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This supplementary material provides the Limit Theorems for uniform stochastic conver-

gence (Appendix B) and the technical Lemmas (Appendix C) used in the proofs of Propo-

sitions 1, 2, 3, 5 and 6.

APPENDIX B
LIMIT THEOREMS

In Section B.1 we consider the uniform consistency of the cross-sectional factor approx-

imations (Theorem 1). We provide in Section B.2 the uniform convergence of time series

averages of factor approximations (Theorem 2). In Section B.3 we consider the uniform

convergence of nonlinear aggregates of cross-sectional and time series averages (Theorem 3).

The secondary Lemmas B.1-B.5 used in the proofs of Theorems 1-3 are provided in Section

B.4.

B.1 Uniform consistency of the factor approximations

In Limit Theorem 1 we give the convergence rate of the factor approximation f̂n,t(β) defined

in equation (3.3), uniformly across dates 1 ≤ t ≤ T and micro-parameter values β ∈ B.

THEOREM 1 Under Assumptions A.1-A.5, Assumptions H.1, H.2, H.5, H.6, H.7 (i)-(ii),

H.8-H.10 in Appendix A.1, and if n, T →∞ such that T ν/n = O(1) for a value ν > 1:

sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ = Op

(
(log n)δ2√

n

)
,

where ft(β) is defined in equation (4.3), δ2 = γ2 +γ3/2+2/d3 +1/2 and constants γ2, γ3 ≥ 0,

d3 > 0 are defined in Assumptions H.8-H.10.

Proof of Theorem 1: Let

εn = r
(log n)δ2√

n
, (b.1)
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where r > 0 is a constant. We have to show that, for any η > 0, there exists a value of r

such that P
[

sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]
≤ η, for n, T → ∞ such that T ν/n = O(1),

ν > 1. We have:

P
[

sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]
≤ TP

[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]
= TE

[
P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]]
. (b.2)

Conditional on factor path ft, the estimator f̂n,t(β) is the concentrated ML estimator of

“parameter” ft given the “nuisance” parameter β, computed on the sample (yi,t, yi,t−1), i =

1, ..., n. This sample is i.i.d. conditional on ft. Thus, the strategy of the proof is to first use a

large deviation result for i.i.d. data to get an upper bound for P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]
,

for given sample size n and date t, as a function of ft. Then, we compute the expectation of

this bound w.r.t. ft, and establish the asymptotic behaviour of the RHS of inequality (b.2).

i) Bound of P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]

By equation (3.3) we have f̂n,t(β) = arg max
f∈Fn

1

n

n∑
i=1

li,t(α), where li,t(α) = log h(yi,t|yi,t−1, f ; β)

and α = (f ′, β′)′. To bound the probability P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]
for a given

sample size n and date t, we use the large deviation result of Lemma B.1 in Appendix B.4.1.

We replace density li(α) in Lemma B.1 by li,t(α), parameter set F by Fn, and work with

the conditional distribution of the data (yi,t, yi,t−1) given the factor path ft.

Lemma B.1 differs from large deviation results for ML estimators derived in the literature
1 since it makes fully explicit how the upper bound on the probability of large deviation of

the ML estimate depends on the distribution of the data and on the parameter set, for given

sample size. In available results, this dependence is partly hidden in some generic constants

in the bound. In our framework, the upper bound for P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]
is stochastic and depends on the factor path ft. Knowing the pattern of this dependence

1See the classical results in Bahadur (1960, 1967) on the asymptotic behavior of the probability of large
deviation of ML estimates for a scalar parameter with i.i.d. data, the work along similar lines in e.g. Fu
(1982), Lemmas 2 and 3 for Sieve estimators in Shen and Wong (1994), the result used in the proof of
Theorem 1 in Chen, Shen (1998), p. 309, with weakly dependent data.
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explicitly is necessary when the factor path is integrated out in the second step of the

proof. Moreover, Lemma B.1 allows to make explicit how the upper bound depends on the

parameter set Fn. This is necessary for the asymptotic analysis, since the parameter set Fn
is expanding w.r.t. n.

Let us check the conditions of Lemma B.1, and consider first the realizations of the

factor path ft such that ft(β) ∈ Fn for any β ∈ B. Condition i) of Lemma B.1 is implied by

Assumptions H.1 and H.7 (i). Condition ii) of Lemma B.1 is satisfied from Assumption H.2.

Condition iii) of Lemma B.1 with γ11 = 4 is implied by Assumption H.9 and:

E0

[
sup
β∈B

sup
f∈Fn

∥∥∥∥∂ log h(yi,t|yi,t−1, f ; β)

∂(β′, f ′)′

∥∥∥∥4

|ft

]
≤ [log(n)]γ3Rt.

Let us now check Condition iv) of Lemma B.1. By the first-order condition defining the

pseudo-true factor value E0

[
∂ log h(yi,t|yi,t−1, ft(β); β)

∂ft
|ft
]

= 0, and the implicit function

theorem, we deduce that function ft(β) is differentiable w.r.t. β, P-a.s., and:

∂ft(β)

∂β′
= −It,ff (β)−1It,fβ(β),

where the matrices It,ff (β) and It,fβ(β) are the (f, f) and (f, β) blocks of the Hessian matrix

It(β) = E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂(β′, f ′t)
′∂(β′, f ′t)

|ft
]
. Moreover, we have sup

β∈B
‖It,ff (β)−1‖ ≤ c̃ξ∗t,1,

for a contant c̃ > 0, and sup
β∈B
‖It,fβ(β)‖ ≤ (ξ∗∗t,1)1/2, where processes ξ∗t,1 and ξ∗∗t,1 are defined

in Assumption H.5. Therefore, we get:

Mt ≡ sup
β∈B

∥∥∥∥∂ft(β)

∂β′

∥∥∥∥ ≤ c̃ξ∗t,1(ξ∗∗t,1)1/2, (b.3)

and Mt < ∞, P-a.s., from Assumption H.5. Finally, the bounds in equations (b.26) and

(b.27) are satisfied, since:

inf
β∈B

inf
f∈Fn:f 6=ft(β)

2KLt(f, ft(β); β)

‖f − ft(β)‖2
≥ [log(n)]−γ2Kt,

and:

sup
β∈B

sup
f∈Fn

E0

[∥∥∥∥∂ log h(yi,t|yi,t−1, f ; β)

∂f

∥∥∥∥2

|ft

]
≤ [log(n)]γ3Γt,
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where processes Kt and Γt are defined in Assumptions H.8 and H.10.

From Lemma B.1 and the definition of εn in equation (b.1), we get:

P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]
≤ C1V ol(B)(1 +Mt)

m+qn
m+q

εqn
exp

(
−C2nε

2
n

[log(n)]−γ2Kt
1 + [log(n)]γ2+γ3Γt/Kt

)
+ C3ε

2
n[log(n)]γ2+γ3

Rt

Kt

≤ C1

rq
V ol(B)(1 +Mt)

m+qnm+3q/2 exp

(
−C2r

2[log(n)]1+4/d3
Kt

1 + Γt/Kt

)
+C3

r2

n
[log(n)]2δ2+γ2+γ3

Rt

Kt
,

for any factor path such that ft(β) ∈ Fn for any β ∈ B, where V ol(B) =

∫
B
dλ is the

Lebesgue measure of set B, and C1, C2, C3 are constants independent of ft and n, T . Thus,

we get:

P
[
sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn | ft

]
≤ C1

rq
V ol(B)(1 +Mt)

m+qnm+3q/2 exp

(
−C2r

2[log(n)]1+4/d3
Kt

1 + Γt/Kt

)
+C3

r2

n
[log(n)]2δ2+γ2+γ3

Rt

Kt
+ 1

{⋃
β∈B

[ft(β) ∈ F cn]

}
, (b.4)

for any factor path ft, P-a.s.

ii) Integrating out the factor path

By integrating out the factor path ft, we get from inequalities (b.2) and (b.4):

P
[

sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≥ εn

]
≤ C1

rq
V ol(B)Tnm+3q/2E

[
(1 +Mt)

m+q exp

(
−C2r

2[log(n)]1+4/d3
Kt

1 + Γt/Kt

)]
+C3T

r2

n
[log(n)]2δ2+γ2+γ3E

[
Rt

Kt

]
+ TP

[⋃
β∈B

[ft(β) ∈ F cn]

]
≡ I1,n,T + I2,n,T + I3,n,T . (b.5)
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Let us now bound these three terms and prove that they are o(1).

(a) From the Cauchy-Schwarz inequality, term I1,n,T is such that:

I1,n,T ≤
C1

rq
V ol(B)Tnm+3q/2E

[
(1 +Mt)

2m+2q
]1/2

E

[
exp

(
−2C2r

2[log(n)]1+4/d3
Kt

1 + Γt/Kt

)]1/2

.

(b.6)

The first expectation in the RHS is finite. Indeed, from inequality (b.3) and Assumption

H.5, we have P[Mt ≥ u] ≤ b̃1 exp(−c̃1u
d̃1), as u → ∞, for some constants b̃1, c̃1, d̃1 > 0.

Thus, the stationary distribution of process Mt admits finite moments of any order, and

E [(1 +Mt)
2m+2q] < ∞. To bound the second expectation in the RHS of (b.6) we use

Lemma B.2 in Appendix B.4.2, which provides a bound of the expectation E[exp(−uW−1)]

from the tail behavior of the positive random variable W . Let us verify that the variable

W ≡ Wt = (1 + Γt/Kt)/Kt satisfies the condition of Lemma B.2. From Assumption H.10 we

have:

P[W ≥ u] ≤ P [K−1
t ≥ u/2] + P[ΓtK−2

t ≥ u/2]

≤ P[K−1
t ≥ u/2] + P[Γt ≥ (u/2)1/2] + P[K−1

t ≥ (u/2)1/4] ≤ 3b3 exp[−c3(u/2)d3/4].

By applying Lemma B.2 with % = d3/4, we get:

E

[
exp

(
−2C2r

2[log(n)]1+4/d3
Kt

1 + Γt/Kt

)]
≤ C̃1 exp

[
−C̃2(2C2r

2)d3/(d3+4) log(n)
]

= C̃1n
−C̃2(2C2r2)d3/(d3+4)

, (b.7)

for some constants C̃1, C̃2 > 0. Thus, from inequalities (b.6) and (b.7), we get:

I1,n,T ≤
C1

rq
V ol(B)C̃

1/2
1 E

[
(1 +Mt)

2m+2q
]1/2

Tnm+3q/2−(C̃2/2)(2C2r2)d3/(d3+4)

= O(T/n) = o(1),

if m+ 3q/2− (C̃2/2)(2C2r
2)d3/(d3+4) ≤ −1, i.e., if r ≥ 1√

2C2

(
m+ 3q/2 + 1

C̃2/2

)1/2+2/d3

.

(b) Let us now consider the second term in the RHS of inequality (b.5). From As-

sumptions H.9 and H.10, E

[
Rt

Kt

]
≤ E

[
R2
t

]1/2
E
[
K−2
t

]1/2
< ∞. Then, from the condition

T ν/n = O(1) for ν > 1, we get I2,n,T = o(1).
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(c) Finally, from Assumptions H.6 and H.7 (ii), we have:

P

[⋃
β∈B

[ft(β) ∈ F cn]

]
≤ P

[
sup
β∈B
‖ft(β)‖ ≥ rn

]
≤ b2 exp

(
−c2r

d2
n

)
= b2n

−2.

Since T/n2 = o(1), we get I3,n,T = o(1).

B.2 Uniform consistency of time series averages of factor

approximations

Limit Theorem 2 provides a uniform convergence result for time series averages of nonlin-

ear transformations of current and lagged factor approximations f̂n,t(β). These nonlinear

transformations can involve the macro-parameter θ. The uniformity property concerns both

parameters β ∈ B and θ ∈ Θ.

THEOREM 2 Let Assumptions A.1-A.5, H.1, H.2, H.4 (i), H.5, H.6, H.7 (i)-(ii), H.8-

H.10 hold, and assume that function G(ft, ft−1; θ) satisfies the Regularity Condition RC.1

below. Then, if n, T →∞ such that T ν/n = O(1) for a value ν > 1:

sup
θ∈Θ

sup
β∈B

∥∥∥∥∥ 1

T

T∑
t=1

G(f̂n,t(β), f̂n,t−1(β); θ)− E0 [G(ft(β), ft−1(β); θ)]

∥∥∥∥∥ = op(1).

Regularity Condition RC.1: The function G(Ft; θ), where Ft = (f ′t , f
′
t−1)′, is such that:

(i)G(F ; θ) is continuous w.r.t. F ∈ R2m, for any θ ∈ Θ. (ii) For any β ∈ B and θ ∈ Θ, we

have E0 [‖G(Ft(β); θ)‖] <∞, where Ft(β) = (ft(β)′, ft−1(β)′)′ and ft(β) is defined in (4.3).

(iii) E

[
sup
θ∈Θ

sup
β∈B

∥∥∥∥∂vec[G(Ft(β); θ)]

∂(β′, θ′)

∥∥∥∥] <∞ . (iv) P [ξt,6 ≥ u] ≤ b6 exp
(
−c6u

d6
)
, as u→∞,

for some constants b6, c6, d6 > 0, where ξt,6 = sup
θ∈Θ

sup
β∈B

sup
F∈R2m:‖F−Ft(β)‖≤η∗

∥∥∥∥∂vec[G(F ; θ)]

∂F

∥∥∥∥, for

some η∗ > 0.
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Proof of Theorem 2: Let us denote F̂n,t(β) =
(
f̂n,t(β)′, f̂n,t−1(β)′

)′
. We have:

1

T

T∑
t=1

G
(
F̂n,t(β); θ

)
− E0 [G(Ft(β); θ)]

=
1

T

T∑
t=1

(G (Ft(β); θ)− E0 [G(Ft(β); θ)]) +
1

T

T∑
t=1

(
G
(
F̂n,t(β); θ

)
−G (Ft(β); θ)

)
≡ J1,T (β, θ) + J2,nT (β, θ).

Let us now prove that the two terms in the RHS are op(1) uniformly in β ∈ B, θ ∈ Θ.

i) Proof that sup
θ∈Θ

sup
β∈B

J1,T (β, θ) = op(1)

We use the Uniform Law of Large Numbers (ULLN) in Newey (1991), Corollary 2.1. Then,

we get sup
θ∈Θ

sup
β∈B

J1,T (β, θ) = op(1), if the two following conditions hold:

(a) Pointwise convergence: J1,T (β, θ) = op(1), for all parameter values (β, θ) in set B ×Θ;

(b) Stochastic Lipschitz property:

|G(Ft(β̃); θ̃)−G (Ft(β); θ) | ≤ Bt

(
‖β̃ − β‖+ ‖θ̃ − θ‖

)
, (b.8)

for all (β, θ), (β̃, θ̃) ∈ B ×Θ and some process Bt such that
1

T

T∑
t=1

E[Bt] = O(1).

Let us now prove conditions (a) and (b).

(a) Pointwise convergence: Since process (ft) is strictly stationary and mixing (Assumption

A.3), by Proposition 3.44 in White (2001) it follows that process (ft) is also ergodic. Morever,

for given β ∈ B, the pseudo-true factor value ft(β) is a measurable function of the factor

path ft [Assumption H.4 (i) in Appendix A.1]. Now, we use that the strict stationarity and

ergodicity properties are maintained under measurable transformations, involving possibly

an infinite number of coordinates [Breiman (1992), Proposition 6.31]. Thus, process ft(β)

is strictly stationary and ergodic, for given β ∈ B. Since, for given θ ∈ Θ, the function

F → G(F ; θ) is continuous by Regularity Condition RC.1 (i), by the same argument it follows

that process G(Ft(β); θ) is strictly stationary and ergodic, for any given (β, θ) ∈ B×Θ. Then,

Regularity Condition RC.1 (ii) and the ergodic theorem [Breiman (1992), Corollary 6.23]

imply that the sample average
1

T

T∑
t=1

G (Ft(β); θ) converges to the population expectation
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E0 [G (Ft(β); θ)] almost surely, for any given (β, θ) ∈ B ×Θ. This implies J1,T (β, θ) = op(1),

for any given (β, θ) ∈ B ×Θ.

(b) Stochastic Lipschitz property: Inequality (b.8) holds for all (β, θ), (β̃, θ̃) ∈ B × Θ with

the strictly stationary process Bt given by:

Bt = sup
θ∈Θ

sup
β∈B

∥∥∥∥∂vec[G(Ft(β); θ)]

∂(β′, θ′)′

∥∥∥∥ .
Moreover, from Regularity Condition RC.1 (iii), we have E[Bt] < ∞, and Condition (b)

follows.

ii) Proof that sup
θ∈Θ

sup
β∈B

J2,nT (β, θ) = op(1)

Let ε > 0 be given. We have:

P
[
sup
θ∈Θ

sup
β∈B

J2,nT (β, θ) ≥ ε

]
≤ P

[
sup
θ∈Θ

sup
β∈B

sup
1≤t≤T

∥∥∥G(F̂n,t(β); θ)−G(Ft(β); θ)
∥∥∥ ≥ ε

]
.

Now, we use that
∥∥∥F̂n,t(β)− Ft(β)

∥∥∥ ≤ η implies:

∥∥∥G(F̂n,t(β); θ)−G(Ft(β); θ)
∥∥∥ ≤ η sup

F :‖F−Ft(β)‖≤η

∥∥∥∥∂vec[G(F ; θ)]

∂F ′

∥∥∥∥ ,
for any η > 0. Thus, for ηn = ε[c6/ log n]1/d6 , where constants c6, d6 > 0 are defined in

Regularity Condition RC.1 (iv), we get:

P
[
sup
θ∈Θ

sup
β∈B

J2,nT (β, θ) ≥ ε

]
≤ P

[
sup
β∈B

sup
1≤t≤T

∥∥∥F̂n,t(β)− Ft(β)
∥∥∥ > ηn

]
+P

[
sup

1≤t≤T
sup
θ∈Θ

sup
β∈B

sup
F :‖F−Ft(β)‖≤ηn

∥∥∥∥∂vec[G(F, θ)]

∂F ′

∥∥∥∥ ≥ ε

ηn

]

≤ P
[
sup
β∈B

sup
1≤t≤T

∥∥∥F̂n,t(β)− Ft(β)
∥∥∥ > ηn

]
+TP

[
sup
θ∈Θ

sup
β∈B

sup
F :‖F−Ft(β)‖≤η∗

∥∥∥∥∂vec[G(F, θ)]

∂F ′

∥∥∥∥ ≥ ε

ηn

]
≡ P1,nT + P2,nT ,
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for large n and η∗ > 0 as in Regularity Condition RC.1 (iv). Now, P1,nT = o(1) from Limit

Theorem 1 in Appendix B.1. Moreover, from Regularity Condition RC.1 (iv), we get:

P2,nT ≤ b6T exp
(
−c6[ε/ηn]d6

)
= b6T/n = o(1).

The conclusion follows.

B.3 Uniform consistency of nonlinear aggregates

THEOREM 3 Let Assumptions A.1-A.5, H.1, H.2, H.4 (i), H.5, H.6, H.7 (i)-(ii), H.8-

H.10 hold, and assume that functions a and ϕ satisfy either the Regularity Condition RC.2,

or the Regularity Condition RC.3, below. Then, if n, T → ∞ such that T ν/n = O(1) for a

value ν > 1:

sup
β∈B

∥∥∥∥∥ 1

T

T∑
t=1

ϕ

(
1

n

n∑
i=1

a(yi,t, yi,t−1, f̂n,t(β), β)

)
− E0 [ϕ (µt(β))]

∥∥∥∥∥ = op(1), (b.9)

where µt(β) = E0

[
a(yi,t, yi,t−1, ft(β), β)|ft

]
.

Limit Theorem 3 provides a Uniform Law of Large Numbers (ULLN) for nonlinear ag-

gregates of panel data. These nonlinear aggregates involve a combination of linear and non-

linear time-series and cross-sectional transformations, which explains the novelty of Limit

Theorem 3 compared to other ULLN in the literature. More precisely, the nonlinear aggre-

gates correspond to the time series average of the nonlinear transformation by mapping ϕ

of the cross-sectional average of random matrices a(ai,t, yi,t−1, f̂n,t(β), β) depending on data

yi,t, yi,t−1, factor approximation f̂n,t(β) and micro-parameter β. The large sample limit of

such an aggregate is the time-series expectation of the transformation by mapping ϕ of the

cross-sectional expectation µt(β).

