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Correlated Risks vs Contagion in Stochastic Transition Models

Abstract

There is a growing literature on the possibility to identify correlation and contagion in qual-

itative risk analysis. Our paper considers this question by means of a model describing the joint

dynamics of a set of individual binary processes. The two admissible values correspond to bad

and good risk states of an individual. The risk correlation and its time dependence are captured

by introducing a dynamic frailty, whereas the contagion passes through the effect of the lagged

number of individuals in the bad risk state. We study carefully the dynamic properties of the joint

process. Then, we focus on the limiting case of large populations (portfolios) and reconcile the

microscopic and macroscopic dynamic views of the risk. The difficulty to identify in finite sample

risk correlation and contagion is illustrated by means of Monte-Carlo simulations.

Keywords: Risk Dependence, Frailty, Systematic Risk, Contagion, Count Process, INAR Model,

Compound Autoregressive Process, Affine Model, Credit Risk, Granularity Adjustment, Stochastic

Intensity.
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1 Introduction

The Law of Large Numbers is often invoked to justify the possibility to eliminate, or at least dimin-

ish, the risk of a portfolio by diversifying the type of investments. Typically, it was often considered

that a large portfolio of individual life insurance contracts, or of mortgages, is almost riskfree, and

might be priced by considering its expected value, called pure premium in Insurance. However,

the possibility of diversification supposes satisfied the assumptions of the Law of Large Numbers,

in particular the fact that the individual risks are not too dependent. The 2008-2011 financial cri-

sis showed that the risk dependencies cannot be neglected and constitute a major component of

the risk of the system when computing the reserves of a financial institution, or of an insurance

company. The role of some dependencies was already highlighted in Basel 2 and Solvency 2 reg-

ulations [BCBS (2001), (2003)] beginning to be implemented before the crisis. These were the

dependencies due to observable and unobservable common risk factors, called systematic factors,

or frailties. For instance, the individual mortgages are often contracts with adjustable rates and

monthly payments indexed on some prime rate. An increase of this prime rate implies an increase

of the level of monthly payments for a lot of mortgages and, thus, correlated defaults. Similarly,

the risk of life insurance contracts depends on the general uncertain increase of human lifetime,

called longevity risk; this unobservable longevity risk becomes a major source of possible losses

for a life insurance company.

After 2008, the regulation has been extended in two directions. First, it highlights contagion as

a major source of risk dependencies. Second, it also focuses on the risk of the banking (financial)

system as a whole, and not only on the separate analysis of the risks of the banks and insurance

companies. The contagion effect is due to the interconnection between the banks and insurance

companies by means of their debt and reinsurance structures. Typically, the failure of a company

will imply losses for its lenders, and maybe the failure of some of them, then possibly failure of

some lenders of the lenders, and so on. We get a propagation of the risk along a chain of failures.

It is clearly important to disentangle the two types of dependencies, namely the effects of

shocks exogenous to the system and the contagion phenomenon, which is system endogenous, in

order to measure their relative magnitude and to clarify their distinct roles. This distinction is

crucial for instance for the computation of the reserves needed to protect the whole system, i.e.,
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the reserves for systemic risk, and for the definition of the contribution of each financial institu-

tion to these reserves for systemic risk. There exist alternative approaches to identify these two

components of risk dependencies, which are structural and reduced form approaches, respectively.

(i) The structural approach tries to get the precise knowledge of all possible connections be-

tween the institutions of interest. Typically, if we consider the European banking system, the idea

is to know regularly the detailed balance sheets of all the banks, the proportion of debt of each

bank with respect to each other ones, for each time to maturity and seniority level, etc. Then, we

can construct the contagion network, and understand what might be the propagation in the system

of an adverse shock. This is the principle of the so-called stress tests. However, this approach

requires databases on the detailed balanced sheets, which exist for some countries, but are sub-

mitted to strict confidentiality restrictions. Moreover, the complexity of such a network increases

very quickly with the number of institutions in the system. This explains why the first studies of

this type focus on rather small networks of institutions [see e.g. Egloff, Leippold, Vanini (2007)],

or countries with a sufficiently concentrated banking system [see e.g. Upper, Worms (2004) for

Germany, or Gourieroux, Heam, Monfort (2011) for France]. But it seems difficult to apply this

approach directly to US, for instance, due to the thousands of US financial institutions.

(ii) The reduced form approach tries to identify the two components of risk dependencies with-

out the structural knowledge of the interconnection between the individual risks. The reduced form

models for contagion consider specifications that capture how the defaults of some individuals in-

fluence the default intensities of the individuals, who are still alive. They are either (a) dynamic

models written in continuous time, at the individual level 1, and based on the notion of mutually

exciting point processes introduced by Hawkes (1971) a,b, Hawkes, Oakes (1974), or (b) specifi-

cations based on the epidemic model introduced by Bailey (1953, 1957), Kendall (1956) [see the

so-called infectious model used in a static framework by Davis, Lo (2001) a,b, Sakata, Isakado,

Mori (2007), and its dynamic extension by Rulliere, Dorobantu, Cousin (2010)]. Specifications in-

cluding both frailty and contagion effects are introduced e.g. in Frey, Backhaus (2003), Giesecke,

Weber (2004), (2006), Azizpour, Giesecke (2008), a,b, and Lando, Nielsen (2010). For the analy-

1These models have to be distinguished from dynamic macroscopic models introduced to capture the volatility

transmission [Gallo, Otranto (2007)], or the jump transmission [Ait-Sahalia, Cacho-Diaz, Laeven (2010)] between

markets, even if they share common features with the microscopic models introduced for individual risks.
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sis of contagion and frailty effects, it is important to consider rather large portfolios of individual

risks, which are sufficiently homogeneous with respect not only to their marginal risk distribution,

but also to the two types of dependencies. Indeed, the Basel 2 regulation has already considered

such benchmark models for the analysis of large portfolios of loans, mortgages, Credit Default

Swaps when risk dependence arises from frailty effects only [see e.g. Schonbucher (2001), Frey,

McNeil (2003)]. For such models, portfolio risk measures can be analytically approximated by

their cross-sectional (i.e. large portfolio) limits [Vasicek (1987)], including first-order corrections

called granularity adjustments [Gordy (2003), (2004), Gagliardini, Gourieroux, Monfort (2012)].

This type of aggregation approach is not only useful for retail financial products, but can also be

used to gather the small and medium size institutions in a banking system, not yet enough concen-

trated. The aim of this paper is to develop a similar approach of aggregation of individual risks,

taking into account not only the frailty effects, but also the contagion effects, in order to analyse

the risk of the system.

In our paper, we consider this problem for a transition model in discrete time, at a semi-

aggregate level with respect to time and individual. Instead of following the dynamics of individual

risks, we focus on the dynamics of counts of individuals in the different classes of risk. Therefore,

we introduce dynamic models for count processes, with both systematic factors and contagion.

The analysis at a semi-aggregate level has several advantages. First, it is less demanding in terms

of data confidentiality. Second, it allows for a modelling by means of affine processes, which are

tractable for prediction purposes and for studying the stationarity properties. Third, the dynam-

ics at the semi-aggregate level are sufficient for computing portfolio risk measures and pricing

credit derivative assets whose payoff is a function of the portfolio loss, such as Collateralized Debt

Obligations (CDO).

We consider in Section 2 an homogenous population of individuals with an endogenous di-

chotomous characteristic following a same homogenous Markov chain. We introduce the counting

process defining the number of individuals in state 1 at each date, and show that this is a Markov

process with a binomial autoregressive (BinAR) dynamics of order 1. For large population size, al-

ternative limiting processes can be derived, depending whether we apply the Gaussian, or Poisson,

approximation of the binomial distribution. This leads to a Gaussian autoregressive, resp. Integer

Autoregressive (INAR), approximation. Section 3 explains how correlated risks and contagion can
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be introduced in a BinAR model, and in its two limiting counterparts. We study carefully the sta-

tionarity and ergodicity properties of the limiting models. In Section 4 we present the results of

some simulation experiments for a logistic model with frailty and contagion, and an INAR model

with stochastic intensity. Section 5 concludes. Proofs are gathered in Appendices.

2 From the homogenous Markov chain to the Gaussian AR(1)

and INAR (1) processes

2.1 Time-homogenous Markov chain

Let us denote by (yt, t ∈ N) a time-homogenous Markov chain with two states 0 and 1. The

transition of this chain is characterized by the 2 × 2 matrix:

P =

⎛
⎝ p00 p01

p10 p11

⎞
⎠ , (2.1)

where pij = P [yt = i|yt−1 = j], for i, j = 0, 1. The transition probabilities are such that pij ≥ 0,

for any i, j, and p0j + p1j = 1, for j = 0, 1. The transition matrix admits the eigenvalues 1 and

ρ = p00 + p11 − 1. Parameter ρ measures the within state stability of the chain. The stationary

distribution of the chain (1 − μ, μ)′, say, is an eigenvector of transition matrix P associated with

the unitary eigenvalue. Parameter μ is given by:

μ =
p10

p10 + p01
,

and is also equal to the probability to be in state 1 after a change of state.

The transition matrix can be equivalently written either in terms of the transition probabilities,

or by means of the two parameters ρ and μ. Indeed, we have:

P =

⎛
⎝ 1 − μ 1 − μ

μ μ

⎞
⎠+ ρ

⎛
⎝ μ −(1 − μ)

−μ 1 − μ

⎞
⎠ . (2.2)

The transition matrix of the chain at horizon h is:

P h =

⎛
⎝ 1 − μ 1 − μ

μ μ

⎞
⎠+ ρh

⎛
⎝ μ −(1 − μ)

−μ 1 − μ

⎞
⎠ . (2.3)
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This highlights alternative interpretations of parameters μ and ρ, when |ρ| < 1. Parameter μ (or

equivalently the stationary distribution) is a long run parameter since lim
h→∞

P h =

⎛
⎝ 1 − μ 1 − μ

μ μ

⎞
⎠,

whereas ρ provides the speed of adjustment towards this long run equilibrium. These parameters

can be fixed independently: μ (resp. ρ) is constrained to be between 0 and 1 (resp. between −1

and 1).

