vi, fi(B), B)] ] < 00,
BeB o

by Regularity Conditions RC.2 (1i-ii) and RC.3 (1ii).

ii) Bound of term Ay in inequality (b.53)
To bound A,, by using the definition of Wj,z,n,t (8) in equation (b.49) we can write:

P{%w%l oy [Hw]m )|z priols|
_p [ > )

o)) o
for 8 € B, where wn(ﬁ) = @gl(Y;t;ft( ), )1{Uzt <B,}-E [ajl(Y;taft< ), B)1 {Ui,t < B,} \ﬁ]
To bound the inner conditional probability in the RHS of equation (b.60), we use the inde-
pendence property of the Y;;, for i varying, conditional on f;, and the Bernstein’s inequality
le.g., Bosq (1998), Theorem 1.2]. For any 8 € B, we have:

Vi (B)] < 2By,
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from the definitions of U;; and B,, in (b.50), and:

V i B)fe] =V [a5Yis, £:(8), 8)1{Uss < BY|fs] < B [lla(Yis, :(83), DI | /] = o7 ().

Then, from Bernstein’s inequality applied conditional on f;, we get:

]P [
=1

5 16r2>\t(6)2
) znﬂAt(@!ﬁ] s 2exp <_4at<6> JAt<ﬁ)Bn>

< 2exp( 014\/_<—5)2) (b.61)

£ (8) + A(B)
52
P-a.s., where C1y = a2 Since B, = \/_ From inequalities (b.60) and (b.61), we get
1 ‘W',l,n,t (5)‘ )
sup P S et (L <2F [exp (—CMﬁC[l)} , (b.62)

ses | vno M(B) T dr

where:

6 = (inf )\t(ﬂ)>_1+sup oiB) (inf At(6)>_1+ (inf At(ﬁ))_gsupaf(ﬂ)

BeB seB Ai(0)? BeB BeB BeB
= &9t 5152,9&,7,

where processes & 7 and & g are defined in Regularity Conditions RC.2 (1iv) and RC.3 (1ii).
To bound the expectation in the RHS of inequality (b.62), we use Lemma B.2 in Section
B.4.2. Let us check the condition of Lemma B.2. From Regularity Conditions RC.2 (1liv)
and RC.3 (1ii) in Appendix B.3, we have:

P[¢ > u

IN

Pl&o>u/2]+P [53,9&,7 > U/Q}
Pléo > u/2] +P[& > (w/2)*] + P67 > (u/2)]
< by exp[—co(u/2)®] + b exp[—co(u/2)™/*] + by exp[—cr(u/2)"7/?].

IA

Thus, the condition of Lemma B.2 is satisfied with ¢ = min{d;/2,dy/4}. Then, by using

Lemma B.2 and the condition on the rate of divergence of n and T', we get:

[exp ( Cruvné; )} C exp < C'Q(C’M\/ﬁ)@/(““@)) < Cyexp (—015T9/(2+2g)) ,  (b.63)
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for some constants Cy, Cy and Cy5 > 0. Thus, from inequalities (b.62) and (b.63), we get:
AQ S 201MT exp (—015TQ/(2+29)) . (b64)

iii) Proof of convergence (b.48)

From inequality (b.51), convergence (b.52), and inequalities (b.53), (b.59) and (b.64), we
get:

TP Lsup |M/j’l’n’t (B)] > 0 < 8Chsr

Pant VP > 2 T 2C, T M — (0,51 (2120) 1).
nees  MB) T r] T er + 20T Mrexp (=Cls ) + o)

Now choose e = T~ for Cig > 1. Since My = O (E;q) =0 (chlﬁ) , the convergence
(b.48) follows.

B.4.4 Lemma B.4

Lemma B.4: Suppose Assumptions A.1-A.5, and Assumptions H.1, H.2, H.5, H.6, H.7
(i-i1), H.8-H.10 in Appendiz A.1 hold. Then:

(i) Under Regularity Condition RC.2 (1) in Section B.3, we have P [Qs,,7(0)] — 1 as n,T —
oo, T'/n — 0, for any 6 > 0, where the event Qy,, () is defined in equation (b.12).

(ii) Under Regularity Condition RC.3 (1) in Section B.3, we have P[Qy,7(0)] — 1 as
n,T — 0o, T'/n — 0, for any § > 0, where the event Q4 1(J) is defined in equation (b.22).

Proof of Lemma B.4: We give the proof of Lemma B.4 (ii) only, since the proof of Lemma
B.4 (i) is similar after replacing A\:(5) in event 4, 7(6) with 1.
| £108) = £u8)|| <, then:

For any n > 0, if sup sup
BEBI<I<T

n n

U5 [Vt a9, 8) — atir, £9). )]

1=1

1
< 7msup sup — Z sup
BeBI<t<TT i=1 Fillf=Fe(B)I1<n

aa (Y;,tvfa ﬁ) H
af’ '

Thus, for any sequence 1y | 0 and constant n* > 0, we get:

A

POunrl0)] < P supsup [|7us(9) ~ £ > ]

BeBI<t<T

n

1 1
N sup sup Wﬁ Z sup

+P
BeB1<t<T At i—1 Ll f=fe(B)I<n*

af’

ssgio]. |
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By denoting (Y, £().0) = s | LD ) =y v ) 18]
T AGIE f
and ¢ = Zlellz:S))\téﬁ) v (B), we get:

Puna0)] < P fsup sup 709 - £09)] > nT]

BeB1I<tLT
)
+P |sup su b(Yie, —v(P)| > =—
ﬁegl<t£T>\t Z| ! ft ) t( )| 2nr
)
+P { sup ¢ > —1 =Pipr+Ponr+ Par.
1<¢<T nr

Now, let sequence 7 be such that:
nr = (CU log T)_Q/Clg, 017 >0, 0< 018 < min{2d8, dg}, (b65)

where constants dg > 0 and dg > 0 are defined in Regularity Condition RC.2 (1v) and RC.3
(1ii) in Section B.3.

i) Proof that P, r = o(1)

We have (lo %/_) = o(nr), as n, T — oo such that T'/n — 0, for any constant dy. Thus, we
get P, =o0(1) as n,T — oo from Limit Theorem 1 in Appendix B.1.

ii) Proof that P, r = o(1)

) )
Since — — 00, we have:
nr

n

l Z 0(Yis, f:(B), B) — v(B)] = 6~

=1

Py, <P [sup sup
20l =0 aebizier M(B)

for any constant 6* > 0 and large T. The RHS probability converges to zero by the same
argument as in the proof of Lemma B.3 (ii) in Section B.4.3 and using Regularity Conditions
RC.2 (1i-ii), (1v) and RC.3 (1i-ii).
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iii) Proof that P;r = o(1)

5 _1
We have Py 7 < TP {gt > —}. By using ¢ < (inf At(ﬁ)) sup Bolb (Y, £i(3), B21f]Y2 <
2nr BeB 3eB =

€t79§tl7g2, where processes & g and & g are defined in Regularity Conditions RC.2 (1v) and RC.3

(1ii). We get:
5 5 \"? 5
P |:§t > —} < P& > (—> +P |:£t,8 > —}
277T 27}T 27]T

< byexp (—co(6/(2nr))™/*) + bs exp (—cs(6/(2nr))™) .

Then, by the definition of 17 in (b.65), we deduce:

P3’T < Tbg €exXp (—69(6/2)d9/2017 IOg T) + Tbg €xXp (—08(5/2)d8017 IOg T)
o bgT1—09017(5/2)d9/2 + b8T1—68017(5/2)d8 ]

Then, for Cy7 > max{cy'(§/2)"%/2 cg*(6/2)7%}, we get Psr = o(1).

B.4.5 Lemma B.5

Lemma B.5: Let mapping a admit values in the set of (r,r) symmetric matrices and satisfy
Regularity Condition RC.3 (1) in Section B.3, and let u,(8) = Eola(Yiy, fi(8), B)|fi]. Then,
for any n > 0, there exists a compact subset I C U of the set U of positive definite (r,r)
matrices, such that P [{u:(5),0 € B} C K] >1—n.

Proof of Lemma B.5: The matrix () is positive definite, for any ¢t and g € B, P-a.s.
Let €igmin(x) and €ig,q. () denote the smallest and the largest eigenvalues of the symmetric
matrix z € SR™", respectively, and let A\i(3) = €igmin (1:(3)) and Ai(5) = eigmaz(pt(5)).
For any constants Cp,Cs such that 0 < ¢} < Cy < oo, let us define the set K¢, 0, =
{x € SR™" : C < eigmin(x) < €igmaz(x) < C’Q} C U. This is a compact subset of the set of

(r,7) positive definite matrices. Then:

Pl{(9), € B) < Keyel = P mEn(9) 2 Cu suph(9) < €y

> 1-P {inf)\t(ﬁ) < C’l} —-P {supAt(ﬁ) > 02:| .
BeB BeB
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Now, we use Ay(B) < *||w(B)||, for any ¢t and 5 € B, P-a.s., and a positive constant c*

that depends on dimension 7 only. Indeed, the largest eigenvalue €igy,q.(A) of a symmetric

matrix A € SR™" coincides with the operator norm ||A|,, = sup & A€ of the matrix,
EeR™:|[€][=1
i.e. €igmaz(A) = ||A|lop, and all norms in an Euclidean space are equivalent. Then, we get:

Pl{u(8).0 € B} C Keyes] > 1-P [supwm—l] > c;l} .- [;gguumn > cz/c*}

BeB

> 1-GE [swpi(9)] - (/) sl
pBeB pseB

by the Markov inequality. The two expectations in the last line are finite by Regularity

Condition RC.3 (1ii), and Regularity Condition RC.2 (1i), which is implied by Regularity

Condition RC.3 (1). Then, for any n > 0, there exist C; > 0 and Cy < oo such that

P{m(B),8 € B} CKeyen) 21—
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APPENDIX C
TECHNICAL LEMMAS

We provide Lemmas 1-8 in Sections C.1-C.8. The secondary Lemmas C.1-C.4 used in

the proofs of Lemmas 1-8 are given in Section C.9.