We distinguish two sets of regularity conditions. Regularity Condition RC.2 requires

that mapping ϕ is Lipschitz continuous. Regularity Condition RC.3 relaxes this condition

and allows to apply Limit Theorem 3 for instance when mapping ϕ corresponds to matrix

inversion, or the log-determinant function, on the set of positive definite matrices (see the

proofs of Lemmas 1 and 6 in Appendices C.1 and C.6). Regularity Condition RC.3 also

introduces tail conditions on the stationary distribution of the reciprocal of the smallest

eigenvalue of the positive definite matrix µt(β) uniformly w.r.t. β ∈ B.
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Regularity Condition RC.2: The functions a and ϕ are such that:

(1) (i) E0

[
sup
β∈B
‖a(Yi,t, ft(β), β)‖4

]
<∞ , where Yi,t = (yi,t, yi,t−1)′.

(ii) E0

[
sup
β∈B

∥∥∥∥∂ vec a[Yi,t, ft(β), β)]

∂β′

∥∥∥∥4
]
<∞.

(iii) For any β ∈ B: µt(β) = E0[a(Yi,t, ft(β), β)|ft] is a measurable function of the

factor path ft.

(iv) P [ξt,7 ≥ u] ≤ b7 exp
(
−c7u

d7
)
, as u → ∞, for some constants b7, c7, d7 > 0, where

ξt,7 = sup
β∈B

E0

[
‖a(Yi,t, ft(β), β)‖2|ft

]
.

(v) P [ξt,8 ≥ u] ≤ b8 exp
(
−c8u

d8
)
, as u → ∞, for some constants b8, c8, d8 > 0, where

ξt,8 = sup
β∈B

E0

[
sup

f∈Rm:‖f−ft(β)‖≤η∗

∥∥∥∥∂ vec[a(Yi,t, f, β)]

∂f ′

∥∥∥∥2

|ft

]
, with η∗ > 0;

(2) The function ϕ is Lipschitz continuous and such that E0 [‖ϕ(µt(β))‖] <∞ , for any

β ∈ B.

Regularity Condition RC.3: The functions a and ϕ are such that:

(1) Regularity Condition RC.2 (1) holds. Function a(Y, f, β) admits values in the set of

(r, r) symmetric matrices, for some r ∈ N. Moreover:

(i) µt(β) = E0

[
a(Yi,t, ft(β), β)|ft

]
∈ U , for any t and β ∈ B, P-a.s., where U is the

open subset of positive definite (r, r) matrices.

(ii) P [ξt,9 ≥ u] ≤ b9 exp
(
−c9u

d9
)
, as u → ∞, for some constants b9, c9, d9 > 0, where

ξt,9 =

(
inf
β∈B

λt(β)

)−1

and λt(β) > 0 is the smallest eigenvalue of matrix µt(β);

(2) The function ϕ : U → R is such that:

(i) ϕ is Lipschitz continuous on any compact subset of U .

(ii) |ϕ(w)| ≤ C10‖z‖γ10ψ(z), for any w, z ∈ U such that w = (Id + ∆)z, ‖∆‖ ≤ 1/2 ,

where constants C10, γ10 satisfy C10 > 0, γ10 ≤ 2, and function ψ : U → R is such that

E0[sup
β∈B
|ψ(µt(β))|4] <∞.

We first prove Theorem 3 under Regularity Condition RC.2. Then, we give the proof

under Regularity Condition RC.3.
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B.3.1 Proof of Theorem 3 under Regularity Condition RC.2

Let us write:

1

T

T∑
t=1

ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− E0 [ϕ (µt(β))]

=
1

T

T∑
t=1

ϕ (µt (β))− E0 [ϕ (µt (β))]

+
1

T

T∑
t=1

{
ϕ

(
1

n

n∑
i=1

a(Yi,t, ft(β), β)

)
− ϕ (µt (β))

}

+
1

T

T∑
t=1

{
ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− ϕ

(
1

n

n∑
i=1

a(Yi,t, ft(β), β)

)}
≡ J3,T (β) + J4,n,T (β) + J5,n,T (β), (b.10)

where Yi,t = (yi,t, yi,t−1)′. The component J3,T (β) is the time series average of a nonlinear

transformation of process µt (β). The component J4,n,T (β) accounts for the discrepancy

between the cross-sectional average
1

n

n∑
i=1

a(Yi,t, ft(β), β) and the conditional expectation

µt (β) = E0[a(Yi,t, ft(β), β)|ft]. The component J5,n,T (β) is induced by the approximation of

the pseudo-true factor value ft(β) with the estimator f̂n,t(β). Let us prove that these three

components are op(1), uniformly in β ∈ B.

i) Proof that sup
β∈B
|J3,T (β)| = op(1)

The proof of this uniform convergence is similar to part i) in the proof of Limit Theorem

2 in Section B.2. We replace µt(β) for Ft(β), and mapping ϕ for mapping G(·; θ), and

use Regularity Conditions RC.2 (1i)-(1iii) and (2). Since the mapping ϕ is independent of

parameter θ, there is no sup over θ ∈ Θ here.

ii) Proof that sup
β∈B
|J4,n,T (β)| = op(1)

Let us now consider term J4,n,T (β) in the RHS of equation (b.10). Let ε > 0. The condition

‖x− y‖ ≤ L/ε implies |ϕ(x)− ϕ(y)| ≤ ε, since function ϕ is Lipschitz continuous, with

11



Lipschitz constant L, say [Regularity Condition RC.2 (2)]. Thus, we get:

P

[
sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

{
ϕ

(
1

n

n∑
i=1

a(Yi,t, ft(β), β)

)
− ϕ (µt (β))

}∣∣∣∣∣ ≥ ε

]

≤ P

[
sup
β∈B

sup
1≤t≤T

∥∥∥∥∥ 1

n

n∑
i=1

[a(Yi,t, ft(β), β)− µt(β)]

∥∥∥∥∥ ≥ L/ε

]
≡ P1,ε.

To bound probability P1,ε, let us define for any δ > 0 the event:

Ω1,n,T (δ) =

{
sup
β∈B

sup
1≤t≤T

∥∥∥∥∥ 1

n

n∑
i=1

[a(Yi,t, ft(β), β)− µt(β)]

∥∥∥∥∥ ≤ δ

}
. (b.11)

In Lemma B.3 (i) in Appendix B.4.3 we show that P[Ω1,n,T (δ)]→ 1, as n, T →∞ such that

T/n→ 0, for any δ > 0. Since P1,ε = 1−P [Ω1,n,T (L/ε)], we get that P1,ε → 0 as n, T →∞,

T/n→ 0, for any ε > 0. It follows that sup
β∈B
|J4,n,T (β)| = op(1).

iii) Proof that sup
β∈B
|J5,n,T (β)| = op(1)

Let us finally consider term J5,n,T (β) in the RHS of equation (b.10). Let ε > 0 be given.

Then:

P

[
sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

{
ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− ϕ

(
1

n

n∑
i=1

a(Yi,t, ft(β), β)

)}∣∣∣∣∣ ≥ ε

]

≤ P

[
sup
β∈B

sup
1≤t≤T

∥∥∥∥∥ 1

n

n∑
i=1

[
a(Yi,t, f̂n,t(β), β)− a(Yi,t, ft(β), β)

]∥∥∥∥∥ ≥ L/ε

]
≡ P2,ε.

To bound probability P2,ε, let us define for any δ > 0 the event:

Ω2,n,T (δ) =

{
sup
β∈B

sup
1≤t≤T

∥∥∥∥∥ 1

n

n∑
i=1

[
a(Yi,t, f̂n,t(β), β)− a(Yi,t, ft(β), β)

]∥∥∥∥∥ ≤ δ

}
. (b.12)

In Lemma B.4 (i) in Appendix B.4.4 we show that P[Ω2,n,T (δ)]→ 1, as n, T →∞ such that

T/n→ 0, for any δ > 0. Since P2,ε = 1−P [Ω2,n,T (L/ε)], we get that P2,ε → 0 as n, T →∞,

T/n→ 0, for any ε > 0. It follows sup
β∈B
|J5,n,T (β)| = op(1).
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B.3.2 Proof of Theorem 3 under Regularity Condition RC.3

Under Regularity Condition RC.3, matrix function ϕ is defined on the subset U ⊂ Rr×r of

positive definite (r, r) matrices. Therefore, the LHS of equation (b.9) is well-defined only

when
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β) ∈ U for any 1 ≤ t ≤ T and β ∈ B.

i) Let us first prove that this event occurs with probability approaching (w.p.a.) 1. Let

η > 0 be given. In Lemma B.5 in Appendix B.4.5 we prove that there exists a compact

set K ⊂ U such that P [{µt(β), β ∈ B} ⊂ K] ≥ 1 − η. Let further δ > 0 be such that{
x ∈ SRr×r : dist(x,K) ≤ δ

}
⊂ U , where SRr×r is the set of (r, r) symmetric matrices and

dist(x,K) ≡ inf
y∈K
‖x− y‖ is the distance of matrix x from set K. Then:

Pn,T ≡ P

[{
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β), 1 ≤ t ≤ T, β ∈ B

}
⊂ U

]
≥ P

[
({µt(β), β ∈ B} ⊂ K)

⋂
Ω1,n,T (δ/2)

⋂
Ω2,n,T (δ/2)

]
≥ P [{µt(β), β ∈ B} ⊂ K] + P [Ω1,n,T (δ/2)] + P [Ω2,n,T (δ/2)]− 2

≥ P [Ω1,n,T (δ/2)] + P [Ω2,n,T (δ/2)]− 1− η,

where events Ω1,n,T (δ/2) and Ω2,n,T (δ/2) are defined in equations (b.11) and (b.12). From

Lemmas B.3 (i) and B.4 (i) in Appendices B.4.3 and B.4.4, respectively, it follows that

lim sup
n,T→∞

Pn,T ≥ 1 − η. Since constant η > 0 can be chosen arbitrarily small, we get that

lim
n,T→∞

Pn,T = 1. Therefore, the event

{
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β), 1 ≤ t ≤ T, β ∈ B

}
⊂ U occurs

w.p.a. 1.

ii) We can focus on this event in the rest of the proof. Let ε, η̄ > 0 be given. We have to

prove that:

lim sup
n,T→∞

P

[
sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− E0 [ϕ (µt(β))]

∣∣∣∣∣ ≥ ε

]
≤ η̄. (b.13)

Let us introduce a globally Lipschitz approximation of function ϕ. More precisely, let K1 ⊂ U
be a compact set and let ϕ̃ be a Lipschitz continuous function on U such that

ϕ̃ = ϕ on K1 and |ϕ̃| ≤ |ϕ| on U . (b.14)
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Such a function exists by Regularity Condition RC.3 (2i). Then inequality (b.13) follows if

function ϕ̃ can be chosen such that:

A1,ε ≡ lim sup
n,T→∞

P

[
sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

ϕ̃

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− E0 [ϕ̃ (µt(β))]

∣∣∣∣∣ ≥ ε/3

]
≤ η̄/2,

(b.15)

A2,ε ≡ lim sup
n,T→∞

P

[
sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

[
ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− ϕ̃

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)]∣∣∣∣∣ ≥ ε/3

]
≤ η̄/2, (b.16)

and:

A3 ≡ sup
β∈B
|E0 [ϕ̃ (µt(β))]− E0 [ϕ (µt(β))]| ≤ ε/3. (b.17)

The proof proceeds as follows. We first show that A1,ε = 0, which implies inequality (b.15).

Then, we derive upper bounds for A2,ε, and A3. From those bounds we prove that inequalities

(b.16) and (b.17) hold.

i) Proof that A1,ε = 0

From the definition of the globally Lipschitz approximation in (b.14), and Regularity Condi-

tions RC.3 (1), (2ii), function ϕ̃ is Lipschitz continuous and such that E0 [|ϕ̃(µt(β))|] < ∞.

Indeed, we have:

E0 [|ϕ̃(µt(β))|] ≤ E0 [|ϕ(µt(β))|] ≤ C10E0 [‖µt(β)‖γ10|ψ(µt(β))|] ,

where function ψ is defined in Regularity Condition RC.3 (2ii). Then, from the Cauchy-

Schwarz inequality, we get:

E0 [|ϕ̃(µt(β))|] ≤ C10E0

[
‖µt(β)‖2γ10

]1/2
E0

[
|ψ(µt(β))|2

]1/2
<∞,

for any β ∈ B. Hence, functions (a, ϕ̃) satisfy Regularity Condition RC.2. Thus, we get

A1,ε = 0 by applying Limit Theorem 3 under Regularity Condition RC.2.
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ii) Upper bound for A2,ε

Let us now consider term A2,ε in inequality (b.16). Since ϕ̃ = ϕ on set K1 [see (b.14)], in

the event that defines A2,ε only the dates t with
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β) ∈ Kc1 contribute to

the sum. Moreover, we have |ϕ− ϕ̃| ≤ 2|ϕ| on set U [see (b.14)]. Therefore, we have:

sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

[
ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− ϕ̃

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)]∣∣∣∣∣
≤ 2 sup

β∈B

1

T

T∑
t=1

1

{
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β) ∈ Kc1

}∣∣∣∣∣ϕ
(

1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)∣∣∣∣∣ . (b.18)

Let us now bound the RHS of inequality (b.18) in two steps.

a) Let K2 ⊂ K1 be a compact set, and δ > 0 a scalar, such that:

dist (K2,Kc1) > 2δ, (b.19)

where dist (K2,Kc1) ≡ inf
x∈K2,y∈Kc

1

‖x− y‖ denotes the distance between sets K2 and Kc1. When

the event Ω1,n,T (δ) ∩ Ω2,n,T (δ) occurs, where Ωj,n,T (δ), j = 1, 2, are defined in equation

(b.11) and (b.12), respectively, we have

∥∥∥∥∥ 1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)− µt(β)

∥∥∥∥∥ ≤ 2δ, P-a.s., for

any t = 1, ..., T and β ∈ B. By condition (b.19), we get:

1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β) ∈ Kc1 ⇒ µt(β) ∈ Kc2,

P-a.s., for any t = 1, ..., T and β ∈ B. It follows:

1

{
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β) ∈ Kc1

}
≤ 1 {µt(β) ∈ Kc2} ≤ 1− 1 {(µt(β), β ∈ B) ⊂ K2} , (b.20)

for any β ∈ B, since 1 {µt(β) ∈ Kc2} = 1 for some β ∈ B holds if, and only if,

1 {(µt(β), β ∈ B) ⊂ K2} = 0 holds.

b) Define for δ > 0 as above the events:

Ω3,n,T (δ) =

{
sup
β∈B

sup
1≤t≤T

1

λt(β)

∥∥∥∥∥ 1

n

n∑
i=1

[a(Yi,t, ft(β), β)− µt(β)]

∥∥∥∥∥ ≤ δ

}
, (b.21)
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and:

Ω4,n,T (δ) =

{
sup
β∈B

sup
1≤t≤T

1

λt(β)

∥∥∥∥∥ 1

n

n∑
i=1

[
a(Yi,t, f̂n,t(β), β)− a(Yi,t, ft(β), β)

]∥∥∥∥∥ ≤ δ

}
, (b.22)

where λt(β) is as in Regularity Condition RC.3 (1ii). In Lemmas B.3 (ii) and B.4 (ii) in

Appendices B.4.3 and B.4.4, respectively, we prove that P[Ω3,n,T (δ)]→ 1 and P[Ω4,n,T (δ)]→
1, as n, T → ∞, T/n → 0. When the event Ω3,n,T (δ) ∩ Ω4,n,T (δ) occurs, with δ ≤ 1/4,

we have have ‖∆t(β)‖ ≤ 2δ ≤ 1/2, P-a.s., for any t = 1, ..., T and β ∈ B, where ∆t(β) ≡(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)− µt(β)

)
(µt(β))−1. Thus, from Regularity Condition RC.3 (2ii) we

get: ∣∣∣∣∣ϕ
(

1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)∣∣∣∣∣ ≤ C10 ‖µt(β)‖γ10 ψ (µt(β)) . (b.23)

From inequalities (b.18), (b.20) and (b.23) we get that, when event ∩4
j=1Ωj,n,T (δ) occurs,

we have:

sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

[
ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− ϕ̃

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)]∣∣∣∣∣
≤ 2C10

T

T∑
t=1

(1− 1 {(µt(β), β ∈ B) ⊂ K2}) sup
β∈B
‖µt(β)‖γ10 ψ (µt(β)) .

It follows that:

P

[
sup
β∈B

∣∣∣∣∣ 1

T

T∑
t=1

[
ϕ

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)
− ϕ̃

(
1

n

n∑
i=1

a(Yi,t, f̂n,t(β), β)

)]∣∣∣∣∣ ≥ ε/3

]

≤
4∑
j=1

P [Ωj,n,T (δ)c]

+P

[
2C10

T

T∑
t=1

(1− 1 {(µt(β), β ∈ B) ⊂ K2}) sup
β∈B
‖µt(β)‖γ10 ψ (µt(β)) ≥ ε/3

]

≤
4∑
j=1

P [Ωj,n,T (δ)c] +
6C10

ε
E

[
(1− 1 {(µt(β), β ∈ B) ⊂ K2}) sup

β∈B
‖µt(β)‖γ10 ψ (µt(β))

]
,

by the Markov inequality. By taking the limit for n, T → ∞ such that T/n → 0, from
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Lemmas B.3 and B.4 we get:

A2,ε ≤
6C10

ε
E

[
(1− 1 {(µt(β), β ∈ B) ⊂ K2}) sup

β∈B
‖µt(β)‖γ10 ψ (µt(β))

]
.

By the Minkowsky and Cauchy-Schwarz inequalities, we have:

E

[
(1− 1 {(µt(β), β ∈ B) ⊂ K2}) sup

β∈B
‖µt(β)‖γ10 ψ (µt(β))

]
≤ (1− P [{µt(β), β ∈ B} ⊂ K2])1/pE

[
sup
β∈B
‖µt(β)‖γ10qψ (µt(β))q

]1/q

≤ (1− P [{µt(β), β ∈ B} ⊂ K2])1/pE

[
sup
β∈B
‖µt(β)‖γ10qp′

]1/(p′q)

E

[
sup
β∈B

ψ (µt(β))qq
′
]1/(qq′)

,

with p, q, p
′
, q
′
> 1 such that 1/p + 1/q = 1 and 1/p

′
+ 1/q

′
= 1. Fix q ∈ (1, 4

1+γ10
) and

p
′
= 4/(γ10q). We get:

A2,ε ≤
6C10

ε
(1− P [{µt(β), β ∈ B} ⊂ K2])1/pC11, (b.24)

where C11 = E

[
sup
β∈B
‖µt(β)‖4

]γ10/4
E

[
sup
β∈B

ψ (µt(β))4

]1/q−γ10/4

<∞ by Regularity Conditions

RC.3 (1) and (2ii).

iii) Bound of A3

Let us now bound A3 defined in the LHS of inequality (b.17). By similar arguments as

above:

A3 ≤ 2C10 (1− P [{µt(β), β ∈ B} ⊂ K2])1/pC11. (b.25)

iv) Proof of inequalities (b.16) and (b.17)

From Lemma B.5 in Appendix B.4.5, we can fixK1, K2 and δ such that P [{µt(β), β ∈ B} ⊂ K2] ≥
1−min

{(
εη̄

12C10C11

)p
,
(

ε
6C10C11

)p}
and condition (b.19) hold. Then, from inequalities (b.24)

and (b.25), inequalities (b.16) and (b.17) follow, and the proof is concluded.
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B.4 Secondary Lemmas

B.4.1 Lemma B.1

Lemma B.1 provides a large deviation inequality for sup
β∈B
‖f̂n(β) − f(β)‖ in finite sample,

where f̂n(β) denotes the ML estimator of parameter f with sample size n, and f(β) denotes

the pseudo-true value of parameter f , for given value of the nuisance parameter β ∈ B.

Lemma B.1: Let n be given and let data yi, for i = 1, ..., n, be i.i.d. with density h(yi, α)

parametrized by α = (f ′, β′)′, where the parameter of interest is f ∈ F ⊂ Rm, and the

nuisance parameter is β ∈ B ⊂ Rq. We denote by α0 = (f ′0, β
′
0)′ the true parameter value.

Let us consider the concentrated ML estimator of parameter f defined by:

f̂n(β) = arg max
f∈F

Ln(f, β),

for any β ∈ B, where Ln(f, β) =
1

n

n∑
i=1

li (α) and li(α) = log h(yi, α). Denote L(α) =

E0 [li(α)], and A = F × B. Let us assume:

i) The set F is compact and convex, and the set B is compact.

ii) For any given β ∈ B, the function L(f, β) is uniquely maximized w.r.t. f ∈ F at

f(β) = arg max
f∈F

L(f, β). The true values of parameters f0 ∈ F and β0 ∈ B satisfy f0 = f(β0),

and the matrix E0

[
−∂

2li(f(β), β)

∂f∂f ′

]
is non-singular, for any β ∈ B.

iii) There exists a constant γ11 > 2 such that R ≡ E0

[
sup
α∈A

∥∥∥∥∂ log h(yi, α)

∂α

∥∥∥∥γ11] <∞.
iv) The function f(β) is differentiable and such that M≡ sup

β∈B

∥∥∥∥∂f(β)

∂β′

∥∥∥∥ <∞.