2.2 The binomial autoregressive (BinAR) process

Let us now consider an homogenous population of individuals indexed by i, for i = 1, . . . , n. We

assume that the individual state histories (yi,t), i = 1, . . . , n are independent time-homogeneous

Markov chains with the same two-state transition matrix P . According to the type of application,

states 0 and 1 can have the following interpretations: low risk / high risk (for insured people), de-

fault / no default (for corporate loans), investment rating / speculative rating (for sovereign bonds),

holder of an insurance contract / not holder (for customers), ill / not ill (for individuals), low liq-

uidity / high liquidity level [for banks, see e.g. Giesecke, Weber (2004), (2006)]. At each date t,

we compute the count Nt =

n∑
i=1

yi,t of individuals in state 1 (resp. n − Nt in state 0), and follow

the structure of this homogenous population over time.

To analyse the transition distribution of process Nt, we note that Nt = N1t + N0t, where N1t

(resp. N0t) is the number of individuals in state 1 at date t − 1 and staying in this state at t (resp.

in state 0 at date t− 1 and changing of state between t− 1 and t). Conditional on past individual

histories, variables N1t and N0t are independent, with conditional binomial distributions:

N1t ∼ B(Nt−1, p11), N0t ∼ B(n−Nt−1, p10),

respectively. We deduce the proposition below.

Proposition 1: Under the assumption of independent identically distributed individual Markov

chains, the process (Nt) is a Markov process, with values in {0, 1, . . . , n} and transition distribu-

tion:

B(Nt−1, p11) ∗ B(n−Nt−1, p10),

where ∗ denotes the convolution operator.
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In the probabilistic literature, this property is usually written by means of the binomial thinning

operator [see Steutel, Van Harn (1979)], defined by

p ◦N =

N∑
i=1

ui,

where ui, for i = 1, . . . , n, is a sequence of i.i.d. random variables admitting a Bernoulli distribu-

tion with parameter p, and N ∈ N. With this notation, we have:

Nt = p11 ◦Nt−1 + p10 ◦ (n−Nt−1),

where the two components of the sum are independent conditional on Nt−1.

The conditional Laplace transform of count Nt is given by:

ψ1(u) = Et−1[exp(−uNt)]

= [1 − p11 + p11 exp(−u)]Nt−1 [1 − p10 + p10 exp(−u)]n−Nt−1

= exp

{
n log[1 − p10 + p10 exp(−u)] +Nt−1 log

[
1 − p11 + p11 exp(−u)
1 − p10 + p10 exp(−u)

]}
, (2.4)

where Et−1 denotes the conditional expectation given the past individual histories. It is defined for

u ≥ 0 and characterizes the transition of the nonnegative process (Nt) [see Feller (1968)]. The

conditional Laplace transform is an exponential affine function of lagged count value Nt−1. Thus,

process (Nt) is a compound autoregressive process of order 1 [CaR(1), see Darolles, Gourieroux,

Jasiak (2006)]. 2

The transition of process (Nt) at horizon h is B(Nt−h, p
(h)
11 )∗B(n−Nt−h, p

(h)
10 ), where p(h)

ij is the

(i, j) element of matrix P h. From equation (2.3), these elements are given by p(h)
11 = μ+ρh(1−μ)

and p(h)
10 = μ(1 − ρh). In particular, the stationary distribution of (Nt) obtained for h → ∞, is the

binomial distribution B(n, μ).

To summarize, count process (Nt) is such that the conditional distributions of both components

N1t and N0t are binomial, and its unconditional (stationary) distribution is binomial too. This

justifies the terminology binomial autoregressive [BinAR(1)] process of order 1. However, the

transition of the BinAR(1) process is not binomial itself.

2The CaR processes are called affine processes in the continuous time literature, since the conditional log-Laplace

transform is an affine function of the lagged value of the process [see e.g. Duffie, Filipovic, Schachermayer (2003)].
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2.3 The limiting Gaussian AR(1) process

When the population size is large and the transition probabilities are fixed, the binomial distribution

can be approximated by a Gaussian distribution. Equivalently, in terms of processes, the binomial

autoregressive process can be approximated by a Gaussian process.

Proposition 2: Let n → ∞ and transition matrix P be fixed. Assume that N1 is such that Xn,1 =
√
n(N1/n − μ) converges in distribution to a random variable denoted ξ1, and E[X2

n,1] = O(1).

Then, the Markov process Xn,t =
√
n(Nt/n − μ), for t ∈ N, converges in distribution to the

Gaussian autoregressive process of order 1, denoted (ξt), such that:

ξt = ρξt−1 + ηεt, (2.5)

where εt ∼ IIN(0, 1) and η2 = (1 − μ)p10(1 − p10) + μp11(1 − p11) = μ(1 − μ)(1 − ρ2), with

initial observation ξ1.

Proof: See Appendix 1.

The autoregressive coefficient is equal to the speed of adjustment of the BinAR(1) process. The

innovation variance is such that the unconditional distribution of (ξ t) is N [0, μ(1 − μ)].

2.4 The limiting INAR(1) process

The integer valued autoregressive process (INAR) has been initially introduced in McKenzie (1985)

and Al-Osh, Azaid (1987) [see also McKenzie (1988) and Azaid, Al-Osh (1990)]. We derive it be-

low as a limiting case of a binomial autoregressive process, when p01 is fixed, but p10 tends to

zero when the population size n tends to infinity, such that np10 ∼ λ, say, where λ > 0. Under

these conditions, we get p11 ∼ ρ and nμ ∼ λ/(1 − ρ), and we can use the Poisson approxima-

tion of binomial distributions. In particular, the stationary distribution of N t is P[λ/(1 − ρ)]. It

does not explode with n; thus, n− Nt−1 tends to infinity at speed n and the binomial distribution

B(n − Nt−1, p10) is approximately Poisson P(λ), too. We deduce that the limiting process is the

INAR(1) process defined below.

Proposition 3: Let n → ∞ and the transition probabilities be such that np01 → λ, for λ > 0,

and p11 is fixed. Then, the limiting process is an integer valued autoregressive process of order
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1 [INAR(1)]. Conditionally on the past, N1t and N0t are independent with distributions N1t ∼
B(Nt−1, ρ) and N0t ∼ P(λ), respectively. The stationary distribution of (Nt) is P[λ/(1 − ρ)].

The conditional Laplace transform of count Nt at horizon 1 is:

ψ1(u) = exp{−λ[1 − exp(−u)] +Nt−1 log[1 − ρ+ ρ exp(−u)]}. (2.6)

The INAR(1) process is another example of CaR (affine) process of order 1.

3 Correlated risks versus contagion

The basic models considered in Sections 2.2-2.4 assume a double homogeneity with respect to

both individual and time. In this section, we still assume individual homogeneity, but consider

time heterogenous Markov chains, i.e., chains with time dependent transition matrix P t, say. We

specify Pt in order to clearly disentangle correlated risks and contagion.

3.1 Modelling the correlation vs modelling the contagion

To illustrate the discussion below, let us interpret the states as not ill/ill. Then, p10 is the probability

to get the disease for an individual currently in good health, whereas p01 is the probability to

recover. We focus on a time dependent transition probability p10t
3. Thus, we get:

Pt =

⎛
⎝ p00t p01

p10t p11

⎞
⎠ .

i) The dependence between individual risks to get the disease is generally introduced by con-

sidering a common stochastic intensity p10t, or equivalently, by assuming that p10t = p10(Ft),

where Ft is an unobservable factor 4 [see e.g. Duffie, Singleton (1998), Schonbucher (2001), Del-

loy, Fermanian, Sbai (2005), Duffie, Eckner, Horel, Saita (2009) for credit risk applications, and

3In other applications, such as low liquidity / high liquidity, both p 10 and p01 can depend on time t [see e.g.

Giesecke, Weber (2006)].
4For a homogenous population, any dependence structure can always be represented by means of such a factor

representation [de Finetti (1931), Hewitt, Savage (1955)] with possibly an infinite dimensional factor. In particular,

the copula based approach [see e.g. Li (2000), Schonbucher, Schubert (2001)] can be rewritten in this way.
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Gschlossl, Czado (2006) for health insurance applications]. This unobservable common factor is

called common dynamic frailty in the credit risk literature by analogy with the terminology intro-

duced by Vaupel, Manton, Stallard (1979) for application in demography 5.

ii) In a homogenous population the contagion effect explains how the number of ill people

influences the probability to become sick for individuals currently in good health. This corresponds

to a dependence of the type p10t = p10(Nt−1), where p10 is a deterministic function. This is a

multivariate extension of Freund model for an homogenous population [Freund (1961)].

In the analysis of social effects, the literature distinguishes in a similar vein between endoge-

nous effects, corresponding to contagion (also called peer effects, neighbourhood effects, herd

behaviour, ...), and correlated effects, corresponding to the frailty [see Manski (1993)]. A dynamic

binomial model with both risk correlation and contagion is defined by the following assumptions:

Assumption A.1: The individual risk variables yit, i = 1, . . . , n at date t are independent con-

ditional on the past individual histories y i,t−1, i = 1, . . . , n, and on the current and past factor

values Ft.