C.1 Lemma 1

LEMMA 1 Under Assumptions A.1-A.5 and H.1-H.6, H.7 (i)-(ii), H.8-H.10, H.13, and if
n,T — oo such that TV /n = O(1), for v > 1, we have: (i) sup |L;(B) — L*(B)| = 0,(1),
peB

where functions L(5) and L*(5) are defined in equations (3.7) and (4.4), respectively;

(1)  sup |Li,70(8,0) — L1(5,0)] = 0,(1), where functions Ly ,r(5,0) and L1(5,0) are
BeB, 0€0

defined in equations (3.8) and (a.10), respectively.

Proof of Lemma 1 (i): We apply Limit Theorem 3 in Appendix B.3 with a(y;+, yi+—1, ft, 5) =
log h(yit|yit—1, fr; B) and ¢ being the identity mapping. Let us check Regularity Condition
RC.2 in Appendix B.3. Regularity Condition RC.2 (1i) is implied by Assumption H.3 (ii) in
0log h(yislyie—1, [:(B); B) H

Appendix A.1. To check Regularity Condition RC.2 (1ii), we use sup

deB ap
< it Y1, + w1 d
< sup | Z0ER s £ + sup | T s 93 ) sup [ P52 o
sup agé/ﬁ) < ey ( **)1/2 from equation (b.3) in Section B.1, where processes £/ and &7

are defined in Assumption H.5 in Appendix A.1, and ¢ > 0 is a constant. Then, Regularity
Condition RC.2 (1ii) is implied by Assumptions H.3 (ii) and H.5 in Appendix A.1. Regular-
ity Conditions RC.2 (1iii, iv, v) are implied by Assumptions H.4 (ii) and H.5 in Appendix
A.1. Finally, Regularity Condition RC.2 (2) in Appendix B.3 is satisfied, since the identity
mapping is Lipschitz continuous and Ey[|o(u:(3))|] < Eol|log h(yit|yit—1, f; B)|] < oo from
Assumption H.3 (ii). Thus, the smoothness regularity conditions to apply Limit Theorem 3

are satisfied.
Proof of Lemma 1 (ii): Let us write £,7(5,0) = EunT(ﬁ) + Li2,7(8,0), where
T

Cn,nT(ﬁ) = —%Zlogdetfn,t(ﬂ) and £12nT 57 Zlogg (fnt |fnt 1( ) ) To

=1
show the uniform convergence of L4y ,,7(3), we apply Limit Theorem 3with a(yit, Yit—1, ft, 5) =
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0 1og h(Yi|yi -1, fr; 0% 1og h(yi ¢|Yi1—1, f:(B);
_07log (g}Jgﬂ L J ﬁ)7/~5t(ﬁ):E0 _ 0%log (yéﬁéﬂl f(B) 5)@ _ 1, 4(8), and p(x) —

log det(z), for = a symmetric positive definite (m, m) matrix. Regularity Condition RC.3 (1)
in Appendix B.3 is implied by Assumptions H.3, H.4 (iii) and H.5. In Lemma C.1 in Ap-
pendix C.9.1 we show that mapping ¢ satisfies Regularity Condition RC.3 (2). Then, from

Limit Theorem 3 it follows that £y ,7(5) converges to —%EO log det I; f¢()] in probability,
uniformly w.r.t. § € B.

To show the uniform convergence of L5 ,,7(3, #), we apply Limit Theorem 2 with G(f;, fi—1;0) =
log g(fi| fi—1;0). Regularity Condition RC.1 in Appendix B.2 is implied by Assumptions H.5
and H.13 in Appendix A.1. Then, Ly9,7(0,6) converges to Ey[log g(fi(B)|fi-1(5);0)] in
probability, uniformly w.r.t. § € B,0 € ©.

C.2 Lemma 2

LEMMA 2 Under Assumptions A.1-A.5 and H.1-H.3, H.5-H.11, and if T"/n = O(1),
En,t(fn,t(ﬁ)aﬁ) - En,t(fhﬁ) CZ

v > 1, we have inf inf inf - > & wp.a. 1, for some
1<t<T BB fi€Fn I frt(B) — fill? [log(n)]

1
constants Cy,C3 > 0, where L, ,(f;3) = - Zlog h(YitlYir—1, 3 5).
i=1

Proof of Lemma 2: To simplify the notation, we assume that f; is scalar, i.e., m = 1. Let
n > 0. We have:

P inf inf inf ‘Cn,t(fn,t(Aﬁ)aﬁ) _En,t<ft;ﬂ) S 02 -
1<t<T BEB fieFn [fri(B) — fi)2 [log(n)]s
S ]P 1nf 1nf lIlf: ['n,t(fn,t(Aﬁ); ﬁ) - ﬁn,t(fbﬁ) S CZ -
L<t<T BEB fye Foil fom fri(B) <1 [fas(B) — f:]? [log(n)]s
. . . ﬁn,t(fn,t(ﬁ)aﬁ) _‘Cn,t(ftvﬁ) CQ —
P lgtleT érellf’ﬁ ftefn:‘ftlil;n,t(ﬂ)lzn []Ent(ﬁ) - ft]2 : [log(n)]CS B Pl,nT " PQmT.

(c.1)

Let us now show that probabilities P, ,,r and P, 1 are o(1), for suitable constants Cy, C3 > 0.
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i) Proof that P, ,r = o(1)

~

By a Taylor expansion of function L, :(f;; 3) around f; = f,.(3), and by using that
aﬁn,t(fn,t(ﬁ);ﬁ)
Ofe

=0, w.p.a. 1, we get:

+ o(1).

2 .
Py, <P | inf inf inf 9 En’t(th,m < 2C: c
VST BB fue Fol oot (8) <1 of; [log ()]

Since f,4(3) converges uniformly to f,(4) (Limit Theorem 1 in Appendix B.1), we have

w.p.a. 1:
0L, ([ Lo (f;
inf inf inf —M > inf inf inf —M
LIST BEB fye Foil fom fron (3)| <1 O fi 1<U<T BEB freFn:lfi—fe(B)|<20 dfi
82 1 h, 7 it—15J 5
> inf inf inf Ey |— og Iy ’t‘y’t LS 6)|ft
1<I<T BEB fEFn:|f—f1(B)|<2n af? =

n

1 Z O 1og h(yit|yii-1, f; ) _E 0 log h(yislyisi-1, f; B) If
a2 0 PIE Jt

n

. (c2)

— sup sup sup
1<t<T BB fEFn

=1

If constant n > 0 is such that 2n < n*, where n* is defined in Assumption H.5 in Appendix
A1, then the first term in the RHS of inequality (c.2) is such that:

B 9% log h(yi |y, f; B)
of?

inf inf Ey l
BEB feFn:|f—fe(B)|<2n

@} > (1),

where process & is defined in Assumption H.5 in Appendix A.1. Moreover, in Lemma
C.2 in Appendix C.9.2 we show that the second term in the RHS of inequality (c.2) is

), for a constant d3 > 0. Then, from inequality (c.2) we get w.p.a. 1:

2 )
inf inf inf —Mz inf (gt,l)il_Lc.
1<t<T BEB fie Frtl fu—fnt(B)|<n of; Ist<T [log(n)]“
Then, it follows:
e <30 log(n)|°
< I . - = >
Plor < |t (6)”" < ] o) =P | s = FEEE] o)
[log(n)]“*
< TP > 1).
= PP o)
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Thus, from Assumption H.5 we get:

Py < b1T exp (—cl <%> 1) +0(1) =0O(T/n) 4+ o(1) = o(1),

1
if Cy and Cj are such that Cs > 1/d; and ¢;(1/(3Cy))" > 1, ie., Cy < gci/dl.

ii) Proof that P, = o(1)

Let us first derive a lower bound for inf inf inf ﬁn’t(fn’t(p); B) = Lntlfi: B)
LSE<T BEB freFolfofue ()20 [fnt(B) = fi?