Then, there exist constants C1, C2, C3 > 0 (depending on parameter dimensions m and q, but

independent of parameter sets F , B and of the parametric model) such that for any constant

ε > 0:

P
[
sup
β∈B

∥∥∥f̂n(β)− f(β)
∥∥∥ ≥ ε

]
≤ C1V ol(B)(1+M)m+qn

m+q

εq
exp

(
−C2nε

2 K
1 + Γ/K

)
+C3ε

γ11−2R
K
,

where:

K ≡ inf
β∈B

inf
f∈F :f 6=f(β)

2KL(f, f(β); β)

‖f − f(β)‖2
> 0, (b.26)
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KL(f, f(β); β) ≡ L(f(β), β) − L(f, β) is the Kullback-Leibler discrepancy between f and

f(β) for given β ∈ B, the scalar Γ is given by:

Γ ≡ sup
α∈A

E0

[∥∥∥∥∂ log h(yi, α)

∂f

∥∥∥∥2
]
<∞, (b.27)

with V ol(B) =

∫
B
dλ is the Lebesgue measure of set B.

Proof of Lemma B.1: Let us first relate probability P
[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
to the

probability of large deviations of the empirical process associated with the log-likelihood

function.

i) Probability of large deviation of the likelihood process

Define the set:

Fk(β) =
{
f ∈ F : 2kε ≥ ‖f − f(β)‖ ≥ 2k−1ε

}
, (b.28)

for any k = 1, 2, · · · , and β ∈ B. Then, we have:

P
[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
≤ P

[
∞⋃
k=1

⋃
β∈B

{
f̂n(β) ∈ Fk(β)

}]

≤
∞∑
k=1

P

[⋃
β∈B

{
f̂n(β) ∈ Fk(β)

}]
.

Moreover, for any integer k:

P

[⋃
β∈B

{
f̂n(β) ∈ Fk(β)

}]
≤ P

[⋃
β∈B

{
sup

f∈Fk(β)

Ln(f, β) ≥ Ln(f̂n(β), β)

}]

≤ P

[⋃
β∈B

{
sup

f∈Fk(β)

Ln(f, β) ≥ Ln(f(β), β)

}]

= P

[
sup
β∈B

sup
f∈Fk(β)

(Ln(f, β)− Ln(f(β), β)) ≥ 0

]
.
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Now, let us introduce the sets:

Ak = {(f, β) : f ∈ Fk(β), β ∈ B} ⊂ A, k = 1, 2, ..., (b.29)

and the mapping π that maps α = (f ′, β′)′ into π(α) = (f(β)′, β′). 2 Thus, we have:

P
[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
≤

∞∑
k=1

P
[

sup
α∈Ak

[Ln(α)− Ln(π(α))] ≥ 0

]
.

Define:

Ψn (α) = Ln (α)− Ln (π(α))− [L (α)− L (π(α))] =
1

n

n∑
i=1

ψi(α), (b.30)

where ψi(α) = li(α)− li(π(α))− E0 [li(α)− li(π(α))]. Then, we have:

P
[

sup
α∈Ak

[Ln (α)− Ln (π(α))] ≥ 0

]
≤ P

[
sup
α∈Ak

(Ln (α)− Ln (π(α))− [L (α)− L (π(α))]) ≥ inf
α∈Ak

(L (π(α))− L (α))

]
= P

[
sup
α∈Ak

Ψn (α) ≥ inf
α∈Ak

KL (α, π(α))

]
,

where KL(α, π(α)) = L(π(α)) − L(α) = KL(f, f(β); β). Now, from the definitions of sets

Fk(β) and Ak in (b.28) and (b.29), respectively, we get:

inf
α∈Ak

KL (α, π(α)) = inf
β∈B

inf
f∈Fk(β)

K(f, f(β); β)

≥ inf
β∈B

inf
f∈F :‖f−f(β)‖≥2k−1ε

KL (f, f(β); β) ≥ 1

2
K
(
2k−1ε

)2
,

where constant K is defined in (b.26). Thus, we get:

P
[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
≤

∞∑
k=1

P
[

sup
α∈Ak

Ψn (α) ≥ λk

]
, (b.31)

where:

λk ≡
1

2
K
(
2k−1ε

)2
. (b.32)

2Geometrically, the set Ak consists of two strips of width 2k−1ε in the (f, β) plane, which are parallel
to the curve f(β), β ∈ B, with a distance 2k−1ε from the latter. The mapping π is the projection onto the
curve f(β), β ∈ B, along the f -axis.

20



To bound the series in the RHS of inequality (b.31), let us decompose the likelihood empirical

process Ψn (α) as:

Ψn (α) = Ψ̃n (α) +Rn (α) ,

where:

Ψ̃n (α) =
1

n

n∑
i=1

[li(α)− li(π(α))] 1 {Ui ≤ B}−E [[li(α)− li(π(α))] 1 {Ui ≤ B}] ≡ 1

n

n∑
i=1

ψ̃i(α),

(b.33)

with:

Ui = sup
α∈A

∥∥∥∥∂ log h(yi, α)

∂α

∥∥∥∥ , B = ε−1, (b.34)

and:

Rn (α) =
1

n

n∑
i=1

[li(α)− li(π(α))] 1 {Ui > B} − E [[li(α)− li(π(α))] 1 {Ui > B}] . (b.35)

Thus, we have:

P
[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
≤

∞∑
k=1

P
[

sup
α∈Ak

∣∣∣Ψ̃n (α)
∣∣∣ ≥ 1

2
λk

]
+
∞∑
k=1

P
[

sup
α∈Ak

|Rn (α)| ≥ 1

2
λk

]
.

(b.36)

ii) Bound of the second series in the RHS of inequality (b.36)

Let us first bound the second series in the RHS of inequality (b.36). By using that

‖α− π(α)‖ ≤ 2kε for any α ∈ Ak, from (b.28) and (b.29) we get:

|Rn (α)| ≤ 2kε

(
1

n

n∑
i=1

Ui1 {Ui > B}+ E [Ui1 {Ui > B}]

)
,

by the mean value Theorem. Thus, from equations (b.32) and (b.35), we have:

P
[

sup
α∈Ak

|Rn (α)| ≥ 1

2
λk

]
≤ P

[
2kε

(
1

n

n∑
i=1

Ui1 {Ui > B}+ E [Ui1 {Ui > B}]

)
≥ 1

2
λk

]

= P

[
1

n

n∑
i=1

(Ui1 {Ui > B}+ E [Ui1 {Ui > B}]) ≥ 1

16
K2kε

]
.
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By using:

E [Ui1 {Ui > B}] ≤ B−(γ11−1)E [Uγ11
i 1 {Ui > B}] ≤ Rεγ11−1,

from condition iii) and B = ε−1, and by using the Markov inequality, we get:

P
[

sup
α∈Ak

|Rn (α)| ≥ 1

2
λk

]
≤
(

16

K2kε

)
2E [Ui1 {Ui > B}] ≤ 32Rεγ11−2

2kK
.

Thus, we get:

∞∑
k=1

P
[

sup
α∈Ak

|Rn (α)| ≥ 1

2
λk

]
≤

∞∑
k=1

32Rεγ11−2

2kK
=

32Rεγ11−2

K
. (b.37)

iii) Bound of the first series in the RHS of inequality (b.36)

Now let us consider the first series in the RHS of inequality (b.36). Let us introduce a

covering of set Ak defined in (b.29) by means of N ≡ Nk balls B (αj, η), j = 1, 2, · · · , N ,

with center αj ≡ αj,k and radius:

η ≡ ηk =
1

64

K
1 +M

22kε3. (b.38)

The number, centers and radii of the balls may depend on index k, but we suppress this

dependence to simplify notation. By Fubini’s Theorem, the Lebesgue measure of set Ak is

such that:

V ol(Ak) =

∫
Ak

dλ =

∫
B

∫
Fk(β)

λ(df)λ(dβ) ≤ C̃m
(
2kε
)m ∫

B
λ(dβ) = C̃m

(
2kε
)m

V ol(B),

where set Fk(β) is defined in equation (b.28), and C̃m is a constant depending on dimension

m only. Thus, we can chose the number N ∈ N of balls covering set Ak such that:

N ≤ C∗m+qV ol(Ak)η−(m+q) ≤ 64m+qV ol(B)C̃m,qε
−2m−3q

(
1 +M
K

)m+q

, (b.39)
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where C∗m+q is a constant depending on m+ q only, and C̃m,q = C̃mC
∗
m+q. Then, for α ∈ Ak:∣∣∣Ψ̃n (α)

∣∣∣ ≤ max
j=1,...,N

∣∣∣Ψ̃n (αj)
∣∣∣+ sup

α,α′∈Ak:‖α−α′‖≤η

∣∣∣Ψ̃n

(
α
′
)
− Ψ̃n (α)

∣∣∣
≤ max

j=1,...,N

∣∣∣Ψ̃n (αj)
∣∣∣+ 2ηB(1 +M),

since B = ε−1 bounds the Ui in the definition of Ψ̃n [see equations (b.33) and (b.34)], and

‖π(α′) − π(α)‖ ≤ (1 +M)‖β′ − β‖ [see Condition iv)]. Using 2ηB(1 +M) =
1

4
λk from

equations (b.32) and (b.38), we get:

P
[

sup
α∈Ak

∣∣∣Ψ̃n (α)
∣∣∣ ≥ λk

2

]
≤ P

[
max

j=1,...,N

∣∣∣Ψ̃n (αj)
∣∣∣ ≥ λk

4

]
≤ N sup

α∈Ak

P
[∣∣∣Ψ̃n (α)

∣∣∣ ≥ λk
4

]
.

(b.40)

Let us now bound P
[∣∣∣Ψ̃n (α)

∣∣∣ ≥ 1

4
λk

]
for α ∈ Ak. Since Ψ̃n (α) in (b.33) is an average

of zero-mean independent random variables, we can use Bernstein’s inequality [see Bosq

(1998), Theorem 1.2]. Let us first check the conditions of this theorem. We use that

‖α− π(α)‖ ≤ 2kε for any α ∈ Ak. Then, from equation (b.34), for any α ∈ Ak we have:∣∣∣ψ̃i(α)
∣∣∣ = |[li(α)− li(π(α))] 1 {Ui ≤ B} − E [[li(α)− li(π(α))] 1 {Ui ≤ B}]| ≤ 2B2kε = 2k+1,

(b.41)

and:

E
[
ψ̃i(α)2

]
= V [[li(α)− li(π(α))] 1 {Ui ≤ B}] ≤ E0

[
|li(α)− li(π(α))|2

]
≤ sup

α∈Ak

E0

[(
|li(α)− li(π(α))|
‖α− π(α)‖

)2
] (

2kε
)2
. (b.42)

To bound sup
α∈Ak

E0

[(
|li(α)− li(π(α))|
‖α− π(α)‖

)2
]

we use:

li(α)− li(π(α)) = li(f, β)− li(f(β), β) =

∫ 1

0

∂li(f(β) + τ(f − f(β)), β)

∂f ′
(f − f(β))dτ,
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by the convexity of set F in condition i) of Lemma B.1. Then, we get:

|li(α)− li(π(α))|
‖α− π(α)‖

≤
∫ 1

0

∥∥∥∥∂li(f(β) + τ(f − f(β)), β)

∂f

∥∥∥∥ dτ
≤

(∫ 1

0

∥∥∥∥∂li(f(β) + τ(f − f(β)), β)

∂f

∥∥∥∥2

dτ

)1/2

.

Then, by the Cauchy-Schwarz inequality, for any α ∈ Ak we have:

E0

[(
|li(α)− li(π(α))|
‖α− π(α)‖

)2
]
≤
∫ 1

0

E0

[∥∥∥∥∂li(f(β) + τ(f − f(β)), β)

∂f

∥∥∥∥2
]
dτ ≤ Γ,

where constant Γ is defined in equation (b.27). Thus, from inequality (b.42), for any α ∈ Ak
we have:

E
[
ψ̃i(α)2

]
≤ Γ

(
2kε
)2
. (b.43)

By applying the Bernstein’s inequality [see Bosq (1998), Theorem 1.2], and using the defini-

tion of λk in equation (b.32), we get:

P

[∣∣∣Ψ̃n (α)
∣∣∣ ≥ λk

4

]
≤ 2 exp

(
− n(λk/4)2

4Γ (2kε)2 + 2
(
λk

4

)
2k+1

)

≤ 2 exp

(
−nε22k−12 K2

Γ +K

)
, (b.44)

for any α ∈ Ak. Thus, from inequalities (b.39), (b.40) and (b.44) we get:

∞∑
k=1

P

[
sup
α∈Ak

∣∣∣Ψ̃n (α)
∣∣∣ ≥ 1

2
λk

]
≤ 64m+q2V ol(B)C̃m,qε

−2m−3q

(
1 +M
K

)m+q

·
∞∑
k=1

exp

(
−nε22k−12 K2

Γ +K

)
.

Now, by using that:

∞∑
k=1

exp

(
−nε22k−12 K2

Γ +K

)
≤

∞∑
k=1

exp

(
−knε22−12 K2

Γ +K

)
≤ 1

1− e−1
exp

(
−nε22−12 K2

Γ +K

)
,
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and:

K ≥ 212 1

nε2
,

if nε22−12 K2

Γ +K
≥ 1, we get:

∞∑
k=1

P
[

sup
α∈Ak

∣∣∣Ψ̃n (α)
∣∣∣ ≥ 1

2
λk

]
≤ V ol(B)

2e

e− 1

(
1 +M

64

)m+q

C̃m,q
nm+q

εq
exp

(
−nε22−12 K2

Γ +K

)
,

(b.45)

if nε22−12 K2

Γ +K
≥ 1.

iv) Conclusion

Thus, from inequalities (b.36), (b.37) and (b.45) we get:

P

[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
≤ C∗1V ol(B)(1 +M)m+qn

m+q

εq
exp

(
−C2nε

2 K2

Γ +K

)
+ C3ε

γ11−2R
K

+1

{
C2nε

2 K2

Γ +K
≤ 1

}
,

where C∗1 =
2e

e− 1

(
1

64

)m+q

C̃m,q, C2 = 2−12 and C3 = 32. Finally, by using the Bernstein’s

trick 1{x ≤ 1} ≤ e1−x, we get:

P

[
sup
β∈B
‖f̂n(β)− f(β)‖ > ε

]
≤ C1V ol(B)(1+M)m+qn

m+q

εq
exp

(
−C2nε

2 K2

Γ +K

)
+C3ε

γ11−2R
K
,

where C1 = C∗1 + e, for n large and ε small enough.

B.4.2 Lemma B.2

Lemma B.2: Let W be a positive random variable such that P[W ≥ u] ≤ C1 exp (−C2u
%),

for any u ∈ R sufficiently large and some constants C1, C2, % > 0. Then E[exp (−uW−1)] ≤
C̃1 exp

(
−C̃2u

%/(1+%)
)

, for any u ∈ R sufficiently large and some constants C̃1, C̃2 > 0.
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Proof of Lemma B.2: Let Z = W−1 and ε > 0. We have:

E[exp(−uW−1)] = E[exp(−uZ)] =

∫ ε

0

e−uzf(z)dz +

∫ ∞
ε

e−uzf(z)dz

= e−uεF (ε) + u

∫ ε

0

e−uzF (z)dz +

∫ ∞
ε

e−uzf(z)dz, (b.46)

where f and F denote the pdf and cdf of Z, respectively, and we apply integration by part.

The second integral in the RHS of equation (b.46) is such that:∫ ∞
ε

e−uzf(z)dz ≤ e−uε
∫ ∞
ε

f(z)dz ≤ e−uε.

Thus, the conclusion follows if we show that:

I(u) ≡ u

∫ ε

0

e−uzF (z)dz ≤ C3 exp
(
−C4u

%/(1+%)
)
, (b.47)

for some constants C3, C4 > 0. Now, for ε > 0 small enough, we have F (z) = P[W ≥ 1/z] ≤
C1 exp [−C2(1/z)%], for z ≤ ε. Thus:

I(u) ≤ C1u

∫ ε

0

exp [−uz − C2(1/z)%] dz = C1

∫ uε

0

exp [−y − C2(u/y)%] dy.

For large u and any a ∈ (0, 1) we get:

I(u) ≤ C1

∫ ua

0

exp [−y − C2(u/y)%] dy + C1

∫ uε

ua

exp [−y − C2(u/y)%] dy

≤ C1e
−C2u(1−a)%

∫ ua

0

exp(−y)dy + C1

∫ uε

ua

exp(−y)dy

≤ C1e
−C2u(1−a)%

+ C1e
−ua − C1e

−εu.

Then, for a = %/(1 + %), the bound in (b.47) follows, and Lemma B.2 is proved.

B.4.3 Lemma B.3

Lemma B.3: Suppose Assumptions A.1-A.5, and Assumption H.1 in Appendix A.1 hold.

Then:

(i) Under Regularity Condition RC.2 (1) in Section B.3, we have P [Ω1,n,T (δ)]→ 1 as n, T →
∞, such that T/n→ 0, for any δ > 0, where the event Ω1,n,T (δ) is defined in equation (b.11).
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(ii) Under Regularity Condition RC.3 (1) in Section B.3, we have P [Ω3,n,T (δ)] → 1 as

n, T →∞, T/n→ 0, for any δ > 0, where the event Ω3,n,T (δ) is defined in equation (b.21).

Proof of Lemma B.3: We provide the proof of Lemma B.3 (ii) only, since the proof of

Lemma B.3 (i) is similar after replacing λt(β) in event Ω3,n,T (δ) with 1.

Let us define Wn,t(β) =
1√
n

n∑
i=1

[a(Yi,t, ft(β), β)− µt(β)]. Then:

P [Ω3,n,T (δ)c] = P
[

1√
n

sup
β∈B

sup
1≤t≤T

‖Wn,t (β)‖
λt(β)

≥ δ

]
≤

T∑
t=1

P
[

1√
n

sup
β∈B

‖Wn,t (β)‖
λt(β)

≥ δ

]
= TP

[
1√
n

sup
β∈B

‖Wn,t (β)‖
λt(β)

≥ δ

]
.

Let us denote by Wj,l,n,t (β), for j, l = 1, ..., r, the elements of the (r, r) matrix Wn,t (β). Since

‖Wn,t (β)‖2 =
r∑

j,l=1

|Wj,l,n,t (β)|2, we have:

P
[

1√
n

sup
β∈B

‖Wn,t (β)‖
λt(β)

≥ δ

]
≤

r∑
j,l=1

P
[

1√
n

sup
β∈B

|Wj,l,n,t (β)|
λt(β)

≥ δ

r

]
.

Thus, we have to show that:

TP
[

1√
n

sup
β∈B

|Wj,l,n,t (β)|
λt(β)

≥ δ

r

]
→ 0, (b.48)

for any j, l = 1, ..., r.

Let us write Wj,l,n,t(β) as:

Wj,l,n,t(β) =
1√
n

n∑
i=1

(
aj,l(Yi,t, ft(β), β)1 {Ui,t ≤ Bn} − E

[
aj,l(Yi,t, ft(β), β)1 {Ui,t ≤ Bn} |ft

])
+

1√
n

n∑
i=1

(
aj,l(Yi,t, ft(β), β)1 {Ui,t > Bn} − E

[
aj,l(Yi,t, ft(β), β)1 {Ui,t > Bn} |ft

])
≡ W̃j,l,n,t(β) +Rj,l,n,t(β), (b.49)
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where aj,l denotes the element (j, l) of matrix function a,

Ui,t = sup
β∈B
‖a(Yi,t, ft(β), β)‖, and Bn =

4r

δ

√
n. (b.50)

Then:

TP
[

1√
n

sup
β∈B

|Wj,l,n,t (β)|
λt(β)

≥ δ

r

]
≤ TP

 1√
n

sup
β∈B

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)
≥ δ

2r


+TP

[
1√
n

sup
β∈B

|Rj,l,n,t (β)|
λt(β)

≥ δ

2r

]
. (b.51)

Let us now bound the two terms in the RHS of inequality (b.51).

i) Bound of the second term in the RHS of inequality (b.51)

Let us first bound the second term in the RHS of inequality (b.51). By using that

|Rj,l,n,t (β)| ≤ 1√
n

n∑
i=1

(
Ui,t1 {Ui,t > Bn}+ E

[
Ui,t1 {Ui,t > Bn} |ft

])
uniformly in β ∈ B, and

the Markov inequality conditional on ft, we get:

TP
[

1√
n

sup
β∈B

|Rj,l,n,t (β)|
λt(β)

≥ δ

2r

]
≤ TE

[
P
[

1√
n

sup
β∈B
|Rj,l,n,t (β)| ≥ δ

2r
inf
β∈B

λt(β)

∣∣∣∣ ft]]
≤ 4rT

δ
E

[
E
[
Ui,t1 {Ui,t > Bn} |ft

]
infβ∈B λt(β)

]
.