Assumption A.2: The conditional distribution of yi,t depends on individual histories by means of

yi,t−1 and Nt−1 only, and on the factor path by means of Ft only, respectively. The corresponding

5The terminology frailty has to be used carefully. In a general framework the transition probability p 10,i,t can

dependent on both individual i and time t, and different unobservable factors can be introduced, that are a pure

individual effect Fi, a pure time effect Ft, or a joint unobservable effect Fit. The standard frailty terminology concerns

models with independent individual effects F i [see Greenwood, Yule (1920) for the first introduction of unobserved

individual heterogeneity in the literature]. The aim is to account for omitted individual variables and explain the bias

due to the fact that less fragile individuals will recover earlier. Joint individual and time effects have been introduced

in the microeconometric literature to represent the effort to diminish risk by individuals and capture the moral hazard

phenomenon [see Gourieroux, Jasiak (2001) for an application to bonus-malus in motor insurance contracts]. In

the framework above, similar to the standard one encountered in the credit risk literature, a stochastic time effect is

introduced, that is, all individuals have at a given date the same degree of fragility. This explains the more precise

terminology ”common dynamic frailty” used in our framework [see also Duffie, Eckner, Horel, Saita (2009), p2096].
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transition matrix, conditional on Ft and yi,t−1, i = 1, . . . , n, is:

Pt =

⎛
⎜⎜⎜⎝

1 − p10(Ft, Nt−1) p01

p10(Ft, Nt−1) p11

⎞
⎟⎟⎟⎠ .

Assumption A.3: The conditional distribution of Ft given Ft−1, yi,t−1, i = 1, . . . , n, depends on

Ft−1 only, and admits the transition pdf g(ft|ft−1).

Thus, the common factor has an exogenous Markovian dynamics and represents the external

shocks influencing the probability to get the disease, such as environmental conditions, whereas

contagion is an endogenous phenomenon. The exogenous factor can be multivariate, and we denote

by integer q the dimension of vector Ft.

In the model above, we have implicitly assumed that contagion arises with one lag. This recur-

sive approach avoids the question of simultaneous contagion arising in discrete time models with

p10(Ft, Nt) [see Manski (1993)] and in continuous time models [see e.g. Jarrow, Yu (2001)], as

well as the associated identification problem, often called the reflection problem [Manski (1993)].

We have also assumed that the influences of different sick people are the same. It would be possi-

ble to extend the model by assuming that contagion can arise with a limited number of neighbours

[see e.g. Giesecke, Weber (2006)], or depend on individual characteristics of sick people.

The conditional distribution of Nt given Ft, Nt−1 becomes:

B(Nt−1, p11) ∗ B(n−Nt−1, p10(Ft, Nt−1)), (3.1)

and the joint process (Ft, Nt) is Markovian. The conditional distribution of Nt given Nt−1 only is

derived by integrating out the unobservable factor path. More precisely, this conditional probability

is given by:

P [Nt = nt|Nt−1 = nt−1, F0 = f0] =

∫
· · ·
∫ t∏

τ=1

p[nτ |nτ−1, fτ ]

t∏
τ=1

[g(fτ |fτ−1)dfτ ]

∫
. . .

∫ t−1∏
τ=1

p[nτ |nτ−1, fτ )

t−1∏
τ=1

[g(fτ |fτ−1)dfτ ]

, (3.2)
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where p(nt|nt−1, ft) denotes the elementary probability of the conditional distribution (3.1). The

factor integration creates a contemporaneous dependence between individual risks, but also an

increase of the memory for count process (Nt), which is no longer Markovian.

Formula (3.2) shows that the effect of lagged counts Nt−1 on the distribution of current count

Nt has three origins: i) the dependence ofNt onNt−1 in the basic binomial autoregressive process;

ii) the contagion effect, that is, the dependence of p10t with respect toNt−1; iii) the unobservability

of the common dynamic frailty, which introduces the effect ofNt−1 by means of the filtering distri-

bution of Ft givenNt−1. These different effects of Nt−1 corresponding to the transition model, the

contagion and the frailty filtering 6, respectively, can only be identified for special parameterized

models.

In finite populations the affine property of process (Nt), and even of joint process (Nt, Ft), is

not fulfilled in general. We describe in Sections 3.2 and 3.3 below two limiting cases in which

the affine property is (partially) recovered. They correspond to the limiting Gaussian AR(1) and

INAR(1) processes, respectively. The introduction of correlated risks and contagion in these lim-

iting Gaussian autoregressive and INAR models is deduced by considering a large population and

cross aggregating over the population. Thus, the limiting models explain how to pass from a mi-

croscopic analysis to a macroscopic one [Fournier, Meleard (2004)].

3.2 Limiting Gaussian autoregressive model

i) Let us first consider a model with contagion effect only, that is, p10,t = p10(Nt−1/n), say, where

p10(.) is a given function. The conditional moments of Nt/n are:

Et−1(Nt/n) = p11Nt−1/n+ (1 −Nt−1/n)p10(Nt−1/n),

Vt−1(Nt/n) =
1

n

{
p11(1 − p11)Nt−1/n+ p10(Nt−1/n)[1 − p10(Nt−1/n)](1 −Nt−1/n)

}
.

The conditional variance tends to 0, when n tends to infinity. This suggests that the variable N t/n

converges in quadratic mean to an equilibrium value μ, say, solution of the equation:

μ = p11μ+ (1 − μ)p10(μ), (3.3)

6See e.g. Collin-Dufresne, Goldstein, Helwege (2003) and Giesecke (2004) for a discussion of the effect of the

updating of beliefs.
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whenever p10(.) is a continuous function. Moreover, if p10(.) is first-order differentiable, we get:

p10(Nt−1/n) 
 p10(μ) +
dp10(μ)

dμ
(Nt−1/n− μ)

= p10(μ) +
1√
n

dp10(μ)

dμ
Xn,t−1.

This expansion modifies the basic limiting result in Proposition 2 (see Appendix 1). We get the

following result:

Corollary 1: Let us consider a pure contagion model with p10t = p10(Nt−1/n) and define Xn,t =
√
n(Nt/n−μ), where μ is the solution of equation (3.3). When n→ ∞, the processXn,t converges

in distribution to a process ξ∗t such that:

ξ∗t = ρ∗ξ∗t−1 + η∗ε∗t ,

where ε∗t ∼ IIN(0, 1) and:

η∗2 = μp11(1 − p11) + (1 − μ)p10(μ)[1 − p10(μ)],

ρ∗ = p11 − p10(μ) + (1 − μ)
dp10(μ)

dμ
.

Let us denote Ψ0(μ) = p11μ+ (1− μ)p10(μ). Thus, the equilibrium value μ is a fixed point of

function Ψ0, whereas the limiting autoregressive parameter ρ∗ =
dΨ0(μ)

dμ
is the slope of function

Ψ0 at this point. The Gaussian limiting process (ξ ∗t ) is stationary if, and only if, the fixed point is

locally stable:

|ρ∗| =

∣∣∣∣dΨ0(μ)

dμ

∣∣∣∣ < 1. (3.4)

ii) In the general case with both correlated risks and contagion, we have p10t = p10(Ft, Nt−1/n).

By the same arguments as above, Nt−1/n tends to a limit μt−1 when n tends to infinity, where μt

satisfies the recursive equation:

μt = p11μt−1 + (1 − μt−1)p10(Ft, μt−1), (3.5)

which is the analogue of equation (3.3). Due to common factor Ft, the long run equilibrium at date

t is now a dynamic stochastic equilibrium, which depends on the complete factor history. Corollary

1 becomes:
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Corollary 2: Let us consider a model such that p10,t = p10(Ft, Nt−1/n) and define Xn,t =
√
n(Nt/n − μt), where the stochastic process (μt) of dynamic equilibria satisfies the recursive

equation (3.5). When n → ∞, the process (Xn,t) converges in distribution to a process ξ∗t such

that:

ξ∗t = ρ∗t ξ
∗
t−1 + η∗t ε

∗
t , (3.6)

where ε∗t ∼ IIN(0, 1) and:

η∗2t = μt−1p11(1 − p11) + (1 − μt−1)p10(Ft, μt−1)[1 − p10(Ft, μt−1)], (3.7)

ρ∗t = p11 − p10(Ft, μt−1) + (1 − μt−1)
∂p10

∂μ
(Ft, μt−1). (3.8)

We get a 3-dimensional nonlinear state space model, with Markov state vector (ξ ∗t , μt, Ft).

It is interesting to understand why the initial 2-dimensional state space (Nt, Ft) of the extended

dynamic binomial process has been transformed into a 3-dimensional state space in the limiting

case. In fact, we have:

Nt/n = μt +
1√
n
ξ∗t + o(1/

√
n). (3.9)

Processes μt and ξ∗t are providing the first two terms in the expansion of Nt/n in a neighbourhood

of an infinite population size n → ∞. Specifically, the joint dynamics of (μt, Ft) describe the

limiting case of infinite population size. These dynamics are studied for some general continu-

ous time models with frailty and contagion by Frey, Backhaus (2003), Giesecke, Weber (2004),

(2006). Process ξ∗t in Corollary 2 describes the first-order dynamic effect of finite population size.

Thus, processes μt and ξ∗t correspond to the cross-sectionally asymptotic (CSA) and granularity

adjustment (GA) components, respectively, in the granularity approach developed in Basel 2 [see

e.g. Gordy (2003), (2004), Gagliardini, Gourieroux, Monfort (2012)]. As seen from recursive

equation (3.5), μt is a deterministic function of the current and lagged factor values. In particular,

the sequence (μt) is stochastic, affected at each date by new shocks and does not converge when

t tends to infinity. The cross-sectional limiting analysis shows that the sequence of granularity

adjustments (ξ∗t , t ∈ N) has a simplified dynamics, which is linear Gaussian given the current and

lagged values of (Ft, μt).

Let us now investigate the strict stationarity and ergodicity properties of the state vector

(ξ∗t , μt, Ft). Let:

Ft = a(Ft−1, εt), (3.10)
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be the nonlinear autoregressive representation of Markov process (Ft), where (εt) is a white noise

process with positive p.d.f. on the support R
m.