From Assumption H.7 (iii), the uniform convergence of f,,(3) to f,(3) (Limit Theorem 1 in
Appendix B.1) and by using that ﬁnyt(fnyt(ﬂ);ﬁ) — L (fe; 8) > 0 for f, € F, and § € B, we

have w.p.a. 1:

uf inf nf [fnt(fnt(ﬁ)75) - ‘Cn,t(ft;ﬁ)

I<t<T BEB fie Fpi| fu—fue (B)|>n [Fus(B) — fi]2

> 1 inf i inf Lot (Fas(B): B) = Lons(f B)]

4R% I<IST BEB fieFo| fr—Fut (B)|>7

A

f inf (Lot (frt(B); B) — Lt (fi; B)], (c.3)

> 5 in in
ARZ 1<t<T BeB fieFn:| fr—f1(B)|>n/2

—F 1

where R, is defined in Assumption H.7 (iii). Moreover, we have:

inf inf inf [En,t(fn,t(ﬁ); B) = Lni(fi; 5)]

1<t<T BEB f1€Fn:|fr—f+(B)|>n/2

> inf inf inf (L:(f(B); B) — Lo fi; 8)]

T 1<t<T BEB freFn:|fr—ft(B)|>n/2

— sup sup Loy (fo1(8); 8) = Lon(f1(8); 8)| — 2 sup sup sup |Los(fi; B) = Li(fi: B, (c4)

1<t<T BeB 1<t<T BeB fi€Fn

where:

Li(f;8) = Eq [log h(yialyie—r, [; B)|f] - (c.5)

From Assumption H.8, the first term in the RHS of inequality (c.4) is such that:

inf inf inf (Le(fe(B); B) — Lifr: B)]

1<t<T BeB fieFn:|fr—fr(B)|>n/2

772 inf Li(fi(B): 8) = Le(fe; B) > 772

> — inf inf

inf K. 6
4 1<I<T BEB fieFuilfi—f(B)|>n/2 [fe — f:(B))? — 8llog(n)] 1z (c6)
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Moreover, in Lemma C.3 in Appendix C.9.3 we prove that the second and third terms in
, : [log(n)]* [log(n)]’® :
the RHS of inequality (c.4) are O, | ———— | and O, T , respectively, for some
n n

constants d4, 05 > 0. Then, from inequalities (c.3)-(c.6) and by using R, < Cy[log(n)|", with
Cy, 71 > 0 [see Assumption H.7 (iii)], we get w.p.a. 1:

Ln,t(fn,t(ﬁ>; ﬁ) - »Cn,t(ft§ ﬁ)

inf inf inf >
LSt<T BEB fre Fptl fo— fnt(B)| 20 [fnt(B) = fi]?
2 5 55
n : [log(n)]* [log(n)]%
> £ LOBVI Lost\n)l -
~ 32R2[log(n)] et et O ( nR? O vnR2 )’
772 Cs

> inf _
% 3207 log(m) = 15" ™ Tog(m)]®

From the definition of probability P ,r in equation (c.1), we get:

2
Ui . 205

P, <P f < — 1

tor <P | e e < o) o)

i 64C5C% . Pllog(n)]Csn2m

< < — >
=P [12:1<le@ - nQ[log(n)]%—w—?%} +o(l) =P LE?ET K™= 64C5C2 +o(1)
<TP |k > [ 1).
= [ﬁ = 64C,CE ]*“)

From Assumption H.10 we get:

2Mog(n C3—y2—2717 93
Pt < baT exp (_03 e ] >+o<1>=0<T/n>+o<1>=o<1>,

if Cy, Cy are such that (O3 — 75 —2v1)ds > 1 and c3[n?/(64C5,C3)]% > 1, i.e., Cy > o+ 27, +
2 1/d3
cs

1/d3 and 02 S 6402 .

C.3 Lemma 3

LEMMA 3 Let us define the sequence k, = 2[log(n)/Cs]", for n € N, where constants
Cs,C7 > 0 are such that Cs < min{cy,cs} and C; > max{3/dy,2/ds}, for ¢;,d; > 0 and
cs,ds > 0 defined in Assumptions H.5 and H.13 (iii), respectively. Then, under Assumptions
A.1-A.5 and H.1, H.2, H.5-H.11, H.18 (i1i) and if T /n = O(1), v > 1, w.p.a. 1, we have:

(i) inf inf I,.(B8) > k", (i) 1sup sup I (B) < ki, (iii) sup sup Jzn.(B) < ki, and (iv)

1<t<T BeB <t<T BeB 1<t<T BeB
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sup  sup qunt(ﬁ 0) < kn, for p4+q =1, where I,,,(5) is defined in equation (3.4), and
1<t<T BeB,HcO

Jsni(B) and Dpyni(B,6) are as in equation (a.14).

Proof of Lemma 3 (i): By using Limit Theorem 1 in Appendix B.1 and the mean-value

theorem, we have w.p.a. 1:

2
inf inf Int(ﬁ) > inf inf EO [_0 logh<yzt|yzt 17.ft( ) )|ft:|

1<t<T BeB 1<t<T BeB of?
6210gh(yzt’yzt L f; 5) |:a2logh(yit|yit—laf§ﬁ) }
— sup sup su —F =
10T seh pet, |1 Z of? ’ of? 2
83loghyi Yir—1, 13 3 2
~sup swp By | s Wbt SN 1 |f.9) — 50|,
L<t<T BB | ff—Fu(B) < f

8210gh(yzt|yzt 17ft( ) )|f
of?
(&1)7" = (&.1)"", where processes &, are &1 are defined in Assumption H.5 in Appendix

A.1. Moreover, from Lemma C.2 in Appendix C.9.2, Limit Theorem 1 in Appendix B.1 and
(lOg n)max{ég,ég} )
, Where
vn
constants 6o > 0 and 03 > 0 are defined in Limit Theorem 1 and Lemma C.2, respectively.

for n* > 0. The first term in the RHS is such that [igng Ey [—
€

Assumption H.5, the second and third terms in the RHS are O,

Therefore, we get w.p.a. 1:

of inf [nt<ﬁ) 1nf (ft 1) ((logn)max{62,63}> g (ft ) B nl_ (C.7>

1<t<T BEB vn 1<t<T

Thus:

P | inf inf Int(ﬂ)>/<a;1} > {mf (&)t >2 nl] +o(1)

1<t<T BeB - 1<t<T

1<t<T

> 1-TP[&1 > K, /2] + o(1).

= 1-P [ sup &1 > /{n/Q} +0o(1)

From Assumption H.5 and the definition of x,,, we have P [§; 1 > k,,/2] < by exp (—cl (Kn/Q)dl) <
bi/n, since ¢ (k,/2)" > log(n). Then, we get P L 11tl<f énf Li(B) > K, *

eB
>1—-0(T/n)+o(1) =1—o0(1), since T'/n — 0.
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Proof of Lemma 3 (ii): Similarly, we have w.p.a. 1:

sup sup I, () < sup sup Ej |ft + K /2.

1<t<T BeB 1<t<T BeB

|:_a210gh(yzt‘yzt 17ft(6) )
of?

0%1og h(vi ¢|Yi -1,
Moreover, sup Ej [— 08 h(y; tg/f; L fulB); )|ft} <( **)1/2 < (£t,1)1/2, where processes &
peB

and &7 are defined in Assumption H.5. Then, we get:

v

P |: Sup Sup ]n,t<ﬁ) S Hn:|
1<t<T pgeB

P | sup ()" < /2] +ol1)

> 1= TP 6 = (0/2)7] +o(1)
> 1—Tbexp (—ci1(kn/2)*") =1—O(T/n) —o(1) =1 —o(1),

from Assumption H.5, the definition of &, and the condition 7'/n — 0.

Proof of Lemma 3 (iii): From the uniform convergence of f, () to f,(3) (Limit Theorem
1 in Appendix B.1), and since sequence &, involved in the definition of Js,,(/3) is such that

en = 0(1) (see Appendix A.2.1), we have for any n > 0, w.p.a. 1:

. —3/2
sup sup Js ,:(3) < ( inf inf [nt(ﬁ)) sup sup sup

83'Cn,t (ftu ﬁ) ' )

1<t<T BeB 1<t<T peB 1<t<T BEB fu:|fe—fe(B)|<n of?
h f inf inf (logn)™ 2\ 4 o inequal
Moreover, we have X gl<T ,érell’j’ I..(8) > 1n (ft )7t ( Tn ) rom inequality
(c.7), and:

sup sup  sup
1<t<T BEB fi:|fr—ft(B)|<n

< sup sup sup
1<t<T BeB fu:|fe—fe(B)|<n

+ sup sup Sup Ly (fi38) _ L, (ft;ﬁ)'
1<t<T BEB filfimfr(B)<n ofp ofp

< s (6)/7+ 0, (122,

for some constant dg > 0, by similar arguments as in Lemma C.2 in Appendix C.9.2. Thus,

83£n,t (ft§ ﬁ) ‘
afp

OPLy (ft§ 5) ‘
off

we have w.p.a. 1:

sup sup Jsni(8) < sup (1)% + /2.
1<t<T BeB 1<t<T
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Then, from Assumption H.5 and the condition 7'/n = o(1), we get:

P | sup sup Ju(5) sfsn} > P[sup (6) < k2| +0(1) 2 1= TP &1 > V/ka/2] +o(1)

1<t<T BeB 1<t<T

> 1 —Tbyexp (—ci(r,/2)""%) +0(1) = 1 — o(1),
since ¢1(kn/2)%/? > log(n) and T'/n = o(1). Lemma 3 (iii) follows.

Proof of Lemma 3 (iv): By similar arguments as in the proofs of Lemmas 3 (i-iii), we

have w.p.a. 1:

aerqugg(ft‘ft—l;e)

sup  sup  Dpgne(0,0) < sup (&1)"% sup sup i + Fin /2
1<t<T BEB 00 L<t<T BEB,OEO Fy:|| Fi—Fy(8) ]| <n* Of;0fiy
< sup (ft,1)1/2£t,5 + K /2,
1<t<T

for p+q =1, where F; = (f], f{_1)', n* > 0 and process & 5 is defined in Assumption H.13
(iii). Then:

P |: sup sSup qu,nt(ﬁ7 0) S /fn:| Z P |: sup (gt,l)l/Qétﬁ S Kn/2:|

1<t<T B€B,/cO 1<¢<T

> 1= TP[(6)"2 2 Via/2| = TP 605 > V2] +0(1).

Thus, from Assumptions H.5 and H.13 (iii) we get:

P [ sup  sup Dpgu(3,0) < lin} > 1 —Tbyexp (—ci(kn/2)™) — Ths exp (—cs(r,/2)5/?)
1<t<T BEB,0€O

+o(1) =1—o(1),

since ¢1(kp/2)% > log(n), cs(kn/2)%/? > log(n) and T/n = o(1).