Moreover, by the Minkowsky inequality, Regularity Conditions RC.2 (1i) [which is implied

by Regularity Conditon RC.3 (1)] and Regularity Condition RC.3 (1ii), we get:

E

[
E
[
Ui,t1 {Ui,t > Bn} |ft

]
infβ∈B λt(β)

]
≤ B−2

n E

[
E
[
U3
i,t|ft

]
infβ∈B λt(β)

]

≤ B−2
n E

[
sup
β∈B

λt(β)−4

]1/4

E

[
sup
β∈B
‖a(Yi,t, ft(β), β)‖4

]3/4

= O(1/n).
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Thus, since T/n = o(1), we get:

TP
[

1√
n

sup
β∈B

|Rj,l,n,t (β)|
λt(β)

≥ δ

2r

]
= O(T/n) = o(1). (b.52)

ii) Bound of the first term in the RHS of inequality (b.51)

Let us now bound the first term in the RHS of inequality (b.51). To control the supremum

over B, let us introduce a finite covering of the compact set B ⊂ Rq by means of M open

balls B (βm, ε) with center βm and radius ε, m = 1, ...,M . We let M = MT and ε = εT

depend on sample size T , such that εT → 0, MT →∞ and MT = O
(
ε−qT
)
. We have:

sup
β∈B

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)
≤ max

m=1,..,MT

sup
β∈B(βm,εT )

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)

≤ max
m=1,..,MT

∣∣∣W̃j,l,n,t (βm)
∣∣∣

λt(βm)
+ sup

β,β′∈B:‖β′−β‖≤εT

∣∣∣∣∣W̃j,l,n,t

(
β
′)

λt(β
′)

− W̃j,l,n,t (β)

λt(β)

∣∣∣∣∣ .
Thus, we get:

P

 1√
n

sup
β∈B

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)
≥ δ

2r

 ≤ P

 1√
n

sup
β,β′ :‖β′−β‖≤εT

∣∣∣∣∣W̃j,l,n,t

(
β
′)

λt(β
′)

− W̃j,l,n,t (β)

λt(β)

∣∣∣∣∣ ≥ δ

4r


+MT sup

β∈B
P

 1√
n

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)
≥ δ

4r

 ≡ A1 + A2, say.

(b.53)

i) Bound of term A1 in inequality (b.53)

By the Markov inequality we have:

A1 ≤
4r

δ
√
n
E

 sup
β,β′ :‖β′−β‖≤εT

∣∣∣∣∣W̃j,l,n,t

(
β
′)

λt(β
′)

− W̃j,l,n,t (β)

λt(β)

∣∣∣∣∣
 . (b.54)
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To bound the expectation we use:

sup
‖β′−β‖≤εT

∣∣∣∣∣W̃j,l,n,t(β
′)

λt(β
′)
− W̃j,l,n,t (β)

λt(β)

∣∣∣∣∣ ≤ sup
β∈B

[λt(β)−1] sup
‖β′−β‖≤εT

∣∣∣W̃j,l,n,t(β
′)− W̃j,l,n,t(β)

∣∣∣
+sup
β∈B
|W̃j,l,n,t(β)| sup

‖β′−β‖≤εT

|λt(β′)−1 − λt(β)−1|.

(b.55)

From the definition of W̃j,l,n,t(β) in equation (b.49), we have:

sup
β∈B
|W̃j,l,n,t(β)| ≤ 1√

n

n∑
i=1

{
sup
β∈B
‖a (Yi,t, ft(β), β)‖+ E

[
sup
β∈B
‖a (Yi,t, ft(β), β)‖ | ft

]}
,

(b.56)

and:

sup
‖β′−β‖≤εT

∣∣∣W̃j,l,n,t(β
′)− W̃j,l,n,t(β)

∣∣∣
≤ 1√

n

n∑
i=1

{
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥+ E

[
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥ | ft]} εT .
(b.57)

Moreover, for any β, β′ ∈ B such that ‖β′ − β‖ ≤ εT :

|λt(β′)−1 − λt(β)−1| =

∣∣∣∣∣ sup
x∈Rr:‖x‖=1

x′µt(β
′)−1x− sup

x∈Rr:‖x‖=1

x′µt(β)−1x

∣∣∣∣∣
≤ sup

x∈Rr:‖x‖=1

∣∣x′ (µt(β′)−1 − µt(β)−1
)
x
∣∣ = ‖µt(β′)−1 − µt(β)−1‖op,

where ‖.‖op denotes the matrix operator norm. Since matrix norms are equivalent, we have:

‖µt(β′)−1 − µt(β)−1‖op ≤ c∗‖µt(β′)−1 − µt(β)−1‖

≤ c∗sup
β∈B
‖µt(β)−1‖2E

[
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥ |ft] εT ,
and sup

β∈B
‖µt(β)−1‖ ≤ c∗∗sup

β∈B
[λt(β)−1], for some constants c∗, c∗∗ > 0. Thus, we get:

|λt(β′)−1 − λt(β)−1| ≤ C12 sup
β∈B

[λt(β)−2]E

[
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥ |ft] εT , (b.58)
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where C12 = c∗(c∗∗)2. From bounds (b.54)-(b.58) and the Cauchy-Schwarz inequality, we

get:

A1 ≤
8rεT
δ

E

[
sup
β∈B

[λt(β)−1]E

[
sup
β∈B

∥∥∥∥∂a (Yi,t, ft(β), β)

∂β

∥∥∥∥ | ft]]
+

8C12rεT
δ

E

[
E

[
sup
β∈B
‖a (Yi,t, ft(β), β)‖ | ft

]
sup
β∈B

λt(β)−2E

[
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥ |ft]]
≤ 8C13rεT

δ
, (b.59)

where:

C13 = E

[
sup
β∈B

λt(β)−2

]1/2

E

[
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥2
]1/2

+C12E

[
sup
β∈B

λt(β)−4

]1/2

E

[
sup
β∈B
‖a (Yi,t, ft(β), β)‖4

]1/4

·E

[
sup
β∈B

∥∥∥∥∂vec[a (Yi,t, ft(β), β)]

∂β′

∥∥∥∥4
]1/4

<∞,

by Regularity Conditions RC.2 (1i-ii) and RC.3 (1ii).

ii) Bound of term A2 in inequality (b.53)

To bound A2, by using the definition of W̃j,l,n,t (β) in equation (b.49) we can write:

P

 1√
n

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)
≥ δ

4r

 = E

[
P
[

1√
n

∣∣∣W̃j,l,n,t (β)
∣∣∣ ≥ δ

4r
λt(β)|ft

]]

= E

[
P

[∣∣∣∣∣
n∑
i=1

ψi,t (β)

∣∣∣∣∣ ≥ δλt(β)

4r
n|ft

]]
, (b.60)

for β ∈ B, where ψi,t(β) ≡ aj,l(Yi,t, ft(β), β)1 {Ui,t ≤ Bn}−E
[
aj,l(Yi,t, ft(β), β)1 {Ui,t ≤ Bn} |ft

]
.

To bound the inner conditional probability in the RHS of equation (b.60), we use the inde-

pendence property of the Yi,t, for i varying, conditional on ft, and the Bernstein’s inequality

[e.g., Bosq (1998), Theorem 1.2]. For any β ∈ B, we have:

|ψi,t(β)| ≤ 2Bn,
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from the definitions of Ui,t and Bn in (b.50), and:

V
[
ψi,t(β)|ft

]
= V

[
aj,l(Yi,t, ft(β), β)1 {Ui,t ≤ B} |ft

]
≤ E

[
‖a(Yi,t, ft(β), β)‖2 |ft

]
≡ σ2

t (β).

Then, from Bernstein’s inequality applied conditional on ft, we get:

P

[∣∣∣∣∣
n∑
i=1

ψi,t(β)

∣∣∣∣∣ ≥ n
δ

4r
λt(β)|ft

]
≤ 2 exp

(
−

n δ2

16r2
λt(β)2

4σ2
t (β) + δ

r
λt(β)Bn

)

≤ 2 exp

(
−C14

√
n

λt(β)2

σ2
t (β) + λt(β)

)
, (b.61)

P-a.s., where C14 =
δ2

64r2
, since Bn =

4r

δ

√
n. From inequalities (b.60) and (b.61), we get:

sup
β∈B

P

 1√
n

∣∣∣W̃j,l,n,t (β)
∣∣∣

λt(β)
≥ δ

4r

 ≤ 2E
[
exp

(
−C14

√
nζ−1

t

)]
, (b.62)

where:

ζt ≡
(

inf
β∈B

λt(β)

)−1

+ sup
β∈B

σ2
t (β)

λt(β)2
≤
(

inf
β∈B

λt(β)

)−1

+

(
inf
β∈B

λt(β)

)−2

sup
β∈B

σ2
t (β)

= ξt,9 + ξ2
t,9ξt,7,

where processes ξt,7 and ξt,9 are defined in Regularity Conditions RC.2 (1iv) and RC.3 (1ii).

To bound the expectation in the RHS of inequality (b.62), we use Lemma B.2 in Section

B.4.2. Let us check the condition of Lemma B.2. From Regularity Conditions RC.2 (1iv)

and RC.3 (1ii) in Appendix B.3, we have:

P[ζt ≥ u] ≤ P [ξt,9 ≥ u/2] + P
[
ξ2
t,9ξt,7 ≥ u/2

]
≤ P [ξt,9 ≥ u/2] + P

[
ξt,9 ≥ (u/2)1/4

]
+ P

[
ξt,7 ≥ (u/2)1/2

]
≤ b9 exp[−c9(u/2)d9 ] + b9 exp[−c9(u/2)d9/4] + b7 exp[−c7(u/2)d7/2].

Thus, the condition of Lemma B.2 is satisfied with % = min{d7/2, d9/4}. Then, by using

Lemma B.2 and the condition on the rate of divergence of n and T , we get:

E
[
exp

(
−C14

√
nζ−1

t

)]
≤ C̃1 exp

(
−C̃2(C14

√
n)%/(1+%)

)
≤ C̃1 exp

(
−C15T

%/(2+2%)
)
, (b.63)
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for some constants C̃1, C̃2 and C15 > 0. Thus, from inequalities (b.62) and (b.63), we get:

A2 ≤ 2C̃1MT exp
(
−C15T

%/(2+2%)
)
. (b.64)

iii) Proof of convergence (b.48)

From inequality (b.51), convergence (b.52), and inequalities (b.53), (b.59) and (b.64), we

get:

TP
[

1√
n

sup
β∈B

|Wj,l,n,t (β)|
λt(β)

≥ δ

r

]
≤ 8C13r

δ
TεT + 2C̃1TMT exp

(
−C15T

%/(2+2%)
)

+ o(1).

Now choose εT = T−C16 for C16 > 1. Since MT = O
(
ε−qT
)

= O
(
T qC16

)
, the convergence

(b.48) follows.

B.4.4 Lemma B.4

Lemma B.4: Suppose Assumptions A.1-A.5, and Assumptions H.1, H.2, H.5, H.6, H.7

(i-ii), H.8-H.10 in Appendix A.1 hold. Then:

(i) Under Regularity Condition RC.2 (1) in Section B.3, we have P [Ω2,n,T (δ)]→ 1 as n, T →
∞, T/n→ 0, for any δ > 0, where the event Ω2,n,T (δ) is defined in equation (b.12).

(ii) Under Regularity Condition RC.3 (1) in Section B.3, we have P [Ω4,n,T (δ)] → 1 as

n, T →∞, T/n→ 0, for any δ > 0, where the event Ω4,n,T (δ) is defined in equation (b.22).

Proof of Lemma B.4: We give the proof of Lemma B.4 (ii) only, since the proof of Lemma

B.4 (i) is similar after replacing λt(β) in event Ω4,n,T (δ) with 1.

For any η > 0, if sup
β∈B

sup
1≤t≤T

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ ≤ η, then:

∥∥∥∥∥ 1

n

n∑
i=1

[
a(Yi,t, f̂n,t(β), β)− a(yi,t, ft(β), β)

]∥∥∥∥∥ ≤ η sup
β∈B

sup
1≤t≤T

1

n

n∑
i=1

sup
f :‖f−ft(β)‖≤η

∥∥∥∥∂a (Yi,t, f, β)

∂f ′

∥∥∥∥ .

Thus, for any sequence ηT ↓ 0 and constant η∗ > 0, we get:

P [Ω4,n,T (δ)c] ≤ P
[
sup
β∈B

sup
1≤t≤T

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ > ηT

]
+P

[
ηT sup

β∈B
sup

1≤t≤T

1

λt(β)

1

n

n∑
i=1

sup
f :‖f−ft(β)‖≤η∗

∥∥∥∥∂a (Yi,t, f, β)

∂f ′

∥∥∥∥ > δ

]
.
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By denoting b(Yi,t, ft(β), β) = sup
f :‖f−ft(β)‖≤η∗

∥∥∥∥∂a (Yi,t, f, β)

∂f ′

∥∥∥∥, νt(β) = E0

[
b(Yi,t, ft(β), β)|ft

]
and ςt = sup

β∈B

1

λt(β)
νt(β), we get:

P [Ω4,n,T (δ)c] ≤ P
[
sup
β∈B

sup
1≤t≤T

∥∥∥f̂n,t(β)− ft(β)
∥∥∥ > ηT

]
+P

[
sup
β∈B

sup
1≤t≤T

1

λt(β)

1

n

n∑
i=1

|b(Yi,t, ft(β), β)− νt(β)| ≥ δ

2ηT

]

+P
[

sup
1≤t≤T

ςt ≥
δ

2ηT

]
≡ P1,n,T + P2,n,T + P3,T .

Now, let sequence ηT be such that:

ηT = (C17 log T )−2/C18 , C17 > 0, 0 < C18 ≤ min{2d8, d9}, (b.65)

where constants d8 > 0 and d9 > 0 are defined in Regularity Condition RC.2 (1v) and RC.3

(1ii) in Section B.3.

i) Proof that P1,n,T = o(1)

We have
(log n)δ2√

n
= o(ηT ), as n, T →∞ such that T/n→ 0, for any constant δ2. Thus, we

get P1,n,T = o(1) as n, T →∞ from Limit Theorem 1 in Appendix B.1.

ii) Proof that P2,n,T = o(1)

Since
δ

2ηT
→∞, we have:

P2,n,T ≤ P

[
sup
β∈B

sup
1≤t≤T

1

λt(β)

1

n

n∑
i=1

|b(Yi,t, ft(β), β)− νt(β)| ≥ δ∗

]
,

for any constant δ∗ > 0 and large T . The RHS probability converges to zero by the same

argument as in the proof of Lemma B.3 (ii) in Section B.4.3 and using Regularity Conditions

RC.2 (1i-ii), (1v) and RC.3 (1i-ii).
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iii) Proof that P3,T = o(1)

We have P3,T ≤ TP
[
ςt ≥

δ

2ηT

]
. By using ςt ≤

(
inf
β∈B

λt(β)

)−1

sup
β∈B

E0[b(Yi,t, ft(β), β)2|ft]1/2 ≤

ξt,9ξ
1/2
t,8 , where processes ξt,8 and ξt,9 are defined in Regularity Conditions RC.2 (1v) and RC.3

(1ii). We get:

P
[
ςt ≥

δ

2ηT

]
≤ P

[
ξt,9 ≥

(
δ

2ηT

)1/2
]

+ P
[
ξt,8 ≥

δ

2ηT

]
≤ b9 exp

(
−c9(δ/(2ηT ))d9/2

)
+ b8 exp

(
−c8(δ/(2ηT ))d8

)
.

Then, by the definition of ηT in (b.65), we deduce:

P3,T ≤ Tb9 exp
(
−c9(δ/2)d9/2C17 log T

)
+ Tb8 exp

(
−c8(δ/2)d8C17 log T

)
= b9T

1−c9C17(δ/2)d9/2

+ b8T
1−c8C17(δ/2)d8 .

Then, for C17 > max{c−1
9 (δ/2)−d9/2, c−1

8 (δ/2)−d8}, we get P3,T = o(1).

B.4.5 Lemma B.5

Lemma B.5: Let mapping a admit values in the set of (r, r) symmetric matrices and satisfy

Regularity Condition RC.3 (1) in Section B.3, and let µt(β) = E0[a(Yi,t, ft(β), β)|ft]. Then,

for any η > 0, there exists a compact subset K ⊂ U of the set U of positive definite (r, r)

matrices, such that P [{µt(β), β ∈ B} ⊂ K] ≥ 1− η.

Proof of Lemma B.5: The matrix µt(β) is positive definite, for any t and β ∈ B, P-a.s.

Let eigmin(x) and eigmax(x) denote the smallest and the largest eigenvalues of the symmetric

matrix x ∈ SRr×r, respectively, and let λt(β) = eigmin (µt(β)) and Λt(β) = eigmax(µt(β)).

For any constants C1, C2 such that 0 < C1 ≤ C2 < ∞, let us define the set KC1,C2 ={
x ∈ SRr×r : C1 ≤ eigmin(x) ≤ eigmax(x) ≤ C2

}
⊂ U . This is a compact subset of the set of

(r, r) positive definite matrices. Then:

P [{µt(β), β ∈ B} ⊂ KC1,C2 ] = P
[

inf
β∈B

λt(β) ≥ C1, sup
β∈B

Λt(β) ≤ C2

]
≥ 1− P

[
inf
β∈B

λt(β) < C1

]
− P

[
sup
β∈B

Λt(β) > C2

]
.
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Now, we use Λt(β) ≤ c∗‖µt(β)‖, for any t and β ∈ B, P-a.s., and a positive constant c∗

that depends on dimension r only. Indeed, the largest eigenvalue eigmax(A) of a symmetric

matrix A ∈ SRr×r coincides with the operator norm ‖A‖op ≡ sup
ξ∈Rr:‖ξ‖=1

ξ′Aξ of the matrix,

i.e. eigmax(A) = ‖A‖op, and all norms in an Euclidean space are equivalent. Then, we get:

P [{µt(β), β ∈ B} ⊂ KC1,C2 ] ≥ 1− P
[
sup
β∈B

[λt(β)−1] > C−1
1

]
− P

[
sup
β∈B
‖µt(β)‖ > C2/c

∗
]

≥ 1− C1E

[
sup
β∈B

[λt(β)−1]

]
− (c∗/C2)E

[
sup
β∈B
‖µt(β)‖

]
,

by the Markov inequality. The two expectations in the last line are finite by Regularity

Condition RC.3 (1ii), and Regularity Condition RC.2 (1i), which is implied by Regularity

Condition RC.3 (1). Then, for any η > 0, there exist C1 > 0 and C2 < ∞ such that

P [{µt(β), β ∈ B} ⊂ KC1,C2 ] ≥ 1− η.
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APPENDIX C
TECHNICAL LEMMAS

We provide Lemmas 1-8 in Sections C.1-C.8. The secondary Lemmas C.1-C.4 used in

the proofs of Lemmas 1-8 are given in Section C.9.

C.1 Lemma 1

LEMMA 1 Under Assumptions A.1-A.5 and H.1-H.6, H.7 (i)-(ii), H.8-H.10, H.13, and if

n, T → ∞ such that T ν/n = O(1), for ν > 1, we have: (i) sup
β∈B
|L∗nT (β)− L∗(β)| = op(1),

where functions L∗nT (β) and L∗(β) are defined in equations (3.7) and (4.4), respectively;

(ii) sup
β∈B, θ∈Θ

|L1,nT (β, θ)− L1(β, θ)| = op(1), where functions L1,nT (β, θ) and L1(β, θ) are

defined in equations (3.8) and (a.10), respectively.