Assumption A.4: (i) p11 < 1. (ii) The function p10(f, μ) is differentiable w.r.t. both arguments

and {p10(f, μ) : f ∈ R
q} = (0, 1), for any μ ∈ [0, 1]. (iii) The function a(f, ε) is differentiable

w.r.t. both arguments and {a(f, ε) : ε ∈ R
m} = R

q, for any f ∈ R
q. (iv) The mapping f �→

E[‖a(f, εt)‖] is continuous on R
q. Moreover, there exist real constants γ, c and R, with γ < 1,

such that E[‖a(f, εt)‖] ≤ c+ γ‖f‖, for ‖f‖ ≥ R.

Under Assumption A.4 (ii), the contagion probability can take any value in the interval (0, 1)

as the exogenous factor varies over its support, for any given equilibrium value μ ∈ [0, 1]. The

conditions in Assumptions A.4 (iii) and (iv) are satisfied for instance when (Ft) is a scalar nonlinear

autoregressive process with additive error: Ft = ϕ(Ft−1) + σ(Ft−1)εt, where the autoregressive

function ϕ is such that |ϕ(f)| ≤ c+γ|f |, for |f | large, with γ < 1, the volatility function σ is such

that σ(f)/|f | → 0 when |f | → ∞, and (εt) is a strong white noise process with positive p.d.f. on

the support R and E[|εt|] <∞.

Proposition 4: (i) Under Assumption A.4, the Markov processXt = (μt, F
′
t)

′ defined by equations

(3.5) and (3.10) with state space X = [0, 1] × R
q admits a unique invariant probability measure

π. Moreover, (Xt) is V -geometrically ergodic, with function V on X defined by V (x) = 1 + ‖f‖
for x = (μ, f ′)′ ∈ X , that is:

‖P h(x, ·) − π‖V ≤ RV (x)r−h, h ∈ N,

for some constantsR <∞ and r > 1, and any x ∈ X , where P h(x, ·) denotes the h-step transition

kernel of Markov process (Xt) with initial value X0 = x and ‖ν‖V := sup
g:|g|≤V

∣∣∣∣
∫
gdν

∣∣∣∣ denotes the

V -norm of measure ν, with the sup taken w.r.t. functions g on X such that |g(x)| ≤ V (x) for all

x ∈ X .

(ii) If process (Xt) is initialized with the invariant distributionX0 ∼ π, and in addition:

E[log |ρ∗t |] < 0, (3.11)

where ρ∗t is defined in equation (3.8) and the expectation is w.r.t. the invariant probability distri-

bution (μt−1, F
′
t )

′, then process (ξ∗t ) defined in (3.6) is strictly stationary.
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Proof: See Appendix 2.

In Proposition 4 (i), the long-term transition kernel P h(x, .) of Markov process (Xt) converges

to the invariant probability measure π at a geometric rate as h → ∞. This geometric ergodicity

property is established by using results in Meyn, Tweedie (2009). In Proposition 4 (ii), the strict

stationarity of the granularity adjustment component ξ ∗t is proved by using a result of Brandt (1986)

for linear autoregressive processes with stochastic autoregressive coefficient. The condition (3.11)

is the analogue of (3.4) and allows for absolute values of the stochastic autoregressive coefficient

larger than 1 at some dates, as long as this does not occur too often.

Different specifications of probability function p10 can be introduced. For instance, we can con-

sider a standard probit function with both frailty and lagged count as explanatory variables. This

specification arises in the extension of the value of the firm model to contagion effects [see Rosch,

Winterfeld (2008) for such an extension in a static framework]. Here we consider a logit specifica-

tion and focus on three examples with pure contagion, pure frailty effects, and both contagion and

frailty effects, respectively.

Example 1: Logistic contagion

Let us consider a pure contagion model with logistic contagion scheme:

p10t = p10(Nt−1/n) =
1

1 + exp(−aNt−1/n− b)
. (3.12)

This logistic scheme is for instance considered for credit risk analysis in PortfolioView by Mc

Kinsey. The long run equilibrium value [see (3.3)] is solution of the equation:

1 − μ

μ

1

1 + exp(−aμ − b)
= 1 − p11. (3.13)

We prove in Appendix 3 that this solution μ = μ(a, b, p11) exists, is unique and increasing with

respect to parameters a, b, p11. We also prove that the autoregressive coefficient ρ∗ = ρ∗(a, b, p11)

in Corollary 1 is such that |ρ∗| < 1 for any values of a ≥ 0, b > 0 and p11 ∈ (0, 1). Hence the limit

process (ξ∗t ) is stationary for any such parameter choice.

In Figure 1 we display the equilibrium value μ and the autoregressive coefficient ρ∗ as functions

of parameter a, for different values of parameters p11 and b.
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[Insert Figure 1: Equilibrium value and autoregressive coefficient in the logistic model.]

The equilibrium value μ features an increasing pattern w.r.t. parameter a and approaches the max-

imum value 1/(2 − p11) when a gets large. The pattern of the autoregressive coefficient ρ∗ can be

non-monotone w.r.t. parameter a, and ρ∗ becomes negative for large a. The intuition for negative

autoregressive coefficients is the following: For given values of p11 and b, when parameter a is suf-

ficiently large the contagion probability π10(μ) is such that π10(μ) > p11. Then, at equilibrium the

contagion probability is larger than the probability to remain sick. Suppose now we move N t−1/n

upward from equilibrium such that Nt−1/n > μ. Then, the probability of contagion π10(Nt−1/n)

increases, but the proportion of individuals 1−Nt−1/n that can be contaged decreases. If the latter

effect dominates, on average the proportion of sick individuals will be below the equilibrium, that

is, Nt/n < μ. Hence, a positive shock on Xn,t−1 is followed by a negative shock on Xn,t, which

explains the negative autocorrelation coefficient.

Example 2: Pure frailty model

Let us now consider the limiting model with frailty only. We have p10(Ft, μt−1) = p10(Ft) ≡
F ∗

t , where the transformed factor process F ∗
t admits values in (0, 1). The dynamic equation defin-

ing the sequence of equilibria becomes:

μt = p11μt−1 + (1 − μt−1)F
∗
t

= (p11 − F ∗
t )μt−1 + F ∗

t . (3.14)

In particular, if factor (F ∗
t ) is a strong white noise, the sequence of dynamic equilibria satisfies a

bilinear model of order 1 [see Granger and Andersen (1978), Pham, Tran (1981)]. 7 By recursive

substitution, we get:

μt = F ∗
t +

∞∑
h=1

[
h−1∏
k=0

(p11 − F ∗
t−k)

]
F ∗

t−h, (3.15)

whenever the series in the right hand side exists.

Let us assume that process (F ∗
t ) in (0, 1) is strictly stationary and ergodic. Then, the stationarity

7Process (μt) defined in (3.14) slightly differ from the definition of bilinear process of order 1 adopted in Pham,

Tran (1981) since the shock in the stochastic autoregressive coefficient p 11 − F ∗
t is equal to the innovation F ∗

t , and

not to its lagged value.
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conditions for process (μt) can be derived directly from the results in Brandt (1986) [see also Pham,

Tran (1981) and Bougerol, Picard (1992) when (F ∗
t ) is a strong white noise]. Specifically, process

(μt) defined in (3.15) is the unique strictly stationary solution of the stochastic recursive equation

(3.14) if:

E [log |p11 − F ∗
t |] < 0. (3.16)

The latter condition is satisfied for any p11 ∈ [0, 1]. Moreover, when p11 < 1, we have μt < 1

a.s. and equation (3.14) can be solved for F ∗
t to get F ∗

t =
μt − p11μt−1

1 − μt−1

. Hence, process (μt)

is invertible and the information sets associated with the factor process (F ∗
t ) and the sequence of

dynamic equilibria (μt) are the same.

Example 3: Logistic model with contagion and frailty

We extend the logistic contagion model in Example 1 to include frailty effects as:

p10(Ft, μt−1) =
1

1 + exp(−aμt−1 − b− cFt)
, (3.17)

where the parameters are such that a, c > 0 and b ∈ R. The scalar exogenous factor Ft follows a

stationary Gaussian autoregressive process:

Ft = γFt−1 +
√

1 − γ2εt, (3.18)

where εt ∼ IIN(0, 1) and |γ| < 1. The stationary distribution of the exogenous factor is standard

Gaussian. Then, Assumption A.4 is satisfied if p11 < 1. From Proposition 4, the Markov process

(μt, Ft) admits a unique invariant distribution and is geometrically ergodic. We analyze this model

by means of Monte-Carlo simulation in Section 4.

3.3 INAR model with correlated risks and contagion

When np10t is equivalent to λt = λ(Ft, Nt−1), as n tends to infinity, we get a limiting INAR model

with stochastic intensity. The conditional distribution of N t given Nt−1 and Ft is B(Nt−1, ρ) ∗
P(λt). This type of model is especially simple if the stochastic intensity λ t is an affine function of

both Ft and Nt−1, and moreover (Ft) is itself an affine process. More precisely, let us assume:

Assumption A.5: λt = c0 + c1Ft + c2Nt−1, with c0 > 0, c1 ≥ 0 and c2 ≥ 0.
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Assumption A.6: The scalar factor process is a positive CaR(1) process with conditional Laplace

transform:

ψ1,t(u) = E[exp(−uFt+1)|Ft, Nt] = exp[−α(u)Ft − β(u)], (3.19)

for some positive functions α and β.

Since the conditional Laplace transform depends on Ft only, the factor features an exogenous

dynamics.

Proposition 5: Under Assumptions A.5-A.6, the INAR process with stochastic intensity is such that

the bivariate process (Nt, Ft) is a CaR(1) process with conditional Laplace transform:

ψ1,t(u, v) = E[exp(−uNt+1 − vFt+1)|Nt, Ft]

= exp
{
− c0[1 − exp(−u)] − β

(
v + c1[1 − exp(−u)] )

−Nt

(
c2[1 − exp(−u)] − log[1 − ρ+ ρ exp(−u)] )− Ft α

(
v + c1[1 − exp(−u)] ) }.