C.4 Lemma 4

LEMMA 4 Let k, = 2[log(n)/Cs]°7, for n € N, be the sequence in Lemma 3, where
the constants Cg,C7 > 0 are such that Cs < min{cy,c5} and C; > max{5/dy,2/ds},
for c1,dy > 0 and c5,ds > 0 defined in Assumptions H.5 and H.13 (iii), respectively.
Then, under Assumptions A.1-A.5, H.1, H.2, H.5-H.11, H.13 (iii), and if TV /n = O(1),
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v > 1, wp.a 1 we have: (i) sup sup |Jyn ()| < kn, (i) sup supJsn(8) < kn, (iii)
1<I<T BeB 1<t<T BeB

sup  sup |Dpgnt(5,0)] < kn, for p+q <2 and (i) sup sup qu,n,t(ﬁ,ﬁ) < Kp, for
1<t<T BeB,IcO 1<t<T BeB,IcO

p+q =3, where Jy,(8) and Dy, +(B,60) are defined in Proposition 1, and jg,nt(ﬁ) and

Dpynt(5,0) are defined as in equation (a.21).

Proof of Lemma 4: The proof of Lemma 4 is similar to the proof of Lemma 3 in Section
C.3.

C.5 Lemma 5

LEMMA 5 Under Assumptions A.1-A.5, H.1, H.2, H.5-H.11, H.13 (iii), and if T" /n =
O(1), v > 1, we have for any integer j > 3:

(T,
A7 (3, 0) gcj( = ) (c.8)

and:

/T J
AjynT(ﬁ,Q) S Cg/‘ii]j! (E + \/TEZ) s (Cg)

uniformly in § € B,0 € ©, w.p.a. 1, for some constants C; > 0, j = 3,4,..., and Cs > 0,
where functions Aj,r(8,0), for j € N, are defined in equation (a.22), sequence €, | 0

T

involved in the definition of Aj.r(B,0) is such that — = O(n™""), py > 0, and constants
ne?

Kn, n € N, are defined in Lemma 3.

Proof of Lemma 5: The bound in (c.8) is derived by similar arguments as in parts a)-
c¢) of the proof of Proposition A.4 in Appendix A.2.1 iii). Let us derive the bound given
in (c.9) for m = 1. Lemma 3 (ii) implies that, if z € Z,7(3), then ||z||* < ne2k,, and
hence z € [—\/ne2k,, \/ne2k,]", uniformly in 8 € B, w.p.a. 1, where Z,7(3) is defined in

Proposition A.1 in Appendix A.2.1. The mass of the hypercube [—+/ne2k,, /ne2r,]? in
nekn

R” under a standard multivariate Gaussian distribution is V,*, where V,, = / o(s)ds

ne2 K,

and ¢ denotes the pdf of the standard Gaussian distribution. We have V. =1 — o(1) under
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T
condition — = O(n™#), py > 0. Then, we have:

ne?
Aj nT(ﬂa 0) 1 1 / 1 2
R R __
VnT - VnT (27T)T/2 [7, /ns%nn,\/mi%nn]T P 2 ||Z||

T ) -1/2 ~1/2 J
R e T 0)] &

1

T R -1/2 -1/2 J
= LT (ant (fn,t(ﬂ)—l—%Zhﬂm—l(ﬁ)—'—%%—1;679)> )

w.p.a. 1, where E,r [.] denotes expectation w.r.t. a random vector z in RT with truncated
standard Gaussian density on [—/ne2k,, \/ne2k,|7. Let us now use the bound for ¢, in

equation (a.20). By applying the triangular inequality, we get:

Ay (8,0)] r ke r Y
int (3,0 1 5 1 .
[V—nT] < E.r <m ; J3,nt(ﬁ)zt> + Enr (m ; J4,nt(6)zt
r ) T 9 . T Vi
En = D n ) 0 En = D n y 0)z—
+ LT <\/ﬁ ; 10,00 )Zt> + L <\/ﬁ ; 01nt(8,0)2 1>
2 2
+E,r (% ; D20,nt(ﬂ> Q)Zt) + Enr (% tz; Doz,nt(ﬁ, Q)Zt_1>
- . T | 57 1/ T 1Y
+E,r (5 Z Di1ui(B,0) 2024 + Enr (Z Ry (2, 2213 5, 9))
t=1 t=1
Lt
= Z Ak,j,nT(ﬁa 9)1/j7 (ClO)
k=1
w.p.a. 1. Let us now show that:
_ /T J
Ak,j,nT(ﬁa 9) S Ogj!/‘iij (— + \/TEZ) N (Cll)
n

uniformly in 8 € B, § € ©, for all j = 3,4, ... and k =1, ..., 8, and for some constant Cy > 0.
Then, by using that V. =1 — o(1), inequality (c.9) follows.
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We prove the upper bound for term Ay, ; ,7(8,0) with k = 2 and j even; the proof for the

other indices k, and for j odd, is similar. We have from Lemma 4 (i):

- j
1
E.r <m g J4,nt(ﬁ)2f>
min{j,T}

Z T Z E, [z™] - E, [zfml] : (c.12)

mi+...+m;=j

min{j,T}

DD IIED P R

t1,..,ty mi+...+my=j

uniformly in § € B, where E,[.| denotes expectation w.r.t. a random variable z; with

truncated standard Gaussian density on the interval [—y/ne2k,, /ne2x,), Z denotes

summation over all [-tuples (ti,...,t;) of different indices from 1,2,...,T, and Z
mi+...+my=j
denotes summation over all [-tuples (my, ..., m;) of integers from N* such that m;+...4+m; = j.

The number of such I-tuples (¢4, ...,%;) and (my,...,my) is T(T —1)--- (T —1+1) <T', and
—1
(‘Z 1), respectively. Let us now show that the product F, [ 4m1} By [ 4ml} forl < j
and my + --- +my = j, satisfies the following two bounds:
B, [2™]- B, [5™] < 27%'jl(nelk,), (c.13)
E,[#™] - E, [zj‘ml} < 44 (ne2k, )Y, (c.14)

a) Proof of inequality (c.13). To prove the bound in (c.13), we distinguish two cases.
(*) The first case is when 2my, > j for an index k € {1,...,l}. Without loss of generality,
let £ =1 be that index. Then, we deduce that:

E, [zfml] - By |z 4m’] < FE, [ } (neaky,)* ™ E, [2}] (nesk,)?™ 72+ B, (2] (neak,)*™ 2

< V913 (ne2 k, )T 20D < 2951 (g2, ),

for large n, since E,[z}] < 3V 1, E,[27] < 2751V and V,, = 1 — o(1).
(**) The second case is when 2my, < j for all k = 1,...,1. Let ay,...,a; > 1 be such that
ap < 2my, for all k =1,....[, and a; + as + ... + a; = j. Then, by the Holder inequality:

B, [z™] - E, [zfml} < E, [2"] (nelk, )™ " - B, [ZE‘”} (ne2k, )2
<k,

B, [ B, [ (ne2k,) = B, [] (ne2k,)! < Vi'29j1(ne2n,, ),
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which yields inequality (c.13).
b) Proof of inequality (c.14). The upper bound in (c.14) follows from:

By [2™] B [2™]

IA

E, [2/] (neprn )0 - B, [2] (nehrn) 27D < V'3 (nep ke, )20
< 4 (nelrn)?0".

Now, let us upper bound the RHS of inequality (c.12) by using the bound in (c.13) for
the terms with | < j/2, and the bound in (c.14) for the terms with [ > j/2. We get:

1 T J /{j min{j/2,T} . 1

E, — n 4 < T! 2t n

! <4!n;J4’ t(mzt) = (din); ; <z— 1> neusn?
+ o ZTZ -1 4'(nek )2(3‘*[)

(4!n)ﬂ ~, -1 e

VT ) 3L o =1
2( 3 Z( ) iy 24TV l(j_l_l)meiw
1= =0

() o () B () 7)< () (R v

Then, the bound in (c.11) for k = 2 follows.

IN

IA

C.6 Lemma 6

LEMMA 6 Under Assumptions A.1-A.5 and H.1-H.10, H.13 (iii), H.14, and if n,T — oo
such that T /n = O(1), v > 1, we have:

. 82E:LT ( 82[,* .. 62»Cl,nT (ﬁa 9) 82‘61 (ﬁ) 9) _
W) s\ ~gp05 ~ apop H o () s N oee ~ avor |
0p(1), where functions L (5 ), Linr(5,0) and L1(5,0) are as in Lemma 1;
. 8£1 nT (ﬁ, 9) .. 8£2 nT (ﬁ: )
2) (i) su ———— | = 0,(1), 1) su ———2 21l = 0,(1),
(2) (i) S 3 p(1),  ( )563791%@ CR) p(1)
azﬁlnT(ﬁae)H . a'ClnT 67 H
_— = 0O,.(1 ,
) oo | o805 AL
(v) sup O Lo (8.0) = O,(1), where function Lo ,r (3,0) is defined in equa-
sesace || 0(5.0)0(F.0)|| " e
tion (3.10);
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3) (1) su ——=|| = 0,(1/n), (i1) su ,
(3) (i) o o p(1/n) ()568’;;@ n3/2
for a constant Cy > 0, where V7 (3,0) is the remamder term in the log-likelihood

expansion (3.6).
Moreover, if n,T — oo such that T" /n = O(1), v > 3/2, we have:

a\ilnT (67 0)
su —_

4 sesoee || 03,0
likelihood expansion (3.9).