Proof of Lemma 1 (i): We apply Limit Theorem 3 in Appendix B.3 with a(yi,t, yi,t−1, ft, β) =

log h(yi,t|yi,t−1, ft; β) and ϕ being the identity mapping. Let us check Regularity Condition

RC.2 in Appendix B.3. Regularity Condition RC.2 (1i) is implied by Assumption H.3 (ii) in

Appendix A.1. To check Regularity Condition RC.2 (1ii), we use sup
β∈B

∥∥∥∥∂ log h(yi,t|yi,t−1, ft(β); β)

∂β

∥∥∥∥
≤ sup

β∈B

∥∥∥∥∂ log h

∂β
(yi,t|yi,t−1, ft(β); β)

∥∥∥∥ + sup
β∈B

∥∥∥∥∂ log h

∂f
(yi,t|yi,t−1, ft(β); β)

∥∥∥∥ sup
β∈B

∥∥∥∥∂ft(β)

∂β′

∥∥∥∥ and

sup
β∈B

∥∥∥∥∂ft(β)

∂β′

∥∥∥∥ ≤ c̃ξ∗t,1(ξ∗∗t,1)1/2, from equation (b.3) in Section B.1, where processes ξ∗t,1 and ξ∗∗t,1

are defined in Assumption H.5 in Appendix A.1, and c̃ > 0 is a constant. Then, Regularity

Condition RC.2 (1ii) is implied by Assumptions H.3 (ii) and H.5 in Appendix A.1. Regular-

ity Conditions RC.2 (1iii, iv, v) are implied by Assumptions H.4 (ii) and H.5 in Appendix

A.1. Finally, Regularity Condition RC.2 (2) in Appendix B.3 is satisfied, since the identity

mapping is Lipschitz continuous and E0[|ϕ(µt(β))|] ≤ E0[| log h(yi,t|yi,t−1, ft; β)|] < ∞ from

Assumption H.3 (ii). Thus, the smoothness regularity conditions to apply Limit Theorem 3

are satisfied.

Proof of Lemma 1 (ii): Let us write L1,nT (β, θ) = L11,nT (β) + L12,nT (β, θ), where

L11,nT (β) = −1

2

T∑
t=1

log det In,t(β) and L12,nT (β, θ) =
1

T

T∑
t=1

log g
(
f̂n,t(β)|f̂n,t−1(β); θ

)
. To

show the uniform convergence of L11,nT (β), we apply Limit Theorem 3 with a(yi,t, yi,t−1, ft, β) =

37



−∂
2 log h(yi,t|yi,t−1, ft; β)

∂ft∂f ′t
, µt(β) = E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂ft∂f ′t
|ft
]

= It,ff (β), and ϕ(x) =

log det(x), for x a symmetric positive definite (m,m) matrix. Regularity Condition RC.3 (1)

in Appendix B.3 is implied by Assumptions H.3, H.4 (iii) and H.5. In Lemma C.1 in Ap-

pendix C.9.1 we show that mapping ϕ satisfies Regularity Condition RC.3 (2). Then, from

Limit Theorem 3 it follows that L11,nT (β) converges to −1

2
E0[log det It,ff (β)] in probability,

uniformly w.r.t. β ∈ B.

To show the uniform convergence of L12,nT (β, θ), we apply Limit Theorem 2 withG(ft, ft−1; θ) =

log g(ft|ft−1; θ). Regularity Condition RC.1 in Appendix B.2 is implied by Assumptions H.5

and H.13 in Appendix A.1. Then, L12,nT (β, θ) converges to E0[log g(ft(β)|ft−1(β); θ)] in

probability, uniformly w.r.t. β ∈ B, θ ∈ Θ.

C.2 Lemma 2

LEMMA 2 Under Assumptions A.1-A.5 and H.1-H.3, H.5-H.11, and if T ν/n = O(1),

ν > 1, we have inf
1≤t≤T

inf
β∈B

inf
ft∈Fn

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

‖f̂n,t(β)− ft‖2
≥ C2

[log(n)]C3
, w.p.a. 1, for some

constants C2, C3 > 0 , where Ln,t(f ; β) =
1

n

n∑
i=1

log h(yi,t|yi,t−1, f ; β).

Proof of Lemma 2: To simplify the notation, we assume that ft is scalar, i.e., m = 1. Let

η > 0. We have:

P

[
inf

1≤t≤T
inf
β∈B

inf
ft∈Fn

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

[f̂n,t(β)− ft]2
≤ C2

[log(n)]C3

]

≤ P

[
inf

1≤t≤T
inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≤η

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

[f̂n,t(β)− ft]2
≤ C2

[log(n)]C3

]

+P

[
inf

1≤t≤T
inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≥η

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

[f̂n,t(β)− ft]2
≤ C2

[log(n)]C3

]
≡ P1,nT + P2,nT .

(c.1)

Let us now show that probabilities P1,nT and P2,nT are o(1), for suitable constants C2, C3 > 0.
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i) Proof that P1,nT = o(1)

By a Taylor expansion of function Ln,t(ft; β) around ft = f̂n,t(β), and by using that

∂Ln,t(f̂n,t(β); β)

∂ft
= 0, w.p.a. 1, we get:

P1,nT ≤ P

[
inf

1≤t≤T
inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≤η

−∂
2Ln,t(ft; β)

∂f 2
t

≤ 2C2

[log(n)]C3

]
+ o(1).

Since f̂n,t(β) converges uniformly to ft(β) (Limit Theorem 1 in Appendix B.1), we have

w.p.a. 1:

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≤η

−∂
2Ln,t(ft; β)

∂f 2
t

≥ inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−ft(β)|≤2η

−∂
2Ln,t(ft; β)

∂f 2
t

≥ inf
1≤t≤T

inf
β∈B

inf
f∈Fn:|f−ft(β)|≤2η

E0

[
−∂

2 log h(yi,t|yi,t−1, f ; β)

∂f 2
|ft
]

− sup
1≤t≤T

sup
β∈B

sup
f∈Fn

∣∣∣∣∣ 1n
n∑
i=1

∂2 log h(yi,t|yi,t−1, f ; β)

∂f 2
− E0

[
∂2 log h(yi,t|yi,t−1, f ; β)

∂f 2
|ft
]∣∣∣∣∣ . (c.2)

If constant η > 0 is such that 2η ≤ η∗, where η∗ is defined in Assumption H.5 in Appendix

A.1, then the first term in the RHS of inequality (c.2) is such that:

inf
β∈B

inf
f∈Fn:|f−ft(β)|≤2η

E0

[
−∂

2 log h(yi,t|yi,t−1, f ; β)

∂f 2
|ft
]
≥ (ξt,1)−1,

where process ξt,1 is defined in Assumption H.5 in Appendix A.1. Moreover, in Lemma

C.2 in Appendix C.9.2 we show that the second term in the RHS of inequality (c.2) is

Op

(
[log(n)]δ3√

n

)
, for a constant δ3 > 0. Then, from inequality (c.2) we get w.p.a. 1:

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≤η

−∂
2Ln,t(ft; β)

∂f 2
t

≥ inf
1≤t≤T

(ξt,1)−1 − C2

[log(n)]C3
.

Then, it follows:

P1,nT ≤ P
[

inf
1≤t≤T

(ξt,1)−1 ≤ 3C2

[log(n)]C3

]
+ o(1) = P

[
sup

1≤t≤T
ξt,1 ≥

[log(n)]C3

3C2

]
+ o(1)

≤ TP
[
ξt,1 ≥

[log(n)]C3

3C2

]
+ o(1).
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Thus, from Assumption H.5 we get:

P1,nT ≤ b1T exp

(
−c1

(
[log(n)]C3

3C2

)d1)
+ o(1) = O(T/n) + o(1) = o(1),

if C2 and C3 are such that C3 ≥ 1/d1 and c1(1/(3C2))d1 ≥ 1, i.e., C2 ≤
1

3
c

1/d1
1 .

ii) Proof that P2,nT = o(1)

Let us first derive a lower bound for inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≥η

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

[f̂n,t(β)− ft]2
.

From Assumption H.7 (iii), the uniform convergence of f̂n,t(β) to ft(β) (Limit Theorem 1 in

Appendix B.1) and by using that Ln,t(f̂n,t(β); β)−Ln,t(ft; β) ≥ 0 for ft ∈ Fn and β ∈ B, we

have w.p.a. 1:

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≥η

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

[f̂n,t(β)− ft]2

≥ 1

4R2
n

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≥η

[Ln,t(f̂n,t(β); β)− Ln,t(ft; β)]

≥ 1

4R2
n

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−ft(β)|≥η/2

[Ln,t(f̂n,t(β); β)− Ln,t(ft; β)], (c.3)

where Rn is defined in Assumption H.7 (iii). Moreover, we have:

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−ft(β)|≥η/2

[Ln,t(f̂n,t(β); β)− Ln,t(ft; β)]

≥ inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−ft(β)|≥η/2

[Lt(ft(β); β)− Lt(ft; β)]

− sup
1≤t≤T

sup
β∈B

∣∣∣Ln,t(f̂n,t(β); β)− Ln,t(ft(β); β)
∣∣∣− 2 sup

1≤t≤T
sup
β∈B

sup
ft∈Fn

|Ln,t(ft; β)− Lt(ft; β)| , (c.4)

where:

Lt(f ; β) = E0

[
log h(yi,t|yi,t−1, f ; β)|ft

]
. (c.5)

From Assumption H.8, the first term in the RHS of inequality (c.4) is such that:

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−ft(β)|≥η/2

[Lt(ft(β); β)− Lt(ft; β)]

≥ η2

4
inf

1≤t≤T
inf
β∈B

inf
ft∈Fn:|ft−ft(β)|≥η/2

Lt(ft(β); β)− Lt(ft; β)

[ft − ft(β)]2
≥ η2

8[log(n)]γ2
inf

1≤t≤T
Kt. (c.6)
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Moreover, in Lemma C.3 in Appendix C.9.3 we prove that the second and third terms in

the RHS of inequality (c.4) are Op

(
[log(n)]δ4

n

)
and Op

(
[log(n)]δ5√

n

)
, respectively, for some

constants δ4, δ5 > 0. Then, from inequalities (c.3)-(c.6) and by using Rn ≤ C4[log(n)]γ1 , with

C4, γ1 > 0 [see Assumption H.7 (iii)], we get w.p.a. 1:

inf
1≤t≤T

inf
β∈B

inf
ft∈Fn:|ft−f̂n,t(β)|≥η

Ln,t(f̂n,t(β); β)− Ln,t(ft; β)

[f̂n,t(β)− ft]2

≥ η2

32R2
n[log(n)]γ2

inf
1≤t≤T

Kt +Op

(
[log(n)]δ4

nR2
n

)
+Op

(
[log(n)]δ5√

nR2
n

)
,

≥ η2

32C2
4 [log(n)]γ2+2γ1

inf
1≤t≤T

Kt −
C2

[log(n)]C3
.

From the definition of probability P2,nT in equation (c.1), we get:

P2,nT ≤ P
[

η2

32C2
4 [log(n)]γ2+2γ1

inf
1≤t≤T

Kt ≤
2C2

[log(n)]C3

]
+ o(1)

≤ P
[

inf
1≤t≤T

Kt ≤
64C2C

2
4

η2[log(n)]C3−γ2−2γ1

]
+ o(1) = P

[
sup

1≤t≤T
K−1
t ≥

η2[log(n)]C3−γ2−2γ1

64C2C2
4

]
+ o(1)

≤ TP
[
K−1
t ≥

η2[log(n)]C3−γ2−2γ1

64C2C2
4

]
+ o(1).

From Assumption H.10 we get:

P2,nT ≤ b3T exp

(
−c3

[
η2[log(n)]C3−γ2−2γ1

64C2C2
4

]d3)
+ o(1) = O(T/n) + o(1) = o(1),

if C2, C3 are such that (C3−γ2−2γ1)d3 ≥ 1 and c3[η2/(64C2C
2
4)]d3 ≥ 1, i.e., C3 ≥ γ2 + 2γ1 +

1/d3 and C2 ≤
η2c

1/d3
3

64C2
4

.

C.3 Lemma 3

LEMMA 3 Let us define the sequence κn = 2[log(n)/C6]C7, for n ∈ N, where constants

C6, C7 > 0 are such that C6 ≤ min{c1, c5} and C7 ≥ max{3/d1, 2/d5}, for c1, d1 > 0 and

c5, d5 > 0 defined in Assumptions H.5 and H.13 (iii), respectively. Then, under Assumptions

A.1-A.5 and H.1, H.2, H.5-H.11, H.13 (iii) and if T ν/n = O(1), ν > 1, w.p.a. 1, we have:

(i) inf
1≤t≤T

inf
β∈B

In,t(β) ≥ κ−1
n , (ii) sup

1≤t≤T
sup
β∈B

In,t(β) ≤ κn, (iii) sup
1≤t≤T

sup
β∈B

J̃3,n,t(β) ≤ κn, and (iv)
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sup
1≤t≤T

sup
β∈B,θ∈Θ

D̃pq,n,t(β, θ) ≤ κn , for p+ q = 1, where In,t(β) is defined in equation (3.4), and

J̃3,n,t(β) and D̃pq,n,t(β, θ) are as in equation (a.14).

Proof of Lemma 3 (i): By using Limit Theorem 1 in Appendix B.1 and the mean-value

theorem, we have w.p.a. 1:

inf
1≤t≤T

inf
β∈B

In,t(β) ≥ inf
1≤t≤T

inf
β∈B

E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂f 2
|ft
]

− sup
1≤t≤T

sup
β∈B

sup
f∈Fn

∣∣∣∣∣ 1n
n∑
i=1

∂2 log h(yi,t|yi,t−1, f ; β)

∂f 2
− E0

[
∂2 log h(yi,t|yi,t−1, f ; β)

∂f 2
|ft
]∣∣∣∣∣

− sup
1≤t≤T

sup
β∈B

E0

[
sup

f :|f−ft(β)|≤η∗

∣∣∣∣∂3 log h(yi,t|yi,t−1, f ; β)

∂f 3

∣∣∣∣ |ft
] ∣∣∣f̂n,t(β)− ft(β)

∣∣∣ ,
for η∗ > 0. The first term in the RHS is such that inf

β∈B
E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂f 2
|ft
]
≥

(ξ∗t,1)−1 ≥ (ξt,1)−1, where processes ξt,1 are ξ∗t,1 are defined in Assumption H.5 in Appendix

A.1. Moreover, from Lemma C.2 in Appendix C.9.2, Limit Theorem 1 in Appendix B.1 and

Assumption H.5, the second and third terms in the RHS are Op

(
(log n)max{δ2,δ3}

√
n

)
, where

constants δ2 > 0 and δ3 > 0 are defined in Limit Theorem 1 and Lemma C.2, respectively.

Therefore, we get w.p.a. 1:

inf
1≤t≤T

inf
β∈B

In,t(β) ≥ inf
1≤t≤T

(ξt,1)−1 +Op

(
(log n)max{δ2,δ3}

√
n

)
≥ inf

1≤t≤T
(ξt,1)−1 − κ−1

n . (c.7)

Thus:

P
[

inf
1≤t≤T

inf
β∈B

In,t(β) ≥ κ−1
n

]
≥ P

[
inf

1≤t≤T
(ξt,1)−1 ≥ 2κ−1

n

]
+ o(1)

= 1− P
[

sup
1≤t≤T

ξt,1 ≥ κn/2

]
+ o(1)

≥ 1− TP [ξt,1 ≥ κn/2] + o(1).

From Assumption H.5 and the definition of κn, we have P [ξt,1 ≥ κn/2] ≤ b1 exp
(
−c1(κn/2)d1

)
≤

b1/n, since c1(κn/2)d1 ≥ log(n). Then, we get P
[

inf
1≤t≤T

inf
β∈B

In,t(β) ≥ κ−1
n

]
≥ 1−O(T/n) + o(1) = 1− o(1), since T/n→ 0.
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Proof of Lemma 3 (ii): Similarly, we have w.p.a. 1:

sup
1≤t≤T

sup
β∈B

In,t(β) ≤ sup
1≤t≤T

sup
β∈B

E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂f 2
|ft
]

+ κn/2.

Moreover, sup
β∈B

E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂f 2
|ft
]
≤ (ξ∗∗t,1)1/2 ≤ (ξt,1)1/2, where processes ξt

and ξ∗∗t,1 are defined in Assumption H.5. Then, we get:

P
[

sup
1≤t≤T

sup
β∈B

In,t(β) ≤ κn

]
≥ P

[
sup

1≤t≤T
(ξt,1)1/2 ≤ κn/2

]
+ o(1)

≥ 1− TP
[
ξt,1 ≥ (κn/2)2

]
+ o(1)

≥ 1− Tb1 exp
(
−c1(κn/2)2d1

)
= 1−O(T/n)− o(1) = 1− o(1),

from Assumption H.5, the definition of κn and the condition T/n→ 0.

Proof of Lemma 3 (iii): From the uniform convergence of f̂n,t(β) to ft(β) (Limit Theorem

1 in Appendix B.1), and since sequence εn involved in the definition of J̃3,nt(β) is such that

εn = o(1) (see Appendix A.2.1), we have for any η > 0, w.p.a. 1:

sup
1≤t≤T

sup
β∈B

J̃3,nt(β) ≤
(

inf
1≤t≤T

inf
β∈B

In,t(β)

)−3/2

sup
1≤t≤T

sup
β∈B

sup
ft:|ft−ft(β)|≤η

∣∣∣∣∂3Ln,t (ft; β)

∂f 3
t

∣∣∣∣ .
Moreover, we have inf

1≤t≤T
inf
β∈B

In,t(β) ≥ inf
1≤t≤T

(ξt,1)−1 + Op

(
(log n)max{δ2,δ3}

√
n

)
from inequality

(c.7), and:

sup
1≤t≤T

sup
β∈B

sup
ft:|ft−ft(β)|≤η

∣∣∣∣∂3Ln,t (ft; β)

∂f 3
t

∣∣∣∣ ≤ sup
1≤t≤T

sup
β∈B

sup
ft:|ft−ft(β)|≤η

∣∣∣∣∂3Lt (ft; β)

∂f 3
t

∣∣∣∣
+ sup

1≤t≤T
sup
β∈B

sup
ft:|ft−ft(β)|≤η

∣∣∣∣∂3Ln,t (ft; β)

∂f 3
t

− ∂3Lt (ft; β)

∂f 3
t

∣∣∣∣
≤ sup

1≤t≤T
(ξt,1)1/2 +Op

(
[log(n)]δ6√

n

)
,

for some constant δ6 > 0, by similar arguments as in Lemma C.2 in Appendix C.9.2. Thus,

we have w.p.a. 1:

sup
1≤t≤T

sup
β∈B

J̃3,nt(β) ≤ sup
1≤t≤T

(ξt,1)2 + κn/2.
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Then, from Assumption H.5 and the condition T/n = o(1), we get:

P
[

sup
1≤t≤T

sup
β∈B

J̃3,nt(β) ≤ κn

]
≥ P

[
sup

1≤t≤T
(ξt,1)2 ≤ κn/2

]
+ o(1) ≥ 1− TP

[
ξt,1 ≥

√
κn/2

]
+ o(1)

≥ 1− Tb1 exp
(
−c1(κn/2)d1/2

)
+ o(1) = 1− o(1),

since c1(κn/2)d1/2 ≥ log(n) and T/n = o(1). Lemma 3 (iii) follows.

Proof of Lemma 3 (iv): By similar arguments as in the proofs of Lemmas 3 (i-iii), we

have w.p.a. 1:

sup
1≤t≤T

sup
β∈B,θ∈Θ

D̃pq,nt(β, θ) ≤ sup
1≤t≤T

(ξt,1)1/2 sup
β∈B,θ∈Θ

sup
Ft:‖Ft−Ft(β)‖≤η∗

∣∣∣∣∂p+q log g(ft|ft−1; θ)

∂f pt ∂f
q
t−1

∣∣∣∣+ κn/2

≤ sup
1≤t≤T

(ξt,1)1/2ξt,5 + κn/2,

for p + q = 1, where Ft = (f ′t , f
′
t−1)′, η∗ > 0 and process ξt,5 is defined in Assumption H.13

(iii). Then:

P
[

sup
1≤t≤T

sup
β∈B,θ∈Θ

D̃pq,nt(β, θ) ≤ κn

]
≥ P

[
sup

1≤t≤T
(ξt,1)1/2ξt,5 ≤ κn/2

]
≥ 1− TP

[
(ξt,1)1/2 ≥

√
κn/2

]
− TP

[
ξt,5 ≥

√
κn/2

]
+ o(1).

Thus, from Assumptions H.5 and H.13 (iii) we get:

P
[

sup
1≤t≤T

sup
β∈B,θ∈Θ

D̃pq,nt(β, θ) ≤ κn

]
≥ 1− Tb1 exp

(
−c1(κn/2)d1

)
− Tb5 exp

(
−c5(κn/2)d5/2

)
+o(1) = 1− o(1),

since c1(κn/2)d1 ≥ log(n), c5(κn/2)d5/2 ≥ log(n) and T/n = o(1).

C.4 Lemma 4

LEMMA 4 Let κn = 2[log(n)/C6]C7, for n ∈ N, be the sequence in Lemma 3, where

the constants C6, C7 > 0 are such that C6 ≤ min{c1, c5} and C7 ≥ max{5/d1, 2/d5},
for c1, d1 > 0 and c5, d5 > 0 defined in Assumptions H.5 and H.13 (iii), respectively.