Proof: See Appendix 4.

The main advantage of the specification above is the simple characterization of the case with

correlated risks only (resp. contagion only), which corresponds to the restriction c2 = 0 (resp.

c1 = 0). These hypotheses can be easily tested in practice once a parametric specification is

chosen for the factor dynamics (see below). Another advantage of a CaR process is to provide

easily nonlinear predictions at any horizon. More precisely, the conditional Laplace transform at

horizon h is:

ψh,t(u, v) = E[exp(−uNt+h − vFt+h)|Nt, Ft]

= exp[−a1,h(u, v)Nt − a2,h(u, v)Ft − bh(u, v)],

where a1,h, a2,h and ch are computed by recursion

a1,h(u, v) = c2[1 − exp(−a1,h−1(u, v))] − log[1 − ρ+ ρ exp(−a1,h−1(u, v))]

a2,h(u, v) = α
{
a2,h−1(u, v) + c1[1 − exp(−a1,h−1(u, v))]

}
,

bh(u, v) = bh−1(u, v) + c0[1 − exp(−a1,h−1(u, v))] + β
{
a2,h−1(u, v) + c1[1 − exp(−a1,h−1(u, v))]

}
,
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where:

a1,1(u, v) = c2[1 − exp(−u)] − log[1 − ρ+ ρ exp(−u)], a2,1(u, v) = α
(
v + c1[1 − exp(−u)] ),

b1(u, v) = c0[1 − exp(−u)] + β
(
v + c1[1 − exp(−u)] ).

Moreover, by considering the behaviour of functions a1,1(u, v) and a2,1(u, v) in a neighbourhood

of u = v = 0, the stationarity conditions of the joint process (Nt, Ft) are directly deduced [see

Darolles, Gourieroux, Jasiak (2006), Proposition 6.2]. More precisely, the joint process (Nt, Ft) is

strictly stationary if, and only if, the modulus of the eigenvalues of the matrix:⎛
⎝ ∂a1,1

∂u
(0, 0)

∂a1,1

∂v
(0, 0)

∂a2,1

∂u
(0, 0)

∂a2,1

∂v
(0, 0)

⎞
⎠ =

⎛
⎝ c2 + ρ 0

α′(0)c1 α′(0)

⎞
⎠ , (3.20)

are strictly smaller than 1. We get the stationarity conditions in the next result.

Proposition 6: Under Assumptions A.5-A.6, the Markov process (Nt, Ft) is strictly stationary if,

and only if:

c2 + ρ < 1, α′(0) < 1. (3.21)

The condition α′(0) < 1 is the stationarity condition for the CaR(1) process (Ft) in Assumption

A.6, while the condition c2 + ρ < 1 involves the autoregressive parameter ρ of the INAR process

and the parameter c2 that describes the contagion effect in the stochastic intensity.

We can derive further results concerning the distribution of process (Nt, Ft) if we assume that

the factor is an autoregressive Gamma process (ARG) of order 1 [Gourieroux, Jasiak (2006)], that

is, the CaR(1) process which is a time discretized Cox, Ingersoll, Ross process [Cox, Ingersoll,

Ross (1985)]. The corresponding conditional Laplace transform is given by:

E[exp(−uFt+1)|Ft] =
1

(1 + ηu)δ
exp

(
− γu

1 + ηu
Ft

)
, (3.22)

that is,

α(u) =
γu

1 + ηu
, β(u) = δ log(1 + ηu), (3.23)

where γ ≥ 0 and δ, η > 0. Parameter γ is the first-order autocorrelation of process (Ft). The

unconditional distribution of Ft is a gamma distribution with parameters (δ, η/(1 − γ)). The
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component N0t follows a Poisson distribution with gamma heterogeneity, that is, a negative bi-

nomial distribution. Thus, by introducing an ARG factor, we transform the initial process based

on Poisson distributions in a process based on negative binomial distributions [see e.g. Bockenholt

(1999)] and solve the standard overdispersion problem in a dynamic framework [Greenwood, Yule

(1920)]. The sensitivity parameter c1 in the intensity and the scale parameter η of the factor Ft

cannot be identified separately. For instance, we can set parameter η such that E[Ft] = 1. Since

E[F ] = δη/(1 − γ) [see Gourieroux, Jasiak (2006)], we can assume η = (1 − γ)/δ.

From Proposition 6, process (Nt, Ft) is strictly stationary if, and only if, c2 + ρ < 1 and γ < 1.

The first- and second-order moments of the stationary distribution are given in the next proposition,

proved in Appendix 4.

Proposition 7: Let Assumptions A.5-A.6 hold, and let the factor Ft follow the ARG(1) process as

in (3.22)-(3.23). Then, when η = (1 − γ)/δ, the unconditional means, variances and covariance

of process (Nt, Ft) are given by:

E[Nt] =
c0 + c1

1 − (c2 + ρ)
, E[Ft] = 1,

V [Nt] =
c0 + c1

1 − (c2 + ρ)

[
1 − ρ2

1 − (c2 + ρ)2

]
+
c21
δ

1

1 − (c2 + ρ)2

[
1 + γ(c2 + ρ)

1 − γ(c2 + ρ)

]
, V [Ft] =

1

δ
,

and:

Cov(Ft, Nt) =
c1
δ

1

1 − γ(c2 + ρ)
.

The stationary distribution of the count variableNt features overdispersion, that is, V [Nt] > E[Nt],

when either c1 > 0, or c2 > 0 (or both). In the first case, overdispersion is due to the frailty effect,

while in the second case it is due to the contagion effect. The processes (Nt) and (Ft) feature a

positive contemporaneous unconditional correlation when c1 > 0.

Proposition 8 provides the autocorrelogram of the count process (Nt).

Proposition 8: Let Assumptions A.5-A.6 hold, and let the factor Ft follow the ARG(1) process as

in (3.22)-(3.23) with η = (1 − γ)/δ. Then, the autocorrelogram of process (Nt) is such that:

Corr(Nt+h, Nt) = (1 − ω)(c2 + ρ)h + ωγh, h ≥ 0,
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where ω =
c1γ

γ − (c2 + ρ)

Cov(Nt, Ft)

V (Nt)
, if γ �= c2 + ρ, and:

Corr(Nt+h, Nt) = (1 + ω̃h)γh, h ≥ 0,

where ω̃ = c1
Cov(Nt, Ft)

V (Nt)
, if γ = c2 + ρ.

Proof: See Appendix 4.

The autocorrelogram of process (Nt) decays geometrically w.r.t. the lag. Indeed, as a consequence

of the CaR(1) property of the joint process (Nt, Ft) in Proposition 5, the conditional mean of

(Nt, Ft)
′ given the past (Nt−1, Ft−1) is a linear function of the lagged value (Nt−1, Ft−1)

′, as in a

bivariate VAR process (see Lemma A.8 in Appendix 4). The associated matrix of the autoregres-

sive coefficients is the transposed of the matrix in equation (3.20), whose eigenvalues are c2+ρ and

γ. Hence, when the eigenvalues c2 + ρ and γ are distinct, the autocorrelogram of (Nt) is a linear

combination of the autocorrelogram (c2 + ρ)h, h ∈ N, of the INAR process with pure contagion,

and autocorrelogram γh, h ∈ N, of the ARG process (Ft). When the two eigenvalues c2 + ρ and γ

are equal, the autocorrelogram of (Nt) involves also a multiplicative term that is linear in the lag.

Example 4: Pure correlated risks

When only correlated risks λt = c0+c1Ft are introduced, we get a recursive system in which the

factor dynamics is fixed exogenously, then driving the dynamics of the count process. This allows

for computing nonlinear predictions in two steps, first by considering the conditional distribution

of Nt+h given Ft+h, Nt, then by reintegrating out the future factor path given Ft, Nt. We have:

E[exp(−uNt+h)|Ft+h, Nt]

= exp
{
− (λt+h + ρλt+h−1 + . . .+ ρh−1λt+1)[1 − exp(−u)] +Nt log[1 − ρh + ρh exp(−u)]

}
= exp

{
−
[
c0

1 − ρh

1 − ρ
+ c1(Ft+h + ρFt+h−1 + . . .+ ρh−1Ft+1)

]
[1 − exp(−u)]

+Nt log[1 − ρh + ρh exp(−u)]
}
.

We deduce that:

E[exp(−uNt+h)|Ft, Nt] = exp

{
−c0 1 − ρh

1 − ρ
[1 − exp(−u)] +Nt log[1 − ρh + ρh exp(−u)]

}
E
[
exp
{−c1(Ft+h + ρFt+h−1 + . . .+ ρh−1Ft+1)[1 − exp(−u)]} |Ft

]
.
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To conclude this computation, we have to explain how to compute recursively the nonlinear pre-

diction of the smoothed future path Ft+h + ρFt+h−1 + . . .+ ρh−1Ft+1. It is easily checked that :

E{exp[−v(Ft+h + ρFt+h−1 + . . .+ ρh−1Ft+1)]|Ft} = exp[−ah(v)Ft − bh(v)],

where ah and ch satisfy the recursive equations:

ah(v) = α[ah−1(v) + vρh−1], bh(v) = bh−1(v) + β[ah−1(v) + vρh−1],

with initial conditions:

a1(v) = α(v), b1(v) = β(v).

Thus, we get:

E[exp(−uNt+h)|Ft, Nt] = exp

{
−c0 1 − ρh

1 − ρ
[1 − exp(−u)] +Nt log[1 − ρh + ρh exp(−u)]

−Ft ah (c1[1 − exp(−u)]) − bh (c1[1 − exp(−u)])
}
.

4 Simulation experiments

In this Section we report the results of simulation experiments in two dynamic models with both

contagion and correlated risks. The first model is a logistic specification admitting a limit Gaussian

approximation. The second model is the INAR process with stochastic intensity.