0,(1/n?), where W, (3,0) is the remainder term in the log-

Proof of Lemma 6 (1i): From the definition of function £, (3) given in equation (3.7),

we get by differentiation:

oL+ (B) 1 L. I dlogh . ‘
aTﬁ - ﬁ;zl 05 (yi,t|yi,t—1,fn,t(ﬁ)75>
1 = Ofns (B) <= dlogh _—
+n—T; o3 . of, (yz‘,t|yi,t—1>fn,t (5%5)

K2
[ J/
-~

=0

T n
— LZ ' Ologh (yi,t|yi,t—1;fn,t (8) %5) ;

nT t=1 i=1 aﬁ
and:
L (B) 1 & 0% logh
W = n—th;Z:1W<yzt|yzt ly.fnt(ﬁ) ﬁ)
1 o~ logh O fns (B)
—|—n—T;i:1 0ﬁ8ft (yzt’yzt lafnt(ﬁ) /6) aﬁ’ :

(9logh<

By differentiating the f.o.c. Z Yit|Yit—1. fn,t (B) ;ﬁ) =0 w.r.t. 5, we get:

" 92log h 8%log h c o N\ O (B)
;— (yztlyzt 1,fnt ) Z 8ftaft <yi,t|yi,t—1,fn,t (ﬂ),ﬁ) of =0.
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Let us introduce the notation:

9%logh A
I, 88(B) = —— Z Gﬁgi <yi,t|yi,t—1, fnt (B) %5) )

and similarly 7, 5¢(3), I, s7(3). Then, we get:

O fns (B)
o3

= I, 1(8) ' .15(B), (c.15)

and

o*L: 1 . R ) A
_aﬁn—gﬁ(’ﬁ) T > {Itﬂﬁ(ﬁ) — Lupr(B)1,5(8) " L1,55(B) | -

t=1

Then, Lemma 6 (1i) follows by applying Limit Theorem 3 in Appendix B.3 with a(y; +, it—1, fi, 5) =

_ 0% log h(yitlyii—1, f1; B)
o, fi) o', fi)
nite matrix in R7™™47™ and 2! denotes the upper-left (g, ¢) block of the inverse z~1. Indeed,
Regularity Condition RC.3 (1) in Appendix B.3 is satisfied by Assumptions H.3, H.4 (iii),
H.5 in Appendix A.1. Moreover, we prove in Lemma C.4 in Appendix C.9.4 that Regularity

Condition RC.3 (2) in Appendix B.3 is satisfied.

and function p(z) = (z'')~!, where x is a symmetric positive defi-

Proof of Lemma 6 (1ii): From the definition of function £ ,7(53,6) given in equation
(3.8) we have:

a2£ n ’6 821 ¢
o )

Then, Lemma 6 (1ii) follows by applying Limit Theorem 2 in Appendix B.2 with function

0?1 ;0
G(F;0) = Ogg(ft“jt L ) Regularity Condition RC.1 in Appendix B.2 is implied by

Assumptions H.5 and H.14 in Appendix A.1.

Proof of Lemma 6 (3ii): From the proof of the CSA expansion of the log-likelihood
1
function [see Appendix A.2.1 ii)], we have ¥, r(5,0) = —log[A,r(8,0) + Anr(5,0)] ~

1 nl’
— 10g[Anr (5, 6)). We get:

OV.r(3,0) 1 1 0Mu(5,0)
00~ nTAs(B.0) 00 (10




From the definition of A,r(3,60) in equation (a.2) we have (for m = 1):

N (3,0) 1 1<~
o0 (2m)n /zmm o (‘5 Z)
r N -1/2 R —1/2
+€xp [Z wn,t (fnt(ﬁ) + %%, fn,t—l(ﬁ) + %%—1;@ 9)]
d 0 £ n,t 12 n,t—1 —1/2
~ (Z 2o (Fuat) + O oy 4 H 2R )
Lo (o hnar(9):6) | )
Thus, from (c.16) we get:
OVnr (3, 6)
00
T o (B2 ()2
- iT ; nT,3,0 [31 = (fnt(ﬁ) —[[ ’ (52 2| fri-1(8) + %%1;9)

310gg

(@ us0:0)]

where E,730[-] denotes the expectation w.r.t. the random vector z in R” with density

proportional to
T

—1/2 . —1/2
exp[ ;Zzt +Zwm (fm (8) + %zm,m(ﬁw%%_1;5,0)]

on the support Z,7(3). By the mean value Theorem, we get:

G\DnT(ﬁ, 9) 1 —-1/2
N f inf I I N
Besg(?e@ 00 ~ n3/2 121@;28 nt(5) Char égm:g,li@ wrpollzl], (c.17)
where:
0 log g(filfi-1;0) H
Cn = Ssu Ssu su ) +
! 56879%6 IStET ft,f}l {‘ 000 f,
82 lo _ 76 . .
’ %geg}lfi 1 )H e = FaaON + 1 fimr = Framr(B)]] < gn} ,

o1



and sequence &, | 0 is involved in the definition of set Z,7(3) (see Appendix A.2.1). From
~1/2

. . . _ C7/2
Lemma 3 (i) we have (I%ItleTérellfg Im(ﬁ)) O,([log(n)]~"/%), for a constant C7 > 0.

Then, Lemma 6 (3ii) follows from inequality (c.17) and the next statements:
(a) Cpr = O,([log(n)]’"), for a constant §; > 0, and
(b) sup sup Enrgellzl] = Op([log(n)]’®), for a constant dg > 0.
1<t<T BeB,HO
Proof of statement (a): We use Limit Theorem 1 in Appendix B.1 and the convergence
e, = 0(1). We have w.p.a. 1:

o 10gg(ft’ft—1§9)
000 f;

Cor < sup sup sup {‘ H+

BeBOcO 1<t<T fi,fi—1

Plogg(fil fi1;0)] *
900 f,, H e = N+ L fier = fea (B <1 }

S 5::5 + gzga

where n* > 0 is defined in Assumption H.13 (iii), and processes {5 and % are defined

2] _1;0
as process & 5 in Assumption H.13 (iii) with G(F};0) = 9" log g(ej(;tyt 1:6)
t

%1 _1;0
Ogage(af}|ft 19) , respectively. Then, statement (a) follows from Assumptions H.13 (iii)
t—1
and H.14.
Proof of statement (b): We use inequality (a.14) in Appendix A.2, |z] < \/ﬁsnﬁ;}/ % for

z € Z,r(0), and Lemma 3 to get:

, and G(F;0) =

" (f 3 + % Lt (B 20, four (B) +

Ry
NG

L (B2 20058, 0)‘

“731/2 2 Kn Rn 2 2
< 7%\%! + %W + %’Zt—ﬂ < o(1)[z + z4],

for z € Z,7(B) such that |z| > 1 for all t = 1,...,T, where term o(1) tends to zero. We
deduce that the distribution with density proportional to

T T R -1/2 L —1/2
o 5 2 Lt (9 + B o L)

on the support Z,7(3) has Gaussian tails.



C.7T Lemma 7
Unp(t) = Lgp(t) Ly (t) " b (1)

LEMMA 7 Let us define the process (,; = 8logg , t €N,
(ftlft 1700)
Ologh dlogh

where P 5(t) \/—Z O Witlyirs fii Bo)s tus(2) \/—Z 8;; (YitlYie—1, ft: Bo),

and I5s(t), Igp(t) are the (f, f) and (B, f) blocks of the mformatzon matriz I(t) defined in
equation (4.6). Then, under Assumptions A.1-A.5 and H.3 (ii), H.4 (iii), H.5, H.13 (iii),
H.15, and if T,n — oo such that TV /n = O(1), v > 1, we have:

(i) Tlfgagﬂcn,tH 5 0;

T

ﬁU%Z@ﬁmiﬂ%Q#ﬂlme:<

t=1
defined in Proposition 3;

I 0

and matrices I, 1199 are
0 Iipo

i) 78 (s 6nal?) = O

C.7.1 Proof of Lemma 7 (i)

Let € > 0 be given. We have to prove that [P L@f??r“c”’t” > 6@] = o(1). We use that

P Lfgt%HCn,tH > 8\@] < TP [HCn,tH > 5\/37} and [[Guell < (Grell + 1G]], where ¢, =
-1 Kok alogg
Ynp(t) — Lap(t) L (t) " thn s (t) and ¢ = —>=(fi|fi—1;00). Thus, we get:

1
P L@x [ gf] < TP @ygntu > -g\/_] + TP {H | > éaﬁ} . (c.18)
The second term in the RHS of inequality (c.18) is bounded by using Assumption H.13 (iii):

TP [||g;*|| > %eﬁ} < Tbs exp (—05(5ﬁ/2)d5) = o(1). (c.19)
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Let us now focus on the first term in the RHS of inequality (c.18). Let us write:

. _ Ly
Cn,t - \/ﬁ;Wz,t

1 1
- = D Wi+ NG > (Wiad{|Wis| = B} — E[Wi 1{|Wi,| > B} £])
=1

i=1
= é:n,t + Rn,t>
where:
dlogh _,0logh
Wz‘,t = —(yi,t|yi,t—1a ft; 50) - ]ﬂf@ﬂff(t) ! (yi,t|yz‘,t—17 I 60), (C~20)
ap dfs
Whie = Wi l{|{Wiy| < Bp} — E[W 1{|]W;,] < Bn}|ﬁ]7 (c.21)
and:
B, =Y (c.22)
€
We have:

1 x 1 1
P {Hg;;,tn > 55\/7} <P [||<n,t|| > Zeﬁ] +P [||Rn,t|| > Zeﬁ] = Pior + Pror. (c:23)

Let us now bound the two probabilities in the RHS.
a) Bound of Py ,r. We have:

1
Py =E|P > fﬁ fi

(c.24)