Then, under Assumptions A.1-A.5, H.1, H.2, H.5-H.11, H.13 (iii), and if T ν/n = O(1),
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ν > 1, w.p.a. 1 we have: (i) sup
1≤t≤T

sup
β∈B
|J4,n,t(β)| ≤ κn, (ii) sup

1≤t≤T
sup
β∈B

J̃5,n,t(β) ≤ κn, (iii)

sup
1≤t≤T

sup
β∈B,θ∈Θ

|Dpq,n,t(β, θ)| ≤ κn, for p + q ≤ 2 and (iv) sup
1≤t≤T

sup
β∈B,θ∈Θ

D̃pq,n,t(β, θ) ≤ κn, for

p + q = 3, where J4,n,t(β) and Dpq,n,t(β, θ) are defined in Proposition 1, and J̃5,n,t(β) and

D̃pq,n,t(β, θ) are defined as in equation (a.21).

Proof of Lemma 4: The proof of Lemma 4 is similar to the proof of Lemma 3 in Section

C.3.

C.5 Lemma 5

LEMMA 5 Under Assumptions A.1-A.5, H.1, H.2, H.5-H.11, H.13 (iii), and if T ν/n =

O(1), ν > 1, we have for any integer j ≥ 3:

Λj,nT (β, θ) ≤ C∗j

(
T 2κjn
n2

)
, (c.8)

and:

Λj,nT (β, θ) ≤ C8κ
2j
n j!

(
T

n
+
√
Tε2

n

)j
, (c.9)

uniformly in β ∈ B, θ ∈ Θ, w.p.a. 1, for some constants C∗j > 0, j = 3, 4, ..., and C8 > 0,

where functions Λj,nT (β, θ), for j ∈ N, are defined in equation (a.22), sequence εn ↓ 0

involved in the definition of Λj,nT (β, θ) is such that
T

nε2
n

= O(n−µ1), µ1 > 0, and constants

κn, n ∈ N, are defined in Lemma 3.

Proof of Lemma 5: The bound in (c.8) is derived by similar arguments as in parts a)-

c) of the proof of Proposition A.4 in Appendix A.2.1 iii). Let us derive the bound given

in (c.9) for m = 1. Lemma 3 (ii) implies that, if z ∈ ZnT (β), then ‖z‖2 ≤ nε2
nκn, and

hence z ∈ [−
√
nε2

nκn,
√
nε2

nκn]T , uniformly in β ∈ B, w.p.a. 1, where ZnT (β) is defined in

Proposition A.1 in Appendix A.2.1. The mass of the hypercube [−
√
nε2

nκn,
√
nε2

nκn]T in

RT under a standard multivariate Gaussian distribution is V T
n , where Vn ≡

∫ √nε2nκn

−
√
nε2nκn

φ(s)ds

and φ denotes the pdf of the standard Gaussian distribution. We have V T
n = 1− o(1) under
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condition
T

nε2
n

= O(n−µ1), µ1 > 0. Then, we have:

Λj,nT (β, θ)

V T
n

≤ 1

V T
n

1

(2π)T/2

∫
[
−
√
nε2nκn,

√
nε2nκn

]T exp

(
−1

2
‖z‖2

)

·

[
T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; β, θ

)]j
dz

= EnT

( T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; β, θ

))j
 ,

w.p.a. 1, where EnT [.] denotes expectation w.r.t. a random vector z in RT with truncated

standard Gaussian density on [−
√
nε2

nκn,
√
nε2

nκn]T . Let us now use the bound for ψn,t in

equation (a.20). By applying the triangular inequality, we get:

[
Λj,nT (β, θ)

V T
n

]1/j

≤ EnT

( 1

3!
√
n

T∑
t=1

J3,nt(β)z3
t

)j
1/j

+ EnT

( 1

4!n

T∑
t=1

J4,nt(β)z4
t

)j
1/j

+EnT

( 1√
n

T∑
t=1

D10,nt(β, θ)zt

)j
1/j

+ EnT

( 1√
n

T∑
t=1

D01,nt(β, θ)zt−1

)j
1/j

+EnT

( 1

2n

T∑
t=1

D20,nt(β, θ)z
2
t

)j
1/j

+ EnT

( 1

2n

T∑
t=1

D02,nt(β, θ)z
2
t−1

)j
1/j

+EnT

( 1

n

T∑
t=1

D11,nt(β, θ)ztzt−1

)j
1/j

+ EnT

( T∑
t=1

Rn,t(zt, zt−1; β, θ)

)j
1/j

≡
8∑

k=1

Ak,j,nT (β, θ)1/j, (c.10)

w.p.a. 1. Let us now show that:

Ak,j,nT (β, θ) ≤ C̃8j!κ
2j
n

(
T

n
+
√
Tε2

n

)j
, (c.11)

uniformly in β ∈ B, θ ∈ Θ, for all j = 3, 4, ... and k = 1, ..., 8, and for some constant C̃8 > 0.

Then, by using that V T
n = 1− o(1), inequality (c.9) follows.
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We prove the upper bound for term Ak,j,nT (β, θ) with k = 2 and j even; the proof for the

other indices k, and for j odd, is similar. We have from Lemma 4 (i):

EnT

( 1

4!n

T∑
t=1

J4,nt(β)z4
t

)j
 ≤ κjn

(4!n)j

min{j,T}∑
l=1

∑
t1,...,tl

∑
m1+...+ml=j

En
[
z4m1
t1

]
· · ·En

[
z4ml
tl

]
≤ κjn

(4!n)j

min{j,T}∑
l=1

T l
∑

m1+...+ml=j

En
[
z4m1
t

]
· · ·En

[
z4ml
t

]
, (c.12)

uniformly in β ∈ B, where En[.] denotes expectation w.r.t. a random variable zt with

truncated standard Gaussian density on the interval [−
√
nε2

nκn,
√
nε2

nκn],
∑
t1,...,tl

denotes

summation over all l-tuples (t1, ..., tl) of different indices from 1, 2, ..., T , and
∑

m1+...+ml=j

denotes summation over all l-tuples (m1, ...,ml) of integers from N∗ such thatm1+...+ml = j.

The number of such l-tuples (t1, ..., tl) and (m1, ...,ml) is T (T − 1) · · · (T − l + 1) ≤ T l, and(
j − 1

l − 1

)
, respectively. Let us now show that the product En

[
z4m1
t

]
· · ·En

[
z4ml
t

]
, for l ≤ j

and m1 + · · ·+ml = j, satisfies the following two bounds:

En
[
z4m1
t

]
· · ·En

[
z4ml
t

]
≤ 2j+1j!(nε2

nκn)j, (c.13)

En
[
z4m1
t

]
· · ·En

[
z4ml
t

]
≤ 4l(nε2

nκn)2(j−l). (c.14)

a) Proof of inequality (c.13). To prove the bound in (c.13), we distinguish two cases.

(*) The first case is when 2mk ≥ j for an index k ∈ {1, ..., l}. Without loss of generality,

let k = 1 be that index. Then, we deduce that:

En
[
z4m1
t

]
· · ·En

[
z4ml
t

]
≤ En

[
z2j
t

]
(nε2

nκn)2m1−jEn
[
z4
t

]
(nε2

nκn)2m2−2 · · ·En
[
z4
t

]
(nε2

nκn)2ml−2

≤ V −ln 2jj!3l−1(nε2
nκn)j−2(l−1) ≤ 2jj!(nε2

nκn)j,

for large n, since En[z4
t ] ≤ 3V −1

n , En[z2j
t ] ≤ 2jj!V −1

n , and Vn = 1− o(1).

(**) The second case is when 2mk < j for all k = 1, ..., l. Let a1, ..., al ≥ 1 be such that

ak ≤ 2mk, for all k = 1, ..., l, and a1 + a2 + ...+ al = j. Then, by the Holder inequality:

En
[
z4m1
t

]
· · ·En

[
z4ml
t

]
≤ En

[
z2a1
t

]
(nε2

nκn)2m1−a1 · · ·En
[
z2al
t

]
(nε2

nκn)2ml−al

≤ En
[
z2j
t

]a1/j · · ·En
[
z2j
t

]al/j
(nε2

nκn)j = En
[
z2j
t

]
(nε2

nκn)j ≤ V −1
n 2jj!(nε2

nκn)j,
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which yields inequality (c.13).

b) Proof of inequality (c.14). The upper bound in (c.14) follows from:

En
[
z4m1
t

]
· · ·En

[
z4ml
t

]
≤ En

[
z4
t

]
(nε2

nκn)2(m1−1) · · ·En
[
z4
t

]
(nε2

nκn)2(ml−1) ≤ V −ln 3l(nε2
nκn)2(j−l)

≤ 4l(nε2
nκn)2(j−l).

Now, let us upper bound the RHS of inequality (c.12) by using the bound in (c.13) for

the terms with l ≤ j/2, and the bound in (c.14) for the terms with l > j/2. We get:

EnT

( 1

4!n

T∑
t=1

J4,nt(β)z4
t

)j
 ≤ κjn

(4!n)j

min{j/2,T}∑
l=1

T l
(
j − 1

l − 1

)
2j+1j!(nε2

nκn)j

+
κjn

(4!n)j

j∑
l=j/2

T l
(
j − 1

l − 1

)
4l(nε2

nκn)2(j−l)

≤ 2

(√
Tε2

nκ
2
n

12

)j

j!

j/2∑
l=1

(
j − 1

l − 1

)
+

κjn
(4!n)j

j/2∑
l=0

(4T )j−l
(

j − 1

j − l − 1

)
(nε2

nκn)2l

≤ 2

(√
Tε2

nκ
2
n

6

)j

j! +

(
κ2
n

6

)j
j!

j/2∑
l=0

(
T

n

)j−2l (√
Tε2

n

)2l

≤ 3j!

(
κ2
n

6

)j (
T

n
+
√
Tε2

n

)j
.

Then, the bound in (c.11) for k = 2 follows.

C.6 Lemma 6

LEMMA 6 Under Assumptions A.1-A.5 and H.1-H.10, H.13 (iii), H.14, and if n, T →∞
such that T ν/n = O(1), ν > 1, we have:

(1) (i) sup
β∈B

∥∥∥∥∂2L∗nT (β)

∂β∂β ′
− ∂2L∗ (β)

∂β∂β ′

∥∥∥∥ = op(1), (ii) sup
β∈B, θ∈Θ

∥∥∥∥∂2L1,nT (β, θ)

∂θ∂θ′
− ∂2L1 (β, θ)

∂θ∂θ′

∥∥∥∥ =

op(1), where functions L∗nT (β), L∗(β), L1,nT (β, θ) and L1(β, θ) are as in Lemma 1;

(2) (i) sup
β∈B,θ∈Θ

∥∥∥∥∂L1,nT (β, θ)

∂β

∥∥∥∥ = Op(1), (ii) sup
β∈B,θ∈Θ

∥∥∥∥∂L2,nT (β, θ)

∂(β′, θ′)′

∥∥∥∥ = Op(1),

(iii) sup
β∈B,θ∈Θ

∥∥∥∥∂2L1,nT (β, θ)

∂β∂β ′

∥∥∥∥ = Op(1), (iv) sup
β∈B,θ∈Θ

∥∥∥∥∂2L1,nT (β, θ)

∂β∂θ′

∥∥∥∥ = Op(1),

(v) sup
β∈B,θ∈Θ

∥∥∥∥ ∂2L2,nT (β, θ)

∂(β′, θ′)′∂(β′, θ′)

∥∥∥∥ = Op(1), where function L2,nT (β, θ) is defined in equa-

tion (3.10);
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(3) (i) sup
β∈B,θ∈Θ

∥∥∥∥∂ΨnT (β, θ)

∂β

∥∥∥∥ = op(1/n), (ii) sup
β∈B,θ∈Θ

∥∥∥∥∂ΨnT (β, θ)

∂θ

∥∥∥∥ = Op

(
[log(n)]C9

n3/2

)
,

for a constant C9 > 0, where ΨnT (β, θ) is the remainder term in the log-likelihood

expansion (3.6).

Moreover, if n, T →∞ such that T ν/n = O(1), ν > 3/2, we have:

(4) sup
β∈B,θ∈Θ

∥∥∥∥∥∂Ψ̃nT (β, θ)

∂(β′, θ′)′

∥∥∥∥∥ = op(1/n
2), where Ψ̃nT (β, θ) is the remainder term in the log-

likelihood expansion (3.9).

Proof of Lemma 6 (1i): From the definition of function L∗nT (β) given in equation (3.7),

we get by differentiation:

∂L∗nT (β)

∂β
=

1

nT

T∑
t=1

n∑
i=1

∂ log h

∂β

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
+

1

nT

T∑
t=1

∂f̂n,t (β)
′

∂β

n∑
i=1

∂ log h

∂ft

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
︸ ︷︷ ︸

=0

=
1

nT

T∑
t=1

n∑
i=1

∂ log h

∂β

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
,

and:

∂2L∗nT (β)

∂β∂β ′
=

1

nT

T∑
t=1

n∑
i=1

∂2 log h

∂β∂β ′

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
+

1

nT

T∑
t=1

n∑
i=1

∂2 log h

∂β∂f
′
t

(
yi,t|yi,t−1, f̂n,t (β) ; β

) ∂f̂n,t (β)

∂β ′
.

By differentiating the f.o.c.
n∑
i=1

∂ log h

∂ft

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
= 0 w.r.t. β, we get:

n∑
i=1

∂2 log h

∂ft∂β
′

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
+

n∑
i=1

∂2 log h

∂ft∂f
′
t

(
yi,t|yi,t−1, f̂n,t (β) ; β

) ∂f̂n,t (β)

∂β ′
= 0.
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Let us introduce the notation:

Ît,ββ(β) ≡ − 1

n

n∑
i=1

∂2 log h

∂β∂β ′

(
yi,t|yi,t−1, f̂nt (β) ; β

)
,

and similarly Ît,βf (β), Ît,ff (β). Then, we get:

∂f̂n,t (β)

∂β ′
= −Ît,ff (β)−1Ît,fβ(β), (c.15)

and

−∂
2L∗nT (β)

∂β∂β ′
=

1

T

T∑
t=1

[
Ît,ββ(β)− Ît,βf (β)Ît,ff (β)−1Ît,fβ(β)

]
.

Then, Lemma 6 (1i) follows by applying Limit Theorem 3 in Appendix B.3 with a(yi,t, yi,t−1, ft, β) =

−∂
2 log h(yi,t|yi,t−1, ft; β)

∂(β′, f ′t)
′∂(β′, f ′t)

and function ϕ(x) = (x11)−1, where x is a symmetric positive defi-

nite matrix in Rq+m,q+m and x11 denotes the upper-left (q, q) block of the inverse x−1. Indeed,

Regularity Condition RC.3 (1) in Appendix B.3 is satisfied by Assumptions H.3, H.4 (iii),

H.5 in Appendix A.1. Moreover, we prove in Lemma C.4 in Appendix C.9.4 that Regularity

Condition RC.3 (2) in Appendix B.3 is satisfied.

Proof of Lemma 6 (1ii): From the definition of function L1,nT (β, θ) given in equation

(3.8) we have:

∂2L1,nT (β, θ)

∂θ∂θ′
=

1

T

T∑
t=1

∂2 log g

∂θ∂θ′

(
f̂n,t (β) |f̂n,t−1 (β) ; θ

)
.

Then, Lemma 6 (1ii) follows by applying Limit Theorem 2 in Appendix B.2 with function

G(Ft; θ) =
∂2 log g(ft|ft−1; θ)

∂θ∂θ′
. Regularity Condition RC.1 in Appendix B.2 is implied by

Assumptions H.5 and H.14 in Appendix A.1.

Proof of Lemma 6 (3ii): From the proof of the CSA expansion of the log-likelihood

function [see Appendix A.2.1 ii)], we have ΨnT (β, θ) =
1

nT
log[ΛnT (β, θ) + ∆nT (β, θ)] '

1

nT
log[ΛnT (β, θ)]. We get:

∂ΨnT (β, θ)

∂θ
' 1

nT

1

ΛnT (β, θ)

∂ΛnT (β, θ)

∂θ
. (c.16)
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From the definition of ΛnT (β, θ) in equation (a.2) we have (for m = 1):

∂ΛnT (β, θ)

∂θ
=

1

(2π)T/2

∫
ZnT (β)

exp

(
−1

2

T∑
t=1

z2
t

)

· exp

[
T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; β, θ

)]

·

(
T∑
t=1

[
∂ log g

∂θ

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt|f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; θ

)
−∂ log g

∂θ

(
f̂n,t(β)|f̂n,t−1(β); θ

)])
dz.

Thus, from (c.16) we get:

∂ΨnT (β, θ)

∂θ

' 1

nT

T∑
t=1

EnT,β,θ

[
∂ log g

∂θ

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt|f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; θ

)
−∂ log g

∂θ

(
f̂n,t(β)|f̂n,t−1(β); θ

)]
,

where EnT,β,θ[·] denotes the expectation w.r.t. the random vector z in RT with density

proportional to

exp

[
−1

2

T∑
t=1

z2
t +

T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; β, θ

)]

on the support ZnT (β). By the mean value Theorem, we get:

sup
β∈B,θ∈Θ

∥∥∥∥∂ΨnT (β, θ)

∂θ

∥∥∥∥ .
1

n3/2

(
inf

1≤t≤T
inf
β∈B

In,t(β)

)−1/2

CnT sup
1≤t≤T

sup
β∈B,θ∈Θ

EnT,β,θ[|zt|], (c.17)

where:

CnT ≡ sup
β∈B,θ∈Θ

sup
1≤t≤T

sup
ft,ft−1

{∥∥∥∥∂2 log g(ft|ft−1; θ)

∂θ∂ft

∥∥∥∥+∥∥∥∥∂2 log g(ft|ft−1; θ)

∂θ∂ft−1

∥∥∥∥ : ‖ft − f̂n,t(β)‖+ ‖ft−1 − f̂n,t−1(β)‖ ≤ εn

}
,

51



and sequence εn ↓ 0 is involved in the definition of set ZnT (β) (see Appendix A.2.1). From

Lemma 3 (i) we have

(
inf

1≤t≤T
inf
β∈B

In,t(β)

)−1/2

= Op([log(n)]C7/2), for a constant C7 > 0.

Then, Lemma 6 (3ii) follows from inequality (c.17) and the next statements:

(a) CnT = Op([log(n)]δ7), for a constant δ7 > 0, and

(b) sup
1≤t≤T

sup
β∈B,θ∈Θ

EnT,β,θ[|zt|] = Op([log(n)]δ8), for a constant δ8 > 0.

Proof of statement (a): We use Limit Theorem 1 in Appendix B.1 and the convergence

εn = o(1). We have w.p.a. 1:

CnT ≤ sup
β∈B,θ∈Θ

sup
1≤t≤T

sup
ft,ft−1

{∥∥∥∥∂2 log g(ft|ft−1; θ)

∂θ∂ft

∥∥∥∥+∥∥∥∥∂2 log g(ft|ft−1; θ)

∂θ∂ft−1

∥∥∥∥ : ‖ft − ft(β)‖+ ‖ft−1 − ft−1(β)‖ ≤ η∗
}

≤ ξ∗t,5 + ξ∗∗t,5,

where η∗ > 0 is defined in Assumption H.13 (iii), and processes ξ∗t,5 and ξ∗∗t,5 are defined

as process ξt,5 in Assumption H.13 (iii) with G(Ft; θ) =
∂2 log g(ft|ft−1; θ)

∂θ∂ft
, and G(Ft; θ) =

∂2 log g(ft|ft−1; θ)

∂θ∂ft−1

, respectively. Then, statement (a) follows from Assumptions H.13 (iii)

and H.14.

Proof of statement (b): We use inequality (a.14) in Appendix A.2, |zt| ≤
√
nεnκ

1/2
n for

z ∈ ZnT (β), and Lemma 3 to get:∣∣∣∣ψn,t(f̂n,t (β) +
1√
n

[In,t (β)]−1/2 zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 zt−1; β, θ

)∣∣∣∣
≤ κ

3/2
n

3!
εn|zt|2 +

κn√
n
|zt|+

κn√
n
|zt−1| ≤ o(1)[z2

t + z2
t−1],

for z ∈ ZnT (β) such that |zt| ≥ 1 for all t = 1, ..., T , where term o(1) tends to zero. We

deduce that the distribution with density proportional to

exp

[
−1

2

T∑
t=1

z2
t +

T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1; β, θ

)]

on the support ZnT (β) has Gaussian tails.
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C.7 Lemma 7

LEMMA 7 Let us define the process ζn,t =

 ψn,β(t)− Iβf (t)Iff (t)−1ψn,f (t)
∂ log g

∂θ
(ft|ft−1; θ0)

, t ∈ N,

where ψn,β(t) =
1√
n

n∑
i=1

∂ log h

∂β
(yi,t|yi,t−1, ft; β0), ψn,f (t) =

1√
n

n∑
i=1

∂ log h

∂ft
(yi,t|yi,t−1, ft; β0),

and Iff (t), Iβf (t) are the (f, f) and (β, f) blocks of the information matrix I(t) defined in

equation (4.6). Then, under Assumptions A.1-A.5 and H.3 (ii), H.4 (iii), H.5, H.13 (iii),

H.15, and if T, n→∞ such that T ν/n = O(1), ν > 1, we have:

(i)
1√
T

max
1≤t≤T

‖ζn,t‖
p→ 0;

(ii)
1

T

T∑
t=1

ζn,tζ
′
n,t

p→ E[ζn,tζ
′
n,t] = Ω, where Ω =

(
I∗0 0

0 I1,θθ

)
and matrices I∗0 , I1,θθ are

defined in Proposition 3;

(iii)
1

T
E

(
max

1≤t≤T
‖ζn,t‖2

)
= O(1).