4.1 Logistic model with contagion and correlated risks

The contagion probability admits a logistic specification as in equation (3.17), where the parame-

ters are a = 5, b = − log(9) and c = 2. The probability of staying in state 1 is p11 = 0.5. The

factor (Ft) follows a Gaussian autoregressive process as in equation (3.18), where the autoregres-

sive coefficient is γ = 0.5. The number of individuals is n = 100.

In Figure 2 we display simulated paths for the factor Ft, the proportion Nt/n of individuals in

state 1 and the stochastic equilibrium μt.

[Insert Figure 2: Simulated paths of factor, count and stochastic equilibrium in the logistic

model with contagion and correlated risks.]
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The path of Nt/n is close to that of the stochastic equilibrium μt, that is, the CSA approximation,

although the path of μt is smoother. The dynamics of the equilibrium μt features regimes that are

driven by factor Ft. When the values of factor Ft are close to zero, the equilibrium μt is close to

0.6. When the factor Ft features negative shocks, the equilibrium μt decreases sharply. Positive

shocks on Ft are associated with rather small increases in μt. Hence, the reaction of the dynamic

equilibrium μt to positive and negative shocks in Ft is asymmetric.

Figure 3 displays the scatter plot of a simulated path of the joint equilibrium and factor process

(μt, Ft). From Example 3 in Section 3.2, this process is strictly stationary, if initialized with

the unique invariant distribution. The shaded area in Figure 3 is the support of the stationary

distribution, that is derived in Proposition A.1 in Appendix A.2.1.

[Insert Figure 3: Scatter plot and support of the stationary distribution of the joint equilibrium

and factor process for the logistic model with contagion and correlated risks.]

The support of the stationary distribution is a strict subset of [0, 1] × R. In particular, the support

contains neither equilibrium values μt > p11 associated with small negative realizations of the

factor Ft, nor equilibrium values μt < p11 associated with large positive realizations of the factor

Ft. Many points in the scatter plot cumulate in a state space region with factor value around zero

and equilibrium value close to 0.6, as already observed in Figure 2.

Figure 4 displays simulated paths for the standardized deviation from the equilibrium Xn,t =
√
n(Nt/n− μt), the autoregressive coefficient ρ∗t and the volatility η∗t of the Gaussian approxima-

tion. The corresponding simulated path of factor values is the same as in Figure 2.

[Insert Figure 4: Simulated paths of deviation from equilibrium, autoregressive coefficient and

volatility of the Gaussian approximation for the logistic model with contagion and correlated risks.]

The path of Xn,t features regimes in persistency, with both periods of positive autocorrelation

and periods of negative autocorrelation. This is reflected in the dynamics of the autoregressive

coefficient ρ∗t of the Gaussian approximation, that admits both values slightly above 1 and negative

values. The path of volatility η∗t is more stable than that of the autoregressive coefficient ρ∗t ,

and features some sharp downward movements associated with the negative shocks on the factor

Ft. For the selected model parameter values, we compute the expectation E[log |ρ∗t |] by Monte-
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Carlo simulation and get E[log |ρ∗t |] = −1.0893. Hence, condition (3.11) is satisfied and from

Proposition 4 process (ρ∗t ) is strictly stationary.

In order to assess the accuracy of the approximation (3.9), let us consider the standardized

residuals:

ε̃∗t =
Xn,t − ρ∗tXn,t−1

η∗t
, t varying,

that are the residuals for the autoregressive process in (3.6) computed from process Xn,t. If the

approximation (3.9) is accurate, process ε̃∗t is close to a standard Gaussian white noise. We display

some summary statistics for the unconditional distribution as well as autocorrelations for process

ε̃∗t in Table 1. They are computed by Monte-Carlo on a long simulated path of the process.

[Insert Table 1: Summary statistics and autocorrelogram of process ε̃∗t .]

We consider different population sizes, that are n = 25, n = 100 and n = 1000. From Table 1

it is seen that process ε̃∗t gets closer to a standard Gaussian white noise when n increases, which

confirms that the accuracy of approximation (3.9) improves with the population size.

4.2 INAR model with stochastic intensity

Let us now consider an INAR model with stochastic intensity as in Assumptions A.5-A.6. The

exogenous factor Ft follows an ARG process with autocorrelation parameter γ = 0.5 and shape

parameter δ = 2. The scale parameter η is set equal to η = (1 − γ)/δ = 0.25 to get E[Ft] = 1

[see Section 3.3]. The autoregressive parameter ρ of the INAR process is ρ = 0.2. Moreover, we

consider four parameter sets for the intensity specification:

A) c0 = 2.4, c1 = 0, c2 = 0,

B) c0 = 1.4, c1 = 1, c2 = 0,

C) c0 = 1.2, c1 = 0, c2 = 0.4,

D) c0 = 0.2, c1 = 1, c2 = 0.4.

Parameters c1 and c2 are selected such that models A, B, C, and D correspond to specifications

with constant intensity, pure frailty effect, pure contagion effect, and both frailty and contagion
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effects, respectively. The parameter c0 is selected to have the same unconditional mean for count

Nt across all specifications, which is equal to E[Nt] =
c0 + c1

1 − (ρ+ c2)
= 3.

i) Simulated paths

Let us first compare simulated paths of the process (Nt) for the different parameter sets A-

D. For this purpose, it is useful to rewrite the model in the nonlinear autoregressive stochastic

representation:

Nt = inf

{
m ∈ N, m ≤ Nt−1 :

m∑
j=0

π
(1)
j,t ≥ U1,t

}
+ inf

{
m ∈ N :

m∑
j=0

π
(2)
j,t ≥ U2,t

}
≡ a(Nt−1, Ft, Ut),

where π(1)
j,t =

Nt−1!
j!(Nt−1 − j)!

ρj(1 − ρ)Nt−1−j and π(2)
j,t = e−λt

λj
t

j!
, with λt = c0 + c1Ft + c2Nt−1,

are the probability weights for the conditional binomial and Poisson distributions B(N t−1, ρ) and

P(λt) given Nt−1 and Ft, respectively, and variables Ut = (U1,t, U2,t) are i.i.d. such that U1,t

and U2,t are independent with uniform distribution U [0, 1]. The distribution of the factor (Ft)

and shocks (Ut) is independent of intensity parameters c0, c1 and c2. This allows us to compare

the simulated paths of process (Nt) obtained from a same path of (Ft, Ut) and different intensity

parameters c0, c1, c2 as in sets A-D above.

The simulated path of (Nt) for parameter sets A-B and C-D are displayed in Figures 5 and 6,

respectively.

[Insert Figure 5: Simulated paths of the INAR process with stochastic intensity (parameter sets

A and B)]

[Insert Figure 6: Simulated paths of the INAR process with stochastic intensity (parameter sets

C and D)]

Simulated paths can be used to discuss the identification power of several summary statistics.

ii) Conditional expectation

In Figure 7 we display the conditional expectation of Nt given Nt−1 = nt−1 as a function of

lagged value nt−1 for parameter sets A-D.
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[Insert Figure 7: Conditional expectation ofNt givenNt−1 in the INAR process with stochastic

intensity]

The conditional expectation is linear E[Nt|Nt−1] = c0 + (ρ+ c2)Nt−1 = E[Nt] + (ρ+ c2)(Nt−1 −
E[Nt]) for models with constant intensity, or pure contagion effects (parameter sets A and C). For

models including frailty effects (parameter sets B and D), we compute the conditional expectation

E[Nt|Nt−1] by Monte-Carlo on a long simulated path of process (Nt). From Figure 7 it is seen that

the conditional expectation is close to linear also for parameter sets B and D. Moreover, models

A, B, C and D are ranked in order of increasing (linear, first-order) persistency. However, model C

with pure contagion cannot be distinguished from a model with constant intensity and autoregres-

sive INAR parameter ρ̃ = ρ+ c2 based on the conditional expectation at lag one. Figure 7 suggests

that this is hardly possible also for models B and D including frailty effects.

iii) Autocorrelogram

From Proposition 8 the autocorrelogram of (Nt) is a mixture of two power functions of γ and

c2 + ρ, respectively. Thus, we expect to better identify contagion and frailty effects from the ACF,

at least when parameters γ and c2 + ρ are both non-zero and sufficiently different. More precisely,

the log ACF is nonlinear if, and only if, c1 > 0 and γ > 0, that is, if there is a dynamic frailty

effect. The nonlinearity is weak when the autocorrelation coefficient of the frailty γ is close to

c2 + ρ. There is no nonlinearity at all when the frailty is static.

In Figure 8 we display the autocorrelogram {Corr(Nt+h, Nt), h ∈ N} of process (Nt) for

parameter sets A-D.

[Insert Figure 8: Autocorrelogram of the INAR process (Nt) with stochastic intensity]

For experiments A and C with no frailty effect, the log ACF is linear. At the opposite, some

curvature of the log ACF is observed for experiment B with pure frailty, where c2 + ρ = 0.2 and

γ = 0.5. The log ACF is almost linear for experiment D with both frailty and contagion, where

c2 + ρ = 0.6 and γ = 0.5.
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iv) Conditional overdispersion

Let us now investigate whether the analysis of higher-order moments of the conditional distri-

bution of Nt+1 given Nt can be useful for identifying contagion vs frailty effects. The overdisper-

sion coefficient of the conditional distribution of Nt+1 given Nt is defined as the ratio between the

conditional variance V [Nt+1|Nt] and the conditional mean E[Nt+1|Nt]. In Appendix 4 we show

that:

V [Nt+1|Nt] = E[Nt+1|Nt]−ρ2Nt + c21

(
γ2V [Ft|Nt] + 2

γ(1 − γ)

δ
E[Ft|Nt] +

(1 − γ)2

δ

)
, (4.1)

where:

E[Nt+1|Nt] = E[Nt] + (c2 + ρ)(Nt −E[Nt]) + c1γ(E[Ft|Nt] − 1).