I -
%len,i,t

For expository purpose, let us assume that the micro-parameter (3 is scalar, i.e. ¢ = 1, so
that the Wn,i,t are scalar random variables. To bound the inner conditional probability, we
use Bernstein’s inequality [Bosq (1998), Theorem 1.2]. From (c.20) and (c.21), the random
variables Wnﬂ-,t, fori =1,...,n, areii.d., conditional on the factor path f;, with E[Wmt@] =
0 and V[Wniolf) < BIWAIA] = Is(t) — Lap(OIy () Ipa(t) = 1/17(t), where I%(t)
denotes the upper-left element of the inverse matrix I(¢)~!, and the conditional information
matrix I(t) is defined in equation (4.6). Moreover, |W, ;| < 2B,. Then, by the Bernstein’s
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inequality [Bosq (1998), Theorem 1.2] and (c.22), we get:

J 1 nTe*/16
d ” NG ;W’”’t > VI | < 2o <_4n/lﬁﬁ(t) + B, nTe)
< 2exp <—6i4ﬁ52(1/1ﬁ5(t) + 1)1> . (c.25)
From (c.24), we get:
Pi.r <2F [exp (—634@52(1/155(15) + 1)—1)} : (c.26)

To bound the expectation in the RHS, we use Lemma B.2 in Section B.4.2 applied to the
stationary distribution of process 1/I9(t) + 1. We use:

LIP(t) < (eignin (D)) = eigmar(I() < EEDY,

for a constant ¢ > 0, where €ig,in(A) and €igya.(A) denote the smallest and the largest
eigenvalue of the symmetric matrix A, and process £;7 is defined in Assumption H.5. Then,
the condition of Lemma B.2 is satisfied with o = 2d;, where constant d; > 0 is defined in

Assumption H.5. From Lemma B.2 we get:

E [exp (—6%1@52(1/1%(15) + 1)1)1 < Cyexp (—02(6%\/?52)2611/(%1“)) . (e.27)

for some constants é’l, 02 > 0. It follows:
~ ~ 1
TPy r < 2TC) exp (—02(6—4\/T52)2d1/<2d1+1>) = o(1). (c.28)

b) Bound of Ps,r. From the expression of P, in (c.23), and by using the Markov

inequality and equation (c.22), we have:

4 8v/n
Pour < —=E[[[Rl] < iEHWi,tll{\Wi,tl > B, }]

T eVvT evT
8v/n Re2

< SV pspiw, = S pgw.
6\/T VTn

By using E[|W;,|*] < oo from Assumptions H.3 (ii) and H.5, and the condition 7% /n = O(1),
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v>1, we get:

TPy,r = O(NT/n) = o(1). (c.29)

From bounds (c.23), (¢.28) and (c.29), we get:
1
8 [iGi0 = 3evT] <ot (e30)

Then, from bounds (c.18), (¢.19) and (c.30), Lemma 7 (i) follows.

C.7.2 Proof of Lemma 7 (ii)

Let us write:

1 T 1 T
T ZCn,tC;L,t = EGuC )+ = Z [CntCtl fi] = ElCarCl)
=1 t=1

1 T
+= Z Cntgnt <ntCnt|ft])
t=1

We first prove that E[(, (] = 2, and then show that the other two terms in the RHS are
asymptotically negligible.

a) Proof that E|[(,.() t] =
We have:

, Iop(t) — Top () 155 (t) " pp(t) 0
ElGnaGueli) = 0 010g g(fil fi-1: 60) 1og g(fil fi-1: 60)
00 o0’

(c.31)

By taking expectation on both sides of the equation, and using the information matrix

equality in the lower-right block, we get:

Ellga(t) — Ios(t) 15 (t) " (1)) 0
E[Cn,tC;L,t] = 0 E _32 log g( fi| fe—1:60) = (. (c.32)
0000’
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b) Proof that 7~ Z [GnsGrelf2] = ElGnsCal) = 0p(1)
From equations (c.31) and (c.32), and Assumptions H.4 (iii) and H.13, process 7, =

E[Cn,iG 4l ft] = E[Cn iG] 1s independent of n and is a measurable transformation of the factor
path f;. Moreover, process (f;) is strictly stationary and ergodic by Assumption A.3 and
Proposition 3.44 in White (2001). Since strict stationarity and ergodicity are maintained un-
der measurable transformations possibly involving an infinite number of process coordinates

[Breiman (1992), Proposition 6.31], it follows that process (Z;) is strictly stationary and
T
1
ergodic. Then, the ergodic theorem [Breiman (1992), Corollary 6.23] implies that T Z Z

converges to E[Z;] = 0 almost surely, and thus in probability.

T

c) Proof that T (G, — ElGniCl | fi]) = 0,(1)

t=1
T
1
Let us define Z,y = GoiGly = ElGiCl il fi]. We prove that > Z,s = 0,(1) by using the

t=1
WLLN for mixingale arrays in Theorem 2 in Andrews (1988). Let us check the conditions

of this theorem. 3
*) Mizingale property. First, we prove that {Z,;,G,:} is a L'-mixingale array, where

Gnt = (Yig: 1 =1, ...,n, fr41), namely:
||E[Zn,t|gn,t—s]”1 S bS7 (C33)

for all n € N and a positive sequence by such that by = o(1) as s — oo, where ||.||; denotes
the L'-norm. We have:

||E[Zn,t|gn,t—s]||l = kK [||E[Zn,t|gn,t—8]||] =F [HE[E[Z
E[E]|EZ SllGn 1]
= £ [E[||E[Zn,t|gn,t—saﬁ””ﬁu ’

ﬁ] ‘gn,t—s] M

IN

by the Law of Iterated Expectation. Now, let us consider E[Z, |G, fi]. By writing

. 1
Gt < Z Wi, Olos g “gé,ft b 90)) where variables ; ; are defined in equation (c.20),

3We replace Z, ; for X,,; in Theorem 2 in Andrews (1988), and 7T, for k,,, where T, denotes the time
dimension T of the panel indexed by the cross-sectional dimension n in the double asymptotics. Moreover,
we use the mixingale constants ¢, ; = 1 in Theorem 2 in Andrews (1988).
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and using the conditional independence and the Markov property of the individual histories

given the factor path f; (Assumption A.1), we have:

EVVtht t,t—sy Jt tht t 0
E[Zn,t|gn,t—saﬁ} = ( [ |y f} [ |f] ) s

0 0

where E[ th t|ft] = Igﬁ( ) [gf(t)lff(t)_llfg<t). Thus, we get:

1E[Zne|Gna—slll < E [EEW: W lYia—s, il = EIWi W £If] - (c.34)

The conditional expectation E[||E[W; W] |yii—s, fil — EWi:W{,|f]ll|f] can be bounded
by using that the individual histories are conditionally beta-mixing given the factor path
(Assumption A.4). Indeed, by applying the Ibragimov inequality [see e.g. Davidson (1994),
Theorem 14.2] conditionally on Jt, and the fact that an alpha-mixing coefficient is upper
bounded by the corresponding beta-mixing coefficient [see e.g. Davidson (1994), inequality
(13.48)], we have P-a.s.:

E[| BIWiWi |yie—s, fi) = BIW Wi £l f) < 68:(5) 2 BIIWaell '] £V, (c.35)

where [3;(s) denotes the conditional beta-mixing coefficient for lag s of the individual process
(i) given f;. From inequalities (c.34) and (c.35), and the Cauchy-Schwarz inequality, we
get:

1B Zn tlGn—s)lln < 6E[Bi(5)]" 2Bl Wil[*]'/2,

where E[||W;,]|*] < oo from Assumptions H.3 (i) and H.5. Hence, we get inequality (c.33)
with sequence by = 6E[3:(s)]Y2E[||W;.||*]*/2. Since 0 < 3,(s) < 1, for any ¢, s and P-a.s., we
can apply the Lebesgue Theorem. From Assumption A.4, we get E[G;(s)] = o(1), as s — 0.
Hence, bs = o(1), as s — 0.

**) Uniform integrability. Let us now prove that array Z,, is uniformly integrable,
namely ]\}Enoo ilelg E1Z0 | 1{|| Znsll > M}] = 0. * By Theorem 12.11 in Davidson (1994),

uniform integrability is implied by uniform LP-boundedness, namely sup E [||Z,:||’] < oo,
neN
for a p > 1. Let us prove uniform L?*-boundedness of array Z, ;. By using || Z,| < ||Cusll* +

E [||¢aslI?1f], and the Cauchy-Schwarz and triangular inequalities, we have E [||Z, ] V2 <

4By strict stationarity, the sup over ¢ is unnecessary.
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and the

4] 1/2

is finite by Assumption H.15. Hence, uniform L*-

o1 017
E [||Cn7t||4} 12, Moreover, by using ||¢,+||* = H 0g 9(filfi-1360)

00

2
1 n
EEVVW +

. 41 1/2
1
=2 W
‘ Vi

triangular inequality, F [||§n’t||4] 1/2 <FE +E

dlog g(fil fe—1:60)
00

dlog g(fi| fi1;00)||"
00

boundedness of array Z, ; follows, if we show that:

Expectation F

4

sup £
neN

< 00. (c.36)

1 n
NG Zl Wi

For expository purpose, let us assume a scalar micro-parameter, i.e. ¢ = 1, so that the W;
are scalar random variables. By using the i.i.d. property of the individual histories given
the factor path (Assumption A.1), and E[W;,|f;] = 0, we have:

4
1 & 1 g
ﬁzwi,t | = —ZE I+ = Y E[WAIL] E WIS
=1 zj:l,i;éj
= 5E (W E W2 < E WIS

By taking expectation on both sides, and using that £ [W'ft] < oo from Assumptions H.3
(ii) and H.5, bound (c.36) follows.