C.7.1 Proof of Lemma 7 (i)

Let ε > 0 be given. We have to prove that P
[

max
1≤t≤T

‖ζn,t‖ ≥ ε
√
T

]
= o(1). We use that

P
[

max
1≤t≤T

‖ζn,t‖ ≥ ε
√
T

]
≤ TP

[
‖ζn,t‖ ≥ ε

√
T
]
, and ‖ζn,t‖ ≤ ‖ζ∗n,t‖ + ‖ζ∗∗t ‖, where ζ∗n,t =

ψn,β(t)− Iβf (t)Iff (t)−1ψn,f (t) and ζ∗∗t =
∂ log g

∂θ
(ft|ft−1; θ0). Thus, we get:

P
[

max
1≤t≤T

‖ζn,t‖ ≥ ε
√
T

]
≤ TP

[
‖ζ∗n,t‖ ≥

1

2
ε
√
T

]
+ TP

[
‖ζ∗∗t ‖ ≥

1

2
ε
√
T

]
. (c.18)

The second term in the RHS of inequality (c.18) is bounded by using Assumption H.13 (iii):

TP
[
‖ζ∗∗t ‖ ≥

1

2
ε
√
T

]
≤ Tb5 exp

(
−c5(ε

√
T/2)d5

)
= o(1). (c.19)
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Let us now focus on the first term in the RHS of inequality (c.18). Let us write:

ζ∗n,t =
1√
n

n∑
i=1

Wi,t

=
1√
n

n∑
i=1

W̃n,i,t +
1√
n

n∑
i=1

(
Wi,t1{|Wi,t| ≥ Bn} − E[Wi,t1{|Wi,t| ≥ Bn}|ft]

)
≡ ζ̃n,t +Rn,t,

where:

Wi,t =
∂ log h

∂β
(yi,t|yi,t−1, ft; β0)− Iβf (t)Iff (t)

−1∂ log h

∂ft
(yi,t|yi,t−1, ft; β0), (c.20)

W̃n,i,t = Wi,t1{|Wi,t| ≤ Bn} − E[Wi,t1{|Wi,t| ≤ Bn}|ft], (c.21)

and:

Bn =

√
n

ε
. (c.22)

We have:

P
[
‖ζ∗n,t‖ ≥

1

2
ε
√
T

]
≤ P

[
‖ζ̃n,t‖ ≥

1

4
ε
√
T

]
+ P

[
‖Rn,t‖ ≥

1

4
ε
√
T

]
≡ P1,nT + P2,nT . (c.23)

Let us now bound the two probabilities in the RHS.

a) Bound of P1,nT . We have:

P1,nT = E

[
P

[∥∥∥∥∥ 1√
n

n∑
i=1

W̃n,i,t

∥∥∥∥∥ ≥ 1

4
ε
√
T

∣∣∣∣∣ ft
]]

. (c.24)

For expository purpose, let us assume that the micro-parameter β is scalar, i.e. q = 1, so

that the W̃n,i,t are scalar random variables. To bound the inner conditional probability, we

use Bernstein’s inequality [Bosq (1998), Theorem 1.2]. From (c.20) and (c.21), the random

variables W̃n,i,t, for i = 1, ..., n, are i.i.d., conditional on the factor path ft, with E[W̃n,i,t|ft] =

0 and V [W̃n,i,t|ft] ≤ E[W 2
i,t|ft] = Iββ(t) − Iβf (t)Iff (t)

−1Ifβ(t) = 1/Iββ(t), where Iββ(t)

denotes the upper-left element of the inverse matrix I(t)−1, and the conditional information

matrix I(t) is defined in equation (4.6). Moreover, |W̃n,i,t| ≤ 2Bn. Then, by the Bernstein’s
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inequality [Bosq (1998), Theorem 1.2] and (c.22), we get:

P

[∥∥∥∥∥ 1√
n

n∑
i=1

W̃n,i,t

∥∥∥∥∥ ≥ 1

4
ε
√
T

∣∣∣∣∣ ft
]
≤ 2 exp

(
− nTε2/16

4n/Iββ(t) +Bn

√
nTε

)
≤ 2 exp

(
− 1

64

√
Tε2(1/Iββ(t) + 1)−1

)
. (c.25)

From (c.24), we get:

P1,nT ≤ 2E

[
exp

(
− 1

64

√
Tε2(1/Iββ(t) + 1)−1

)]
. (c.26)

To bound the expectation in the RHS, we use Lemma B.2 in Section B.4.2 applied to the

stationary distribution of process 1/Iββ(t) + 1. We use:

1/Iββ(t) ≤
(
eigmin([I(t)]−1)

)−1
= eigmax(I(t)) ≤ c̃(ξ∗∗t,1)1/2,

for a constant c̃ > 0, where eigmin(A) and eigmax(A) denote the smallest and the largest

eigenvalue of the symmetric matrix A, and process ξ∗∗t,1 is defined in Assumption H.5. Then,

the condition of Lemma B.2 is satisfied with % = 2d1, where constant d1 > 0 is defined in

Assumption H.5. From Lemma B.2 we get:

E

[
exp

(
− 1

64

√
Tε2(1/Iββ(t) + 1)−1

)]
≤ C̃1 exp

(
−C̃2(

1

64

√
Tε2)2d1/(2d1+1)

)
, (c.27)

for some constants C̃1, C̃2 > 0. It follows:

TP1,nT ≤ 2TC̃1 exp

(
−C̃2(

1

64

√
Tε2)2d1/(2d1+1)

)
= o(1). (c.28)

b) Bound of P2,nT . From the expression of P2,nT in (c.23), and by using the Markov

inequality and equation (c.22), we have:

P2,nT ≤ 4

ε
√
T
E[‖Rn,t‖] ≤

8
√
n

ε
√
T
E[|Wi,t|1{|Wi,t| ≥ Bn}]

≤ 8
√
n

ε
√
T
B−3
n E[|Wi,t|4] =

8ε2

√
Tn

E[|Wi,t|4].

By using E[|Wi,t|4] <∞ from Assumptions H.3 (ii) and H.5, and the condition T ν/n = O(1),
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ν > 1, we get:

TP2,nT = O(
√
T/n) = o(1). (c.29)

From bounds (c.23), (c.28) and (c.29), we get:

TP
[
‖ζ∗n,t‖ ≥

1

2
ε
√
T

]
= o(1). (c.30)

Then, from bounds (c.18), (c.19) and (c.30), Lemma 7 (i) follows.

C.7.2 Proof of Lemma 7 (ii)

Let us write:

1

T

T∑
t=1

ζn,tζ
′
n,t = E[ζn,tζ

′
n,t] +

1

T

T∑
t=1

(E[ζn,tζ
′
n,t|ft]− E[ζn,tζ

′
n,t])

+
1

T

T∑
t=1

(ζn,tζ
′
n,t − E[ζn,tζ

′
n,t|ft]).

We first prove that E[ζn,tζ
′
n,t] = Ω, and then show that the other two terms in the RHS are

asymptotically negligible.

a) Proof that E[ζn,tζ
′
n,t] = Ω

We have:

E[ζn,tζ
′
n,t|ft] =

 Iββ(t)− Iβf (t)Iff (t)−1Ifβ(t) 0

0
∂ log g(ft|ft−1; θ0)

∂θ

∂ log g(ft|ft−1; θ0)

∂θ′

 .

(c.31)

By taking expectation on both sides of the equation, and using the information matrix

equality in the lower-right block, we get:

E[ζn,tζ
′
n,t] =

 E[Iββ(t)− Iβf (t)Iff (t)−1Ifβ(t)] 0

0 E

[
−∂

2 log g(ft|ft−1; θ0)

∂θ∂θ′

]  = Ω. (c.32)
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b) Proof that T−1

T∑
t=1

(E[ζn,tζ
′
n,t|ft]− E[ζn,tζ

′
n,t]) = op(1)

From equations (c.31) and (c.32), and Assumptions H.4 (iii) and H.13, process Zt ≡
E[ζn,tζ

′
n,t|ft]−E[ζn,tζ

′
n,t] is independent of n and is a measurable transformation of the factor

path ft. Moreover, process (ft) is strictly stationary and ergodic by Assumption A.3 and

Proposition 3.44 in White (2001). Since strict stationarity and ergodicity are maintained un-

der measurable transformations possibly involving an infinite number of process coordinates

[Breiman (1992), Proposition 6.31], it follows that process (Zt) is strictly stationary and

ergodic. Then, the ergodic theorem [Breiman (1992), Corollary 6.23] implies that
1

T

T∑
t=1

Zt

converges to E[Zt] = 0 almost surely, and thus in probability.

c) Proof that T−1

T∑
t=1

(ζn,tζ
′
n,t − E[ζn,tζ

′
n,t|ft]) = op(1)

Let us define Zn,t = ζn,tζ
′
n,t−E[ζn,tζ

′
n,t|ft]. We prove that

1

T

T∑
t=1

Zn,t = op(1) by using the

WLLN for mixingale arrays in Theorem 2 in Andrews (1988). Let us check the conditions

of this theorem. 3

*) Mixingale property. First, we prove that {Zn,t,Gn,t} is a L1-mixingale array, where

Gn,t = (yi,t, i = 1, ..., n, ft+1), namely:

‖E[Zn,t|Gn,t−s]‖1 ≤ bs, (c.33)

for all n ∈ N and a positive sequence bs such that bs = o(1) as s → ∞, where ‖.‖1 denotes

the L1-norm. We have:

‖E[Zn,t|Gn,t−s]‖1 = E [‖E[Zn,t|Gn,t−s]‖] = E
[
‖E[E[Zn,t|Gn,t−s, ft]|Gn,t−s]‖

]
≤ E

[
E[‖E[Zn,t|Gn,t−s, ft]‖|Gn,t−s]

]
= E

[
E[‖E[Zn,t|Gn,t−s, ft]‖|ft]

]
,

by the Law of Iterated Expectation. Now, let us consider E[Zn,t|Gn,t−s, ft]. By writing

ζn,t =

(
1√
n

n∑
i=1

W ′
i,t,

∂ log g(ft|ft−1; θ0)

∂θ′

)′
, where variablesWi,t are defined in equation (c.20),

3We replace Zn,t for Xn,i in Theorem 2 in Andrews (1988), and Tn for kn, where Tn denotes the time
dimension T of the panel indexed by the cross-sectional dimension n in the double asymptotics. Moreover,
we use the mixingale constants cn,i = 1 in Theorem 2 in Andrews (1988).
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and using the conditional independence and the Markov property of the individual histories

given the factor path ft (Assumption A.1), we have:

E[Zn,t|Gn,t−s, ft] =

(
E[Wi,tW

′
i,t|yi,t−s, ft]− E[Wi,tW

′
i,t|ft] 0

0 0

)
,

where E[Wi,tW
′
i,t|ft] = Iββ(t)− Iβf (t)Iff (t)−1Ifβ(t). Thus, we get:

‖E[Zn,t|Gn,t−s]‖1 ≤ E
[
E[‖E[Wi,tW

′
i,t|yi,t−s, ft]− E[Wi,tW

′
i,t|ft]‖|ft]

]
. (c.34)

The conditional expectation E[‖E[Wi,tW
′
i,t|yi,t−s, ft] − E[Wi,tW

′
i,t|ft]‖|ft] can be bounded

by using that the individual histories are conditionally beta-mixing given the factor path

(Assumption A.4). Indeed, by applying the Ibragimov inequality [see e.g. Davidson (1994),

Theorem 14.2] conditionally on ft, and the fact that an alpha-mixing coefficient is upper

bounded by the corresponding beta-mixing coefficient [see e.g. Davidson (1994), inequality

(13.48)], we have P-a.s.:

E[‖E[Wi,tW
′
i,t|yi,t−s, ft]− E[Wi,tW

′
i,t|ft]‖|ft] ≤ 6βt(s)

1/2E[‖Wi,t‖4|ft]1/2, (c.35)

where βt(s) denotes the conditional beta-mixing coefficient for lag s of the individual process

(yi,t) given ft. From inequalities (c.34) and (c.35), and the Cauchy-Schwarz inequality, we

get:

‖E[Zn,t|Gn,t−s]‖1 ≤ 6E[βt(s)]
1/2E[‖Wi,t‖4]1/2,

where E[‖Wi,t‖4] < ∞ from Assumptions H.3 (ii) and H.5. Hence, we get inequality (c.33)

with sequence bs = 6E[βt(s)]
1/2E[‖Wi,t‖4]1/2. Since 0 ≤ βt(s) ≤ 1, for any t, s and P-a.s., we

can apply the Lebesgue Theorem. From Assumption A.4, we get E[βt(s)] = o(1), as s→∞.

Hence, bs = o(1), as s→∞.

**) Uniform integrability. Let us now prove that array Zn,t is uniformly integrable,

namely lim
M→∞

sup
n∈N

E [‖Zn,t‖1{‖Zn,t‖ ≥M}] = 0. 4 By Theorem 12.11 in Davidson (1994),

uniform integrability is implied by uniform Lp-boundedness, namely sup
n∈N

E [‖Zn,t‖p] < ∞,

for a p > 1. Let us prove uniform L2-boundedness of array Zn,t. By using ‖Zn,t‖ ≤ ‖ζn,t‖2 +

E
[
‖ζn,t‖2|ft

]
, and the Cauchy-Schwarz and triangular inequalities, we have E

[
‖Zn,t‖2

]1/2 ≤
4By strict stationarity, the sup over t is unnecessary.
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2E
[
‖ζn,t‖4

]1/2
. Moreover, by using ‖ζn,t‖2 =

∥∥∥∥∥ 1√
n

n∑
i=1

Wi,t

∥∥∥∥∥
2

+

∥∥∥∥∂ log g(ft|ft−1; θ0)

∂θ

∥∥∥∥2

and the

triangular inequality, E
[
‖ζn,t‖4

]1/2 ≤ E

∥∥∥∥∥ 1√
n

n∑
i=1

Wi,t

∥∥∥∥∥
4
1/2

+E

[∥∥∥∥∂ log g(ft|ft−1; θ0)

∂θ

∥∥∥∥4
]1/2

.

Expectation E

[∥∥∥∥∂ log g(ft|ft−1; θ0)

∂θ

∥∥∥∥4
]

is finite by Assumption H.15. Hence, uniform L2-

boundedness of array Zn,t follows, if we show that:

sup
n∈N

E

∥∥∥∥∥ 1√
n

n∑
i=1

Wi,t

∥∥∥∥∥
4
 <∞. (c.36)

For expository purpose, let us assume a scalar micro-parameter, i.e. q = 1, so that the Wi,t

are scalar random variables. By using the i.i.d. property of the individual histories given

the factor path (Assumption A.1), and E[Wi,t|ft] = 0, we have:

E

∣∣∣∣∣ 1√
n

n∑
i=1

Wi,t

∣∣∣∣∣
4

|ft

 =
1

n2

n∑
i=1

E
[
W 4
i,t|ft

]
+

1

n2

n∑
i,j=1,i 6=j

E
[
W 2
i,t|ft

]
E
[
W 2
j,t|ft

]
=

1

n
E
[
W 4
i,t|ft

]
+
n− 1

n
E
[
W 2
i,t|ft

]2 ≤ E
[
W 4
i,t|ft

]
.

By taking expectation on both sides, and using that E
[
W 4
i,t

]
< ∞ from Assumptions H.3

(ii) and H.5, bound (c.36) follows.

By Theorem 2 in Andrews (1988), it follows that
1

T

T∑
t=1

Zn,t = op(1).

C.7.3 Proof of Lemma 7 (iii)

We have:

1

T
E

(
max

1≤t≤T
‖ζn,t‖2

)
≤ 1

T
E

[
T∑
t=1

‖ζn,t‖2

]
= TrE[ζn,tζ

′
n,t] = Tr(Ω),

for all T ∈ N, from equation (c.32).
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C.8 Lemma 8

LEMMA 8 Under Assumptions A.1-A.5 and H.1, H.3 (ii), H.5, H.6, H.7 (i)-(ii), H.8-

H.10, we have sup
β∈B

∥∥∥∥∥∂f̂n,t(β)

∂β′

∥∥∥∥∥ = Op(1), conditionally on ft, for P-almost every (a.e.) ft.

Proof of Lemma 8: From equation (c.15) we have:

∂f̂n,t (β)

∂β ′
= −Ît,ff (β)−1Ît,fβ(β), (c.37)

where:

Ît,ff (β) ≡ − 1

n

n∑
i=1

∂2 log h

∂f∂f ′

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
,

Ît,fβ(β) ≡ − 1

n

n∑
i=1

∂2 log h

∂f∂β ′

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
.

Let us write:

Ît,ff (β)− It,ff (β) = − 1

n

n∑
i

[
∂2 log h(yi,t|yi,t−1, f̂n,t(β); β)

∂f∂f ′
− ∂2 log h(yi,t|yi,t−1, ft(β); β)

∂f∂f ′

]

−

(
1

n

n∑
i=1

∂2 log h(yi,t|yi,t−1, ft(β); β)

∂f∂f ′
− E

[
∂2 log h(yi,t|yi,t−1, ft(β); β)

∂f∂f ′
|ft
])

≡ I1,n,t(β) + I2,n,t(β). (c.38)

We have:

sup
β∈B
|I1,n,t(β)| = op(1), (c.39)

conditionally on ft, for P-a.e. ft, by using that sup
β∈B
‖f̂n,t(β) − ft(β)‖ = op(1), conditionally

on ft, for P-a.e. ft, and Assumption H.5. We have:

sup
β∈B
|I2,n,t(β)| = op(1), (c.40)

conditionally on ft, for P-a.e. ft, by applying the ULLN in Lemma 2.4 in Newey, McFadden

(1994) conditionally on ft. We can apply Lemma 2.4 in Newey, McFadden (1994) since, for

any date t and P-a.e. ft, we have:
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a) Function Ht(Yi,t; β) ≡ ∂2 log h(yi,t|yi,t−1, ft(β); β)

∂f∂f ′
is continuous w.r.t. β, for almost any

Yi,t = (yi,t, yi,t−1)′ ∈ R2;

b) Parameter set B ⊂ Rq is compact;

c) Random vectors Yi,t, for i varying, are i.i.d. conditionally on ft;

d) We have E

[
sup
β∈B
‖Ht(Yi,t; β)‖|ft

]
<∞.

Condition a) is implied by continuity of function ∂2 log h/∂f∂f ′ w.r.t. (β, f), and continuity

of pseudo-true factor value ft(β) w.r.t. β (see the proof of Limit Theorem 1 in Section B.1).

Conditions b), c) and d) are implied by Assumptions H.1, A.1, and H.3 ii), respectively.

From (c.38), (c.39) and (c.40), we get Ît,ff (β)− It,ff (β) = op(1), uniformly in β ∈ B and

conditional on ft, for P-a.e. ft. Similarly, we can prove Ît,fβ(β)− It,fβ(β) = op(1), uniformly

in β ∈ B and conditional on ft, for P-a.e. ft. The conclusion follows.

C.9 Secondary Lemmas

C.9.1 Lemma C.1

Lemma C.1: Under Assumption H.5 in Appendix A.1, the function ϕ that maps a symmet-

ric positive definite (m,m) matrix x into ϕ(x) = log det(x) satisfies Regularity Condition

RC.3 (2) in Appendix B.3 with µt(β) = It,ff (β) = E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂ft∂f ′t
|ft
]

.

Proof: Let us first prove that Regularity Condition RC.3 (2i) in Appendix B.3 is satisfied.