Hence, a model without frailty effect (c1 = 0) features conditional underdispersion. Intuitively, this

is because the conditional distribution is expected to feature less overdispersion than the marginal

distribution, and the latter is Poisson, i.e., with zero overdispersion. The contribution of frailty to

conditional dispersion is positive. It involves the conditional meanE[F t|Nt] and variance V [Ft|Nt]

of the unobservable factor F given the observable count Nt, as well as the unconditional variance

V [Ft] = 1/δ of the factor and its autocorrelation parameter γ. When the sensitivity parameter c1 is

large enough, the positive frailty effect can dominate and yield conditional overdispersion (at least

for some lag Nt).

In Figure 9 we display the conditional overdispersion of Nt+1 given Nt as a function of lagged

value Nt for parameter sets A-D.

[Insert Figure 9: Conditional overdispersion of Nt+1 given Nt in the INAR process with

stochastic intensity]

The introduction of a frailty effect has a positive level effect on the conditional overdispersion

function. As expected, specifications A and C feature conditional underdispersion, while specifi-

cations B and D feature conditional overdispersion for all displayed conditioning values Nt. The

introduction of a contagion effect has a slope effect on the conditional overdispersion function. For

instance, comparing the patterns for specifications C and D, the slope of the conditional overdis-

persion function is more negative for specification D.
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5 Conclusions

In this paper we analyze frailty correlated risks and contagion effects in large homogeneous popula-

tions. We consider a microscopic dynamic model in which individual risks can take two states (high

and low), and the individual transition probabilities between states are time varying and stochas-

tic. The frailty effect is modeled by means of a common unobservable factor Ft that impacts the

individual transition probabilities. The contagion effect is modeled through the dependence of the

individual transition probabilities on the lagged countNt−1 of individuals in the high risk state. We

derive macroscopic models for the count process (Nt) as the limit of the microscopic model when

the population size n tends to infinity. Different macroscopic dynamics are obtained according to

whether the transition probabilities are assumed fixed w.r.t. n (Gaussian approximation), or the

transition probability to the high risk state converges to zero when n increases (Poisson approxi-

mation). In the first setting, we derive an approximation for the dynamics of the proportion Nt/n

in terms of a dynamic stochastic equilibrium driven by factor Ft plus a granularity adjustment at

order 1/
√
n involving a conditionally Gaussian autoregressive process. In the second setting, we

carefully study the properties of the INAR process for count Nt with stochastic intensity driven by

factor Ft and lagged count Nt−1.

An interesting question is to which extent it is possible to identify frailty and contagion effects

from the macroscopic dynamics only. The analysis of the INAR model with stochastic intensity

suggests that it can be rather difficult to disentangle these two effects when relying solely on

summaries of the process that capture linear dynamics, such as the conditional mean function or

the autocorrelogram of process (Nt). Instead, nonlinear features of the conditional distribution of

Nt given Nt−1, such as the conditional overdispersion function, can be very useful to disentangle

frailty and contagion effects.
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Figure 1: Equilibrium value and autoregressive coefficient in the logistic model.
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The left panel displays the equilibrium value μ as a function of parameter a, while the right panel displays the autore-

gressive coefficient ρ∗ as a function of a, for the logistic model with contagion in equation (3.12). In each panel, the

three curves correspond to different values of parameter p 11, that are p11 = 1/10 (solid line), p11 = 1/2 (dashed line)

and p11 = 9/10 (dotted line). Parameter b is equal to b = − log(9).
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Figure 2: Simulated paths of factor, count and stochastic equilibrium in the logistic model with

contagion and correlated risks.
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This Figure displays simulated paths for the logistic model with contagion and correlated risks (3.17)-(3.18). The

parameter values are a = 5, b = − log(9), c = 2, p11 = 0.5 and γ = 0.5. The number of individuals is n = 100. The

upper Panel displays the path of the factor Ft, the middle Panel displays the path of the fraction N t/n of individuals

in state 1, and the lower Panel displays the path of the stochastic equilibrium μ t.
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Figure 3: Scatter plot and support of the stationary distribution of the joint equilibrium and factor

process for the logistic model with contagion and correlated risks.
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This Figure displays the scatter plot of a simulated sample of the joint process (μ t, Ft) for the logistic model with

contagion and correlated risks (3.17)-(3.18). The parameter values are a = 5, b = − log(9), c = 2, p 11 = 0.5 and

γ = 0.5. The shaded area is the support of the stationary distribution of (μ t, Ft), that corresponds to set Ω in equation

(a.6) in Appendix A.2.1. The horizontal dashed line corresponds to μ = p 11. The two dashed curves correspond to

functions μ = p10(F, 0) (lower curve) and μ = p10(F, 1) (upper curve).
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Figure 4: Simulated paths of deviation from equilibrium, autoregressive coefficient and volatility

of the Gaussian approximation for the logistic model with contagion and correlated risks.
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This Figure displays simulated paths for the logistic model with contagion and correlated risks (3.17)-(3.18). The

parameter values are a = 5, b = − log(9), c = 2, p11 = 0.5 and γ = 0.5. The number of individuals is n = 100.

The upper Panel displays the path of the standardized deviation from equilibrium X n,t =
√

n(Nt/n−μt), the middle

Panel displays the path of the autocorrelation coefficient ρ∗
t of the Gaussian approximation ξ∗

t in Corollary 2, and the

lower Panel displays the path of its volatility parameter η ∗
t .
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Figure 5: Simulated paths of the INAR process with stochastic intensity (parameter sets A and B).
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This Figure displays simulated paths for the INAR process with stochastic intensity as in Assumptions A.5-A.6. The

factor Ft follows an ARG process with parameters γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of

the INAR model is ρ = 0.2. The upper panel displays the factor path. The middle and lower panels display the paths

of the count Nt for models with intensity parameters c0, c1 and c2 as in sets A and B, respectively.
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Figure 6: Simulated paths of the INAR process with stochastic intensity (parameter sets C and D).

0 50 100 150 200 250
0

1

2

3

4
Factor Ft

t

0 50 100 150 200 250
0

2

4

6

8

10
Count Nt

t

0 50 100 150 200 250
0

2

4

6

8

10
Count Nt

t

This Figure displays simulated paths for the INAR process with stochastic intensity as in Assumptions A.5-A.6. The

factor Ft follows an ARG process with parameters γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of

the INAR model is ρ = 0.2. The upper panel displays the factor path. The middle and lower panels display the paths

of the count Nt for models with intensity parameters c0, c1 and c2 as in sets C and D, respectively.
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Figure 7: Conditional expectation of Nt given Nt−1 in the INAR process with stochastic intensity.
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This Figure displays the conditional expectation of N t given Nt−1 for the INAR process with stochastic intensity as

in Assumptions A.5-A.6. The factor Ft follows an ARG process with parameters γ = 0.5, δ = 2 and η = 0.25. The

autoregressive parameter ρ of the INAR model is ρ = 0.2. Circles, squares, stars and diamonds correspond to intensity

parameters c0, c1 and c2 as in sets A, B, C and D, respectively.

43



Figure 8: Autocorrelogram of the INAR process (Nt) with stochastic intensity.
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This Figure displays the autocorrelogram (left panel) and the log autocorrelogram (right panel) of the INAR process

(Nt) with stochastic intensity as in Assumptions A.5-A.6. The factor F t follows an ARG process with parameters

γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of the INAR model is ρ = 0.2. Circles, squares, stars

and diamonds correspond to intensity parameters c0, c1 and c2 as in sets A, B, C and D, respectively.
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Figure 9: Conditional overdispersion function of the INAR process (Nt) with stochastic intensity.
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Conditional overdispersion

This Figure displays the pattern of the conditional overdispersion of N t+1 given Nt, as a funtion of Nt, for the

INAR process (Nt) with stochastic intensity as in Assumptions A.5-A.6. The factor F t follows an ARG process with

parameters γ = 0.5, δ = 2 and η = 0.25. The autoregressive parameter ρ of the INAR model is ρ = 0.2. Circles,

squares, stars and diamonds correspond to intensity parameters c 0, c1 and c2 as in sets A, B, C and D, respectively.
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Table 1: Summary statistics and autocorrelogram of process ε̃∗t .

n = 25 n = 100 n = 1000

Mean −0.068 −0.035 −0.011

Median −0.076 −0.041 −0.012

Std. deviation 1.001 1.001 1.000

Skewness 0.015 0.025 0.013

Kurtosis 3.156 3.042 3.000

AC(1) 0.016 0.006 0.000

AC(2) 0.002 0.002 0.001

AC(3) 0.002 −0.000 0.001

AC(4) 0.001 0.001 0.000

AC(5) 0.000 0.000 0.000

This Table displays summary statistics and the autocorrelogram of

process ε̃∗t = Xn,t−ρ∗
t Xn,t−1

η∗
t

for the logistic model with contagion

and correlated risks (3.17)-(3.18). The parameter values are a = 5,

b = − log(9), c = 2, p11 = 0.5 and γ = 0.5. We consider different

population sizes that are n = 25, n = 100 and n = 1000. Statistic

AC(h) = Corr(ε̃∗t , ε̃∗t−h) denotes the autocorrelation of ε̃∗
t of order h.
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APPENDIX 1: Proofs of Proposition 2 and Corollary 1

A.1.1 Proof of Proposition 2

Let (Xn,t) ⇒ (ξt) denote convergence in distribution (or weak convergence) of the sequence of

processes (Xn,t =
√
n[Nt/n − μ] : t ∈ N), n = 1, 2, ... with sample space R

∞ to process

(ξt : t ∈ N) when n → ∞. From Billingsley (1968), p. 19, (Xn,t) ⇒ (ξt) is equivalent to

convergence of the finite-dimensional distributions, i.e.:

P [Xn,1 ∈ A1, ..., Xn,t ∈ At] → P [ξ1 ∈ A1, ...., ξt ∈ At], n→ ∞, (a.1)

for any set Aτ in the Borel sigma-field B(R) with P [ξτ ∈ ∂Aτ ] = 0, for τ = 1, ..., t, and t ∈ N.