T
1
By Theorem 2 in Andrews (1988), it follows that T Z Znt = 0p(1)

C.7.3 Proof of Lemma 7 (iii)

We have:

1 1
15 (maglicul?) < 72 = TrB[Guul) = Tr(®),

T 1<t<T

T
D Gnel?
t=1

for all T' € N, from equation (c.32).
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C.8 Lemma 8

LEMMA 8 Under Assumptions A.1-A.5 and H.1, H.3 (i1), H.5, H.6, H.7 (i)-(ii), H.8-
0 fan(B)
ap’

H.10, we have sup

= 0,(1), conditionally on f;, for P-almost every (a.e.) f:.
BeB - -

Proof of Lemma 8: From equation (c.15) we have:

O fn - 13
Lt B b8 ss(8), (c37)
where:
. 1w ?logh N
Lise(B) = - ngf’ <yi,t|yi,t—1afn,t (5)%5>,
i=1
. 1~ &?logh .
It,fﬁ(ﬂ) = _ﬁ ngﬁ' <yi,t\yi,t—1,fn,t (5)%5)~
i=1

Let us write:

[ 1~ | 0%1og h(yilyie—1, fot(B); 0% log h(Vitlyii—1, f1(B);
L (B) = Liss(B) = _;Z[ 0g h(Yitlyit—1, far(8); 8)  0*log h(yitlyii—1, fi(5) 5)]

- ofof’ ofof’
_ l zn: 9” log h(yi,t|yi,t—1a f:(8); B) _ B 9” log h(yi,t|yz‘,t—1, f:(B); B)
n < ofof’ afof’
= Lipi(B) + Lani(5).
We have:
sup |11,,,4(8)] = 0p(1), (c.39)
BseB

conditionally on f;, for P-a.e. f;, by using that sup || f,:(3) — f:(8)|| = 0,(1), conditionally
_ o peB
on f, for P-a.e. f, and Assumption H.5. We have:

sup |12, (53)| = 0p(1), (c.40)
BeB

conditionally on f;, for P-a.e. fi, by applying the ULLN in Lemma 2.4 in Newey, McFadden
(1994) conditionally on f;. We can apply Lemma 2.4 in Newey, McFadden (1994) since, for

any date t and P-a.e. f;, we have:
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0? log h(yi,t|yi,t—17 ft(ﬁ)? 6)
ofof’

is continuous w.r.t. [, for almost any

a) Function Hy(Y;4; 0) =

Yie = Wit Vir1) € R
b) Parameter set B C R? is compact;

c¢) Random vectors Y;, for i varying, are i.i.d. conditionally on f;;
d) We have E |sup ||H:(Yis; B)||]f:] < oc.
BeB -

Condition a) is implied by continuity of function 9% log h/0f0f w.r.t. (3, f), and continuity
of pseudo-true factor value f;(3) w.r.t. 3 (see the proof of Limit Theorem 1 in Section B.1).
Conditions b), ¢) and d) are implied by Assumptions H.1, A.1, and H.3 ii), respectively.
From (c.38), (c.39) and (c.40), we get I, ;¢(8) — I, ;5(8) = 0,(1), uniformly in # € B and
conditional on f;, for P-a.e. f;. Similarly, we can prove I.45(8) — I s5(B) = 0,(1), uniformly

in § € B and conditional on f;, for P-a.e. f;. The conclusion follows.

C.9 Secondary Lemmas

C.9.1 Lemma C.1

Lemma C.1: Under Assumption H.5 in Appendiz A.1, the function ¢ that maps a symmet-

ric positive definite (m, m) matriz x into @(x) = logdet(x) satisfies Regularity Condition

RC.3 (2) in Appendiz B.3 with p(8) = I s¢(8) = Eo {—82 log h(yig‘;/gff/bft(ﬁ);ﬁ) |fe]-

Proof: Let us first prove that Regularity Condition RC.3 (2i) in Appendix B.3 is satisfied.

Let K be a compact subset of the set U of positive definite (m,m) matrices. Let A, B € K
and define z(§) = (1 — £)A + (B and the function f(&) = logdetz(£), for £ € [0,1]. Tts

derivative is given by f'(§) = Tr {x(ﬁ)‘ldm(g)} =Tr[((1-§A+EB) (B — A)], where

dg

Tr denotes the trace of a matrix. By the mean value Theorem, we get:

logdet(B) —logdet(4)] = |f(1) = f(0)] < sup | ()] < SUIInglHHB—AHa

£€l0,1] xe

where K is the convex hull of set K and sup ||z !|| < oo by the compactness of set K.
zek
Let us now prove that Regularity Condition RC.3 (2ii) in Appendix B.3 is satisfied.

For w = (Id + A)z, with [|A| < 1/2, we have p(w) = logdet(Id + A) + logdet(z) <
Cy + Cylog||z||, where constants C7,Cy > 0 are independent of z. Thus, we can choose
710 = 0 and ¥(z) = 1 + |log||z]|| in Regularity Condition RC.3 (2ii). Now, by using that
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for 1 (3) = I;p(8) we have ¢1(&1)™" < um(B)] < éf **)1/2 for any # € B and some
constants ¢, > 0, where processes &;; and &7 are defined in Assumption H.5. Then, we

get Eolsup [¢(u:(8))[Y] < oo from Assumption H.5.
BeB

C.9.2 Lemma C.2

Lemma C.2: Under Assumptions A.1-A.5, H.7 (iii) and H.11, and if T /n = O(1), v > 1,

we have:
0*log h(yilyii—1, f; ) 0*log h(yilyit—1, f; 5) D
E ] El
Sup, sup ?§£ 2 (= : oo L

for a constant 63 > 0.

Proof: For expository purpose, we consider the case of a scalar factor, i.e. m = 1. Define:

0?1og h(Yit|yis—1, [; 5)
df2 ’

a(Yiu, f,3) =

where Yz‘,t = (yz‘,t,yz‘,t 1) and Wnt(f 5 \/—Z Y;t;f 6) [ (}/ltyfaﬁ)lﬁ]) Let:

03 = max{ys, 1 + 1/d4}, (c.41)

where constants 74 > 0 and dy > 0 are defined in Assumptions H.11 (i), (iii). We now show
that the probability

Pn,T =P sup sup sup ’Wn,t(f7 ﬂ)| Z 03[10g(n)]53

1<t<T BeB feFn

can be made arbitrarily small as n,7" — oo, T"/n = O(1), v > 1, for a suitable constant
03 > 0.
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We have P, < TP {sup sup |Wi.i(f, B)| > Cs[log(n)]’ |. Moreover, let us write:
BeB feFn

Wailf.3) = % Z (Yo, £, 0)1{Unst < Bu} — Ela(Yis £, 5)1{Unst < B.Y1)

Z (Yie £ B)UH{Unie > Bo} — Ela(Yig, . 8)1{Uni > Bu}| )

= n,t(f7ﬁ)+Rn,t<fvﬁ)7
where:
Un,z't = Ssup sup |CL<Y;¢, f: 6)|7 Bn - \/ﬁ (042)
feFn pEB
Then:

Pur < TP |sup sup [W,.(f, 8)] > Cg[log( )] } + TP {Sup sup [Rn¢(f, 3)] = 03[108;( )]’
BEB fEFy BEB feFy

(c.43)

Let us now bound the two terms in the RHS.

i) Bound of the second term in the RHS of (c.43)

1
We have sup sup | R, :(f, < — U,ildUpi > B} + BU, 414U, > B, . Then,
Begf€£l| +(f,8)] \/ﬁ;( i H{Un it } [Un,it {Up it i)

by the Markov inequality we get:

TP |sup sup |R,:(f.0)| > Cg[log( ))° ]
BeEB feFn

AT
~ Csllog(n)]s

AT
Cs[log(n)] B}

E[U:

n,it

= (Tl

n

[ nztl{Unzt > B }]

for some constant 75 > 0, by Assumptions H.11 (ii)-(iii), B, = +/n and the condition
T/n=0(1), v > 1.

ii) Bound of the first term in the RHS of (c.43)

Let us introduce a covering of set B by means of N,, open balls B(3;,1,), j = 1, ..., N,,, with
center 3; € R? and radius 7, = n=*/? depending on n. Similarly, let B(&,n,), i = 1, ..., M,,,
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be a covering of set F,. Since set B C R? is independent of n, while the Lebesgue mass of
set F, C R is O([log(n)]") [see Assumption H.7 (iii)], we have N,, M,, — oo as n — o0,
such that:

N, = O0(n,?) = 0(n*"?), M, = O([log(n)]""n,") = O([log(n)]"n*?). (c.44)
We have:
sup sup [Wo(f.8)| < max sup (Wae(f, )]
BeEB feFy i=L,..., My, j=1,..., Nn ﬁEB(ﬁ] Mn)s feB(fz Nn)
< L ma,}i |Wn,t(£’i7ﬁj)‘ + sup ‘Wn,t(f7 ﬁ) - Wn,t(f/7ﬁl>"
1=t My J= e N B85 | <. £ £~ F|<11m

Thus:

TP {sup sup |Wm(f B)| > 03[1()%( ))° }

BEB feF,
- ~ 1
S TP sup |Wn,t(f7 ﬁ) - Wn,t(fla 6/)| Z 103[10g(n)]63]
B,8"1B=B | <nn, £ f | f = f'1<mm
HIN, M, sup sup B Wl 1. )] 2 {Collog(a]* ] = Avs + Asar. (045
BeEB feF,

Let us now bound A, ,7 and Ay ,,7.
a) Bound of term Ay 1 in (c.45)
We use that:

sup ‘Wn,t<f7ﬁ> - Wn,t(fl76/)|

BB IB=B N <, fof "1 f = £ | <

1 aa(m,f,mH H aameﬁ H D
< — sup sup ||———~—|| +supsup F ||——"——
Vn zzl (ﬁeB rera |l O f) BEB feF, a(B 1
Then, by the Markov inequality, we get:
16T \/nn,, { oa(Yiy, f H]
Algr K —————F |sup sup ||——=—~—||| = o(1
= Collog ()] (e jet, | 008 f) @

from Assumption H.11 (iii), 7, = n~%/2 and the condition T%/n = O(1), v > 1.