Let K be a compact subset of the set U of positive definite (m,m) matrices. Let A,B ∈ K
and define x(ξ) = (1 − ξ)A + ξB and the function f(ξ) = log detx(ξ), for ξ ∈ [0, 1]. Its

derivative is given by f ′(ξ) = Tr

[
x(ξ)−1dx(ξ)

dξ

]
= Tr

[
((1− ξ)A+ ξB)−1(B − A)

]
, where

Tr denotes the trace of a matrix. By the mean value Theorem, we get:

| log det(B)− log det(A)| = |f(1)− f(0)| ≤ sup
ξ∈[0,1]

|f ′(ξ)| ≤ sup
x∈K̄
‖x−1‖‖B − A‖,

where K̄ is the convex hull of set K and sup
x∈K̄
‖x−1‖ <∞ by the compactness of set K̄.

Let us now prove that Regularity Condition RC.3 (2ii) in Appendix B.3 is satisfied.

For w = (Id + ∆)z, with ‖∆‖ ≤ 1/2, we have ϕ(w) = log det(Id + ∆) + log det(z) ≤
C1 + C2 log ‖z‖, where constants C1, C2 > 0 are independent of z. Thus, we can choose

γ10 = 0 and ψ(z) = 1 + | log ‖z‖| in Regularity Condition RC.3 (2ii). Now, by using that
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for µt(β) = It,ff (β) we have c̃1(ξ∗t,1)−1 ≤ ‖µt(β)‖ ≤ c̃2(ξ∗∗t,1)1/2, for any β ∈ B and some

constants c̃1, c̃2 > 0, where processes ξ∗t,1 and ξ∗∗t,1 are defined in Assumption H.5. Then, we

get E0[sup
β∈B
|ψ(µt(β))|4] <∞ from Assumption H.5.

C.9.2 Lemma C.2

Lemma C.2: Under Assumptions A.1-A.5, H.7 (iii) and H.11, and if T ν/n = O(1), ν > 1,

we have:

sup
1≤t≤T

sup
β∈B

sup
f∈Fn

∥∥∥∥∥ 1

n

n∑
i=1

(
∂2 log h(yi,t|yi,t−1, f ; β)

∂f∂f ′
− E0

[
∂2 log h(yi,t|yi,t−1, f ; β)

∂f∂f ′
|ft
])∥∥∥∥∥

= Op

(
[log(n)]δ3√

n

)
,

for a constant δ3 > 0.

Proof: For expository purpose, we consider the case of a scalar factor, i.e. m = 1. Define:

a(Yi,t, f, β) =
∂2 log h(yi,t|yi,t−1, f ; β)

∂f 2
,

where Yi,t = (yi,t, yi,t−1)′, and Wn,t(f, β) =
1√
n

n∑
i=1

(
a(Yi,t, f, β)− E[a(Yi,t, f, β)|ft]

)
. Let:

δ3 = max{γ4, 1 + 1/d4}, (c.41)

where constants γ4 > 0 and d4 > 0 are defined in Assumptions H.11 (i), (iii). We now show

that the probability

Pn,T ≡ P
[

sup
1≤t≤T

sup
β∈B

sup
f∈Fn

|Wn,t(f, β)| ≥ C3[log(n)]δ3
]

can be made arbitrarily small as n, T → ∞, T ν/n = O(1), ν > 1, for a suitable constant

C3 > 0.

62



We have PnT ≤ TP
[
sup
β∈B

sup
f∈Fn

|Wn,t(f, β)| ≥ C3[log(n)]δ3
]
. Moreover, let us write:

Wn,t(f, β) =
1√
n

n∑
i=1

(
a(Yi,t, f, β)1{Un,it ≤ Bn} − E[a(Yi,t, f, β)1{Un,it ≤ Bn}|ft]

)
+

1√
n

n∑
i=1

(
a(Yi,t, f, β)1{Un,it ≥ Bn} − E[a(Yi,t, f, β)1{Un,it ≥ Bn}|ft]

)
≡ W̃n,t(f, β) +Rn,t(f, β),

where:

Un,it = sup
f∈Fn

sup
β∈B
|a(Yi,t, f, β)|, Bn =

√
n. (c.42)

Then:

PnT ≤ TP
[
sup
β∈B

sup
f∈Fn

|W̃n,t(f, β)| ≥ 1

2
C3[log(n)]δ3

]
+ TP

[
sup
β∈B

sup
f∈Fn

|Rn,t(f, β)| ≥ 1

2
C3[log(n)]δ3

]
.

(c.43)

Let us now bound the two terms in the RHS.

i) Bound of the second term in the RHS of (c.43)

We have sup
β∈B

sup
f∈Fn

|Rn,t(f, β)| ≤ 1√
n

n∑
i=1

(
Un,it1{Un,it ≥ Bn}+ E[Un,it1{Un,it ≥ Bn}|ft]

)
. Then,

by the Markov inequality we get:

TP
[
sup
β∈B

sup
f∈Fn

|Rn,t(f, β)| ≥ 1

2
C3[log(n)]δ3

]
≤ 4T

√
n

C3[log(n)]δ3
E[Un,it1{Un,it ≥ Bn}] ≤

4T
√
n

C3[log(n)]δ3B3
n

E[U4
n,it] = O

(
T [log(n)]γ5−δ3

n

)
= o(1),

for some constant γ5 > 0, by Assumptions H.11 (ii)-(iii), Bn =
√
n and the condition

T ν/n = O(1), ν > 1.

ii) Bound of the first term in the RHS of (c.43)

Let us introduce a covering of set B by means of Nn open balls B(βj, ηn), j = 1, ..., Nn, with

center βj ∈ Rq and radius ηn = n−3/2 depending on n. Similarly, let B(ξi, ηn), i = 1, ...,Mn,

63



be a covering of set Fn. Since set B ⊂ Rq is independent of n, while the Lebesgue mass of

set Fn ⊂ R is O([log(n)]γ1) [see Assumption H.7 (iii)], we have Nn,Mn → ∞ as n → ∞,

such that:

Nn = O(η−qn ) = O(n3q/2), Mn = O([log(n)]γ1η−1
n ) = O([log(n)]γ1n3/2). (c.44)

We have:

sup
β∈B

sup
f∈Fn

|W̃n,t(f, β)| ≤ max
i=1,...,Mn, j=1,...,Nn

sup
β∈B(βj ,ηn),f∈B(ξi,ηn)

|W̃n,t(f, β)|

≤ max
i=1,...,Mn, j=1,...,Nn

|W̃n,t(ξi, βj)|+ sup
β,β′:‖β−β′‖≤ηn,f,f ′:|f−f ′|≤ηn

|W̃n,t(f, β)− W̃n,t(f
′, β′)|.

Thus:

TP
[
sup
β∈B

sup
f∈Fn

|W̃n,t(f, β)| ≥ 1

2
C3[log(n)]δ3

]
≤ TP

[
sup

β,β′:‖β−β′‖≤ηn,f,f ′:|f−f ′|≤ηn

|W̃n,t(f, β)− W̃n,t(f
′, β′)| ≥ 1

4
C3[log(n)]δ3

]

+TNnMn sup
β∈B

sup
f∈Fn

P
[
|W̃n,t(f, β)| ≥ 1

4
C3[log(n)]δ3

]
≡ A1,nT + A2,nT . (c.45)

Let us now bound A1,nT and A2,nT .

a) Bound of term A1,nT in (c.45)

We use that:

sup
β,β′:‖β−β′‖≤ηn,f,f ′:|f−f ′|≤ηn

|W̃n,t(f, β)− W̃n,t(f
′, β′)|

≤ 1√
n

n∑
i=1

(
sup
β∈B

sup
f∈Fn

∥∥∥∥∂a(Yi,t, f, β)

∂(β′, f)′

∥∥∥∥+ sup
β∈B

sup
f∈Fn

E

[∥∥∥∥∂a(Yi,t, f, β)

∂(β′, f)′

∥∥∥∥ |ft]) 2ηn.

Then, by the Markov inequality, we get:

A1,nT ≤
16T
√
nηn

C3[log(n)]δ3
E

[
sup
β∈B

sup
f∈Fn

∥∥∥∥∂a(Yi,t, f, β)

∂(β′, f)′

∥∥∥∥] = o(1),

from Assumption H.11 (iii), ηn = n−3/2 and the condition T ν/n = O(1), ν > 1.

b) Bound of term A2,nT in (c.45)
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For given β ∈ B, f ∈ Fn, let us write:

P
[
|W̃n,t(f, β)| ≥ 1

4
C3[log(n)]δ3

]
= E

[
P
[
|W̃n,t(f, β)| ≥ 1

4
C3[log(n)]δ3|ft

]]
= E

[
P

[∣∣∣∣∣
n∑
i=1

ψn,it(f, β)

∣∣∣∣∣ ≥ 1

4

√
nC3[log(n)]δ3|ft

]]
,

where ψn,it(f, β) ≡ a(Yi,t, f, β)1{Un,it ≤ Bn} − E[a(Yi,t, f, β)1{Un,it ≤ Bn}|ft]. To bound

the conditional probability within the expectation, we use that the variables ψn,it(f, β),

i = 1, ..., n, are independent and zero-mean, conditionally on the factor path ft, and we

apply the Bernstein’s inequality [see Bosq (1998), Theorem 1.2]. We have:

|ψn,it(f, β)| ≤ 2Bn,

and:

V [ψn,it(f, β)|ft] ≤ sup
f∈Fn

sup
β∈B

E[|a(Yi,t, f, β)|2|ft] ≤ ξ∗t,4[log(n)]γ4 ,

where ξ∗t,4 ≡ sup
n≥1

sup
f∈Fn

sup
β∈B

[log(n)]−γ4E

[∣∣∣∣∂2 log h(yi,t|yi,t−1, f ; β)

∂f 2

∣∣∣∣2 |ft
]

, and constant γ4 ≥ 0 is

defined in Assumptions H.11 (i), (iii). Then, from the Bernstein’s inequality:

P

[∣∣∣∣∣
n∑
i=1

ψn,it(f, β)

∣∣∣∣∣ ≥ 1

4

√
nC3[log(n)]δ3 |ft

]
≤ 2 exp

(
−

(
1
4

√
nC3[log(n)]δ3

)2

4n[log(n)]γ4ξ∗t,4 + 4Bn

(
1
4

√
nC3[log(n)]δ3

))

≤ 2 exp

(
− 1

64
C3[log(n)]δ3(ξ∗t,4 + 1)−1

)
,

as long as C3 ≥ 1, since Bn =
√
n and δ3 ≥ γ4 from (c.41). Thus, we get:

P
[
|W̃n,t(f, β)| ≥ 1

4
C3[log(n)]δ3

]
≤ 2E

[
exp

(
− 1

64
C3[log(n)]δ3(ξ∗t,4 + 1)−1

)]
.

To bound the expectation in the RHS we use Lemma B.2 in Appendix B.4.2 applied to

the stationary distribution of process ξ∗t,4 + 1. From Assumption H.11 (iii), the condition of

Lemma B.2 is satisfied with % = d4, where constant d4 > 0 is defined in Assumption H.11.
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We get:

E

[
exp

(
− 1

64
C3[log(n)]δ3(ξ∗t,4 + 1)−1

)]
≤ C̃1 exp

(
−C̃2

[
1

64
C3[log(n)]δ3

]d4/(1+d4)
)

≤ C̃1n
−C̃2(C3/64)d4/(1+d4)

,

for some constants C̃1, C̃2 > 0 independent of C3, since δ3d4/(1 + d4) ≥ 1 from (c.41). Thus:

P
[
|W̃n,t(f, β)| ≥ 1

4
C3[log(n)]δ3

]
≤ 2C̃1n

−C̃2(C3/64)d4/(1+d4)

.

From the expression of A2,nT in (c.45), and the bounds on Nn and Mn in (c.44), we get:

A2,nT = O
(
Tn3(q+1)/2[log(n)]γ1n−C̃2(C3/64)d4/(1+d4)

)
= O

(
T

n
[log(n)]γ1

)
= o(1),

from the condition T ν/n = O(1), ν > 1, if C̃2(C3/64)d4/(1+d4) ≥ 3(q + 1)/2 + 1, i.e., if

C3 ≥ 64
(

3(q+1)+2

2C̃2

)1+1/d4
.

C.9.3 Lemma C.3

Lemma C.3: Under Assumptions A.1-A.5 and H.1, H.2, H.5-H.11, and if T ν/n = O(1),

ν > 1:

(i) sup
1≤t≤T

sup
β∈B

∣∣∣Ln,t(f̂n,t(β); β)− Ln,t(ft(β); β)
∣∣∣ = Op

(
[log(n)]δ4

n

)
,

(ii) sup
1≤t≤T

sup
β∈B

sup
f∈Fn

|Ln,t(f ; β)− Lt(f ; β)| = Op

(
[log(n)]δ5√

n

)
,

for some constants δ4 > 0 and δ5 > 0, where Ln,t(f ; β) is defined as in Lemma 2, and

Lt(f ; β) is defined in equation (c.5).

Proof of Lemma C.3 (i): By a second-order Taylor expansion around f̂n,t(β), we have:

Ln,t(f̂n,t(β); β)− Ln,t(ft(β); β) = −1

2
[f̂n,t(β)− ft(β)]′

∂2Ln,t(f̃n,t(β); β)

∂ft∂f ′t
[f̂n,t(β)− ft(β)],

where f̃n,t(β) is a mean value, since
∂Ln,t(f̂n,t(β); β)

∂ft
= 0, w.p.a. 1. Thus, from the uniform

convergence of f̂n,t(β) to ft(β) (Limit Theorem 1 in Appendix B.1), for any η > 0, we get
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w.p.a. 1:

sup
1≤t≤T

sup
β∈B

∣∣∣Ln,t(f̂n,t(β); β)− Ln,t(ft(β); β)
∣∣∣

≤ sup
β∈B

sup
1≤t≤T

‖f̂n,t(β)− ft(β)‖2 sup
1≤t≤T

sup
β∈B

sup
f∈Fn:‖f−ft(β)‖<η

∥∥∥∥∂2Ln,t(f ; β)

∂ft∂f ′t

∥∥∥∥ ,
= Op

(
[log(n)]2δ2

n
sup

1≤t≤T
sup
β∈B

sup
f∈Fn:‖f−ft(β)‖<η

∥∥∥∥∂2Ln,t(f ; β)

∂ft∂f ′t

∥∥∥∥
)
.

Moreover, from Lemma C.2 we have:

sup
1≤t≤T

sup
β∈B

sup
f :‖f−ft(β)‖<η

∥∥∥∥∂2Ln,t(f ; β)

∂ft∂f ′t

∥∥∥∥ ≤ sup
1≤t≤T

sup
β∈B

sup
f∈Fn:‖f−ft(β)‖<η

∥∥∥∥∂2Lt(f ; β)

∂ft∂f ′t

∥∥∥∥
+ sup

1≤t≤T
sup
β∈B

sup
f∈Fn

∥∥∥∥∂2Ln,t(f ; β)

∂ft∂f ′t
− ∂2Lt(f ; β)

∂ft∂f ′t

∥∥∥∥
= sup

1≤t≤T
sup
β∈B

sup
f∈Fn:‖f−ft(β)‖<η

∥∥∥∥∂2Lt(f ; β)

∂ft∂f ′t

∥∥∥∥+Op

(
[log(n)]δ3√

n

)
,

for a constant δ3 > 0. Then, Lemma C.3 (i) follows from the next bound:

sup
1≤t≤T

sup
β∈B

sup
f :‖f−ft(β)‖<η

∥∥∥∥∂2Lt(f ; β)

∂ft∂f ′t

∥∥∥∥ = Op

(
[log(n)]1/d1

)
, (c.46)

where d1 > 0 is defined in Assumption H.5. To prove bound (c.46), we use:

sup
β∈B

sup
f :‖f−ft(β)‖<η

∥∥∥∥∂2Lt(f ; β)

∂ft∂f ′t

∥∥∥∥ ≤ sup
β∈B

E0

[
sup

f :‖f−ft(β)‖<η

∥∥∥∥∂2 log h(yi,t|yi,t−1, f ; β)

∂f∂f ′

∥∥∥∥ |ft
]
≤ ξ∗∗t,1,

if η ≤ η∗, where process ξ∗∗t,1 and constant η∗ are defined in Assumption H.5. Then, we get:

P

[
sup

1≤t≤T
sup
β∈B

sup
f :‖f−ft(β)‖<η

∥∥∥∥∂2Lt(f ; β)

∂ft∂f ′t

∥∥∥∥ ≥ C1(log n)1/d1

]
≤ TP

[
ξ∗∗t,1 ≥ C1(log n)1/d1

]
≤ Tb1 exp

(
−c1C1

d1 log n
)

= b1Tn
−c1C1

d1
= O(T/n) = o(1),

if constant C1 is such that C1 ≥ c
−1/d1
1 . Then, the bound in (c.46) follows.

Proof of Lemma C.3 (ii): The proof of Lemma C.3 (ii) is similar to the proof of Lemma

C.2 in Section C.9.2, by using a(Yi,t, f, β) = log h(yi,t|yi,t−1, f, β).
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C.9.4 Lemma C.4

Lemma C.4: Let function ϕ be either:

(i) The matrix inversion ϕ : U → Rr×r, ϕ(x) = x−1, where U denotes the set of positive

definite (r, r) matrices, or

(ii) The mapping ϕ : U → Rs×s, ϕ(x) = (x11)−1, where x11 is the upper-left s-dimensional

block of matrix x−1, for s < r.

Then, under Assumption H.5 in Appendix A.1, Regularity Condition RC.3 (2) in Appendix

B.3 is satisfied with µt(β) = It(β) = E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β); β)

∂(β′, f ′t)
′∂(β′, f ′t)

|ft
]

.

Proof of Lemma C.4 (i): Let us verify Regularity Condition RC.3 (2i) in Appendix B.3.

Let K ⊂ U be compact, and let w, z ∈ K. Since w−1 − z−1 = −z−1 (w − z)w−1, we deduce

that ϕ is Lipschitz continuous on K with Lipschitz constant L = sup
z∈K

∥∥z−1
∥∥2

< ∞. Hence,

Regularity Condition RC.3 (2i) is satisfied. Let us now consider Regularity Condition RC.3

(2ii) in Appendix B.3. Let w, z ∈ U , w = (Id + ∆)z, ‖∆‖ ≤ 1/2. Then Id + ∆ is a

nonsingular matrix. From w−1 = z−1(Id + ∆)−1 and ‖(Id + ∆)−1‖ ≤ (1 − ‖∆‖)−1 = 2, we

see that Regularity Condition RC.3 (2ii) is satisfied with C10 = 2, γ10 = 0 and ψ(z) = ‖z−1‖.

Indeed, E

[
sup
β∈B
|ψ(µt(β))|4

]
= E

[
sup
β∈B
‖µt(β)−1‖4

]
≤ C1E

[
(ξ∗t,1)4

]
< ∞, for some constant

C1 > 0, where process ξ∗t,1 is defined in Assumption H.5.

Proof of Lemma C.4 (ii): Let us consider the block decomposition:

x =

(
x11 x12

x21 x22

)
.

Then ϕ (x) = x11 − x12x
−1
22 x21. Regularity Condition RC.3 (2i) is satisfied, since ϕ consists

of summation and product of mappings that are Lipschitz continuous on compact sets. To

check Regularity Condition RC.3 (2ii), let w, z ∈ U , w = (Id+ ∆)z, ‖∆‖ ≤ 1/2. Then:

‖ϕ(w)‖ ≤ ‖w11‖+ ‖w12‖
∥∥w−1

22

∥∥ ‖w21‖ ≤ ‖w‖+ ‖w‖2
∥∥w−1

22

∥∥
≤ ‖Id+ ∆‖ ‖z‖+ ‖Id+ ∆‖2 ‖z‖2

∥∥w−1
22

∥∥ .
Denote by d = r − s the dimension of w22. Since matrices w and w22 are positive definite,
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and matrix norms are equivalent, we have:

∥∥w−1
22

∥∥ ≤ C∗1 sup
u∈Rd:‖u‖=1

u
′
w−1

22 u = C∗1

(
inf

u∈Rd:‖u‖=1
u
′
w22u

)−1

≤ C∗1

(
inf

u∈Rr:‖u‖=1
u
′
wu

)−1

= C∗1 sup
u∈Rr:‖u‖=1

u
′
w−1u ≤ C∗1C

∗∗
1

∥∥w−1
∥∥ ,

where C∗1 , C
∗∗
1 > 0 are constants. Moreover, ‖w−1‖ ≤

∥∥(Id+ ∆)−1
∥∥ ‖z−1‖ ≤ 2‖z−1‖. We

get that ‖ϕ(w)‖ ≤ C2 (‖z‖+ ‖z‖2‖z−1‖) ≤ 2C2‖z‖2‖z−1‖, for a constant C2 > 0. Thus,

Regularity Condition RC.3 (2ii) is satisfied with γ10 = 2 and ψ(z) = ‖z−1‖.
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