b) Bound of term Ag,r in (c.45)
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For given g € B, f € F,, let us write:

P |W0il£,0) = Cllogtll*| = B [B[Wctr. 9] > {Callotml® 15|

1

v/nCslog(n))* |ﬁ] ] )

where wn,it(fa ﬁ) = a(Y:i,tafa ﬁ)l{Un,'Lt S Bn} - E[G(Y;’t,f, ﬁ)l{Un,zt S Bn}|ﬁ] To bound
the conditional probability within the expectation, we use that the variables v, ;:(f,3),
i = 1,...,n, are independent and zero-mean, conditionally on the factor path f;, and we

apply the Bernstein’s inequality [see Bosq (1998), Theorem 1.2]. We have:

|¢n,it(-f’ ﬁ)| S 2Bn7

and:
Vithni(f )‘ft] < fsélﬁ ZlelpEHa(Y;taf ﬁ)| |ft] < 5t4[10g( ™,
9 log h(yilYip—1, [ 3) ?

where {;, = sup sup sup[log(n)]"™E 5
n>1 feF, BeEB af

defined in Assumptions H.11 (i), (iii). Then, from the Bernstein’s inequality:

| ﬁ] , and constant v, > 0 is

(Ly/nCsllog(n)]*)’

lzwnzt f7

as long as C3 > 1, since B,, = y/n and d3 > 74 from (c.41). Thus, we get:

o 03 ’ < ex -
\/_03[1 g(n)] |i] < 2 p( 4n[log(n)]

< 200 (L Callog(]* (€, + D)

. 1 1 ¥ _
P (1ot 1 = Culogo]] <28 [exp (— rcogol (6t + 1)) |
To bound the expectation in the RHS we use Lemma B.2 in Appendix B.4.2 applied to

the stationary distribution of process §;, + 1. From Assumption H.11 (iii), the condition of

Lemma B.2 is satisfied with ¢ = d4, where constant dy > 0 is defined in Assumption H.11.
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We get:

b {eXp (—6%03[1%(”)]53(5;4“)1)} < Crexp (—6*2 {écg[log(n)]‘%}d4/(1+d4)>

< Gyn-CalCafoaya/iean

?

for some constants Cy, Cy > 0 independent of Cs, since d3dy/(1+ dy) > 1 from (c.41). Thus:
. 1 .- .
P {\Wn,xf, B)| > ch[logm)]%] < 20y ORI,

From the expression of Ay, r in (c.45), and the bounds on N,, and M,, in (c.44), we get:

T

AQ,nT -0 (Tn3(q+1)/2[log(n)]’nn702(03/64)d4/(1+d4)> -0 (E[log(n)]»yl) _ 0(1)’

from the condition T%/n = O(1), v > 1, if Cy(Cs/64)™/0F4) > 3(q +1)/2 4 1, ie., if
C. > 64 3(q+1)+2 1+1/ds
3= 202 :

C.9.3 Lemma C.3

Lemma C.3: Under Assumptions A.1-A.5 and H.1, H.2, H.5-H.11, and if TV /n = O(1),
v>1:

0) sup sup | Lo (Furl): 5) — LaelF(5):8)| = p(10g<” ).

1<t<T peB n
l
(i) sup sup sup |Lus(f: B) — Lo(f: B)] = O, 18 ”) )

1<t<T BeB feF, n
for some constants 64 > 0 and d5 > 0, where L, .(f;B) is defined as in Lemma 2, and

Li(f;5) is defined in equation (c.5).

Proof of Lemma C.3 (i): By a second-order Taylor expansion around fm(ﬁ), we have:

P Lo (fui(3); )

rop Unt(B) = RO

Lol ailB)8) = Laglf3):8) = =3 Fual8) = SO

aﬁn,t(fn,t(ﬁ); ﬁ)

of:
convergence of f,+(3) to fi(8) (Limit Theorem 1 in Appendix B.1), for any n > 0, we get

=0, w.p.a. 1. Thus, from the uniform

where f,,(3) is a mean value, since
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w.p.a. 1:

SUp S| Loy (Fuc(9): B) — Lasl£(8): )|
1<t<T BeB
. 2L, (f:
<sup sup [fucl®) — LA swp sup  sup || Lenl B
BB 1<I<T L<I<T BEB feFuillf—fu@ll<n Il OStOf
[log(n)]* O*Los(f;5) H
=0, ———=— sup sup sup
g ( N 1i<T peB feFulf-n@)<n || Of0f
Moreover, from Lemma C.2 we have:
sup sup sup —a2£n’t(f’ﬁ) H < sup sup sup —a2£t(f’ﬁ) H
1<i<T peB pilf-f@ll<n Il OO T IIT peB feFulf-f@)l<n || Ofi0ft
+ sup sup sup 32£n,t(f§5) _ PL(f;8) H
1<t<T BeB feF, dfi0fi ofi0ff

= sup sup sup
1<t<T BeB feFn:|f—f:(B)|I<n

a2£t(.f; 5) ’
o1 0f;

for a constant 63 > 0. Then, Lemma C.3 (i) follows from the next bound:

82£t(f§ ﬁ)
01 0f;

sup sup sup
1<t<T BeB f:||f—f:(B)ll<n

| = 0, (o), (c.46)
where d; > 0 is defined in Assumption H.5. To prove bound (c.46), we use:

0*log h(Yit|yit—1, I3 3)
afof

< sup Ey
BeB

sup sup
BEB f:|lf—f(B)lI<n

sup
Fillf=fe(B)l<n

62£t(f; ﬁ) H
010f;

H |ft] < §t17

if n < n*, where process §;] and constant n* are defined in Assumption H.5. Then, we get:

2 )
P | sup sup sup w

1<t<T 6B i f-n@)l<n || OfiOfi
< Tbyexp (—e;C1M logn) = by Tn 1" = O(T/n) = o(1),

> Cy(logn)™ | < TP [ > Cy(logn)' /™ ]

if constant C is such that ¢ > cfl/ % Then, the bound in (c.46) follows.

Proof of Lemma C.3 (ii): The proof of Lemma C.3 (ii) is similar to the proof of Lemma
C.2 in Section C.9.2, by using a(Y;4, f, 8) = log h(Yi+|Yis—1, [, 5).
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C.9.4 Lemma C.4

Lemma C.4: Let function ¢ be either:

(i) The matriz inversion ¢ : U — R™" @(z) = x~1, where U denotes the set of positive
definite (r,r) matrices, or

(ii) The mapping ¢ : U — R**%, o(z) = (x'1)7!, where x'' is the upper-left s-dimensional
block of matriz x=1, for s <r.

Then, under Assumption H.5 in Appendiz A.1, Regularity Condition RC.3 (2) in Appendiz

2 . . .
B.3 is satisfied with p,(58) = 1,(8) = Ey _6 10%?5/;,}%5E;f}(/>ﬁ), 2 | fe]-

Proof of Lemma C.4 (i): Let us verify Regularity Condition RC.3 (2i) in Appendix B.3.

Let K C U be compact, and let w,z € K. Since w™ — 27! = =271 (w — 2) w™!, we deduce

that ¢ is Lipschitz continuous on K with Lipschitz constant L = sup Hz‘1||2 < 00. Hence,
ze

Regularity Condition RC.3 (2i) is satisfied. Let us now consider Regularity Condition RC.3

(2ii) in Appendix B.3. Let w,z € U, w = (Id + A)z, [|A|| < 1/2. Then Id + A is a

nonsingular matrix. From w™ = z7'(Id + A)™' and ||[(Id + A)7Y|| < (1 — ||Al)~' = 2, we

see that Regularity Condition RC.3 (2ii) is satisfied with Cjo = 2, 70 = 0 and ¥(z) = ||z

Indeed, £ {Zug |1p(ut(ﬁ))|4} =F bug ||,ut(5)_1||4] < C1E [(&4)"] < oo, for some constant
€ €

Cy > 0, where process &, is defined in Assumption H.5.

Proof of Lemma C.4 (ii): Let us consider the block decomposition:

T11 T12
xr = .
T21 T22

Then ¢ (z) = 211 — 1225y T21. Regularity Condition RC.3 (2i) is satisfied, since ¢ consists
of summation and product of mappings that are Lipschitz continuous on compact sets. To
check Regularity Condition RC.3 (2ii), let w,z € U, w = (Id + A)z, ||A]| < 1/2. Then:

—1

lo@)l < wnll + fwell [Jwg! || lwall < lhwll + lw]” [Jw|
< I+ Al 2]+ 1+ AP 2] [z -

Denote by d = r — s the dimension of wyy. Since matrices w and wyy are positive definite,
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and matrix norms are equivalent, we have:

—1 —1
||w;21|| < C] sup ulwzzlu:Cf< inf ulwggu) SC’T( inf u/wu>

uweR: ||ul|=1 u€ER:[|u|=1 uER™:[|ull=1

— * ro—1 * vk
= Cf sup ww u<CiC]
wER™:||ul|=1

w

where Cf,C* > 0 are constants. Moreover, [|w™!|| < |[(Id+A)7'||[=7 < 2||z7Y]. We
get that [[p(w)|| < Co (|l2]| + I12]121z7M]) < 2Cs]|z]]*||z7Y]|, for a constant Cy > 0. Thus,
Regularity Condition RC.3 (2ii) is satisfied with v;0 = 2 and ¥(z) = ||z7}Y.
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