Now, we use that (Xn,t) and (ξt) are Markov processes, and that the convergence of a sequence

of finite-dimensional distributions can be written in terms of the convergence of the sequence of

the associated characteristic functions. We get the next Lemma, which shows that condition (a.1)

holds if we have the convergence of the initial distribution and of the conditional characteristic

function of process (Xn,t), as well as the continuity of the conditional characteristic function of

the limit process (ξt) w.r.t. the conditioning variable.

Lemma A.1: Suppose that:

(i) Xn,1 converges in distribution to ξ1.

(ii) lim sup
n→∞

∫ ∣∣E[eiuXn,t |Xn,t−1 = x] −E[eiuξt |ξt−1 = x]
∣∣ νn,t−1(dx) = 0, for any u ∈ R and t =

2, 3, ..., where νn,t−1 denotes the probability measure of Xn,t−1 and i is the imaginary unit.

(iii) The function x→ E[eiuξt|ξt−1 = x] is continuous, for any u ∈ R and t ∈ N.

Then, condition (a.1) holds.

Proof of Lemma A.1: For any t ∈ N let ν(t)
n and ν(t) denote the probability measures of the

random vectors (Xn,1, ..., Xn,t)
′ and (ξ1, ..., ξt)

′, respectively. Then, condition (a.1) is equivalent

to the weak convergence ν(t)
n ⇒ ν(t), for any t ∈ N, as well as to:

E[eiu1Xn,1+...+iutXn,t ] → E[eiu1ξ1+...+iutξt ], n→ ∞, (a.2)

for any u1, ..., ut ∈ R and t ∈ N [see Billingsley (1968), Theorems 1.2.1 and 1.7.6]. We prove

convergence (a.1) by induction in t ∈ N. For t = 1, convergence (a.1) is implied by condition (i).
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Let us now assume that convergence (a.1) holds for a given integer t− 1, and prove that it is valid

for t as well. By the Markov property of process (Xn,t) we have:

E[eiu1Xn,1+...+iutXn,t ] = E[E[eiutXn,t |Xn,t−1]e
iu1Xn,1+...+iut−1Xn,t−1 ]

=

∫
E[eiutXn,t|Xn,t−1 = xt−1]e

iu1x1+...+iut−1xt−1ν(t−1)
n (dx(t−1)),

where x(t−1) := (x1, ..., xt−1) ∈ R
t−1. Similarly, by the Markov property of process (ξt), we have:

E[eiu1ξ1+...+iutξt ] =

∫
E[eiutξt |ξt−1 = xt−1]e

iu1x1+...+iut−1xt−1ν(t−1)(dx(t−1)).

Thus, we get:

∣∣E[eiu1Xn,1+...+iutXn,t ] − E[eiu1ξ1+...+iutξt ]
∣∣ ≤

∫ ∣∣E[eiutXn,t|Xn,t−1 = x] − E[eiutξt|ξt−1 = x]
∣∣ νn,t−1(dx)

+

∫
E[eiutξt|ξt−1 = xt−1]e

iu1x1+...+iut−1xt−1[ν(t−1)
n − ν(t−1)](dx(t−1)).

The first term in the RHS converges to zero from condition (ii). The second term in the RHS

converges to zero since ν(t−1)
n converges weakly to ν(t−1) and the function mapping x(t−1) into

E[eiutξt|ξt−1 = xt−1]e
iu1x1+...+iut−1xt−1 is bounded and continuous from condition (iii). The con-

clusion follows. �

Let us check the conditions of Lemma A.1. Condition (i) is satisfied by assumption. Condition

(iii) is satisfied since the conditional characteristic function of the limit Gaussian process is given

by:

E[exp(−iuξt)|ξt−1 = x] = exp

(
−iuρx − 1

2
u2η2

)
,

which is a bounded and continuous function of x ∈ R. Finally, let us check condition (ii). From

equation (2.4) and its extension to the complex domain, the conditional characteristic function of

Xn,t =
√
n(Nt/n− μ) is such that:

logEt−1[exp(−iuXn,t)]

= Nt−1 log[p11 exp(−iu/√n) + 1 − p11] + (n−Nt−1) log[p10 exp(−iu/√n) + 1 − p10]

+
√
niuμ.

By a Taylor expansion when n→ ∞, we get:

log[p11 exp(−iu/√n) + 1 − p11] = log[1 − p11iu/
√
n− p11u

2/(2n) +O(1/n3/2)]

= −p11iu/
√
n− p11(1 − p11)u

2/2n+O(1/n3/2),
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and similarly:

log[p10 exp(−iu/√n) + 1 − p10] = −p10iu/
√
n− p10(1 − p10)u

2/2n+O(1/n3/2).

Then, we get:

logEt−1[exp(−iuXn,t)]

= (μn+
√
nXn,t−1)[−p11iu/

√
n− p11(1 − p11)u

2/(2n)]

+[(1 − μ)n−√
nXn,t−1][−p10iu/

√
n− p10(1 − p10)u

2/(2n)] +
√
niuμ+O(1/

√
n)

= iu
√
n[−p10(1 − μ) − p11μ+ μ]

−iuXn,t−1(p11 − p10) − (u2/2)[μp11(1 − p11) + (1 − μ)p10(1 − p10)]

− u2

2
√
n

[p11(1 − p11) − p10(1 − p10)]Xn,t−1 +O(1/
√
n), (a.3)

where the O(1/
√
n) term is independent of Xn,t−1, since Nt−1/n ≤ 1. The first term of the RHS

is equal to 0 by definition of the long run parameter. The sum of the second and third terms is the

log-characteristic function of a Gaussian distribution with mean (p11 − p10)Xn,t−1 = ρXn,t−1, and

variance μp11(1 − p11) + (1 − μ)p10(1 − p10) = μ(1 − μ)(1 − ρ2) = η2. Thus, we get:

E[exp(−iuXn,t)|Xn,t−1 = x] = E[exp(−iuξt)|ξt−1 = x] exp

(
− κu2

2
√
n
x

)
(1 +O(1/

√
n)),

where κ = p11(1− p11)− p10(1− p10) and the O(1/
√
n) term is uniform w.r.t. x. We deduce that:

∣∣E[eiuXn,t|Xn,t−1 = x] − E[eiuξt|ξt−1 = x]
∣∣ ≤ |e− κu2

2
√

n
x
(1 +O(1/

√
n)) − 1 |.

Now, since Xn,t−1/
√
n ∈ [−μ, 1 − μ] and the exponential function is such that |ex − 1| ≤ C1|x|,

for x in a bounded interval around 0 and some constant C1, we get:∫ ∣∣E[eiuXn,t |Xn,t−1 = x] − E[eiuξt|ξt−1 = x]
∣∣ νn,t−1(dx) ≤ C2

1√
n
E[|Xn,t−1|] +O(1/

√
n)

≤ C2

(
1

n
E[X2

n,t−1]

)1/2

+O(1/
√
n) = C2E[(Nt−1/n− μ)2]1/2 +O(1/

√
n),

for a constantC2 (that may depend on u). To bound the expectation in the RHS, we useE[(Nt−1/n−
μ)2] = E[V [Nt−1/n|N1]] + V [E[Nt−1/n|N1]] + (E[Nt−1/n] − μ)2 and Nt−1 ∼ B(N1, p

(t−1)
11 ) ∗

B(n−N1, p
(t−1)
10 ) conditional on N1, where p(t−1)

11 = μ+ ρt−1(1− μ) and p(t−1)
10 = μ− ρt−1μ. We

get E[Nt−1/n|N1] = μ+ ρt−1(N1/n− μ), V [Nt−1/n|N1] ≤ 1/(2n), and:

E[(Nt−1/n− μ)2] = ρ2(t−1)V [N1/n] + (E[N1/n] − μ)2 +O(1/n) = O

(
1

n
(E[X2

n,1] + 1)

)
.
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Since E[X2
n,1] = O(1) by the assumptions in Proposition 2, the RHS isO(1/n) and the conclusion

follows.

A.1.2 Proof of Corollary 1

If p10 is replaced by p10t = p10(Nt−1/n) 
 p10(μ)+
1√
n

dp10(μ)

dμ
Xn,t−1, we get the additional term

−iuXn,t−1(1 − μ)
dp10(μ)

dμ
+ o(1) in the expansion (a.3). This provides the modification involved

in Corollary 1.

APPENDIX 2: Proof of Proposition 4

A.2.1 Existence of a unique invariant measure for Markov process (Xt)

The Markov process (Xt) with Xt = (μt, F
′
t )

′ has state space X = [0, 1] × R
q and is such that:

Xt = Ψ(Xt−1, εt), (a.4)

where:

Ψ(x, ε) =

⎛
⎝ p11μ+ (1 − μ)p10[a(f, ε), μ]

a(f, ε)

⎞
⎠ , (a.5)

and x = (μ, f ′)′ ∈ X . We first exploit the nonlinear autoregressive (NLAR) representation (a.4)

to show that Markov process (Xt) is irreducible. We refer to Meyn, Tweedie (MT, 2009) for

definition and results used below.

i) Irreducibility

A Markov process (Xt) with state space X ⊂ R
s is λΩ-irreducible, where λΩ is the Lebesgue

measure restricted on Ω ⊂ X , if P [τA < ∞|X0 = x] > 0 for any x ∈ X and any Borel set

A ∈ B(X ) such that λ(A ∩ Ω) > 0, where τA = inf{t ≥ 1 : Xt ∈ A} denotes the first passage

time to set A. Thus, a Markov process is λΩ-irreducible if it can reach in a finite time any subset

of the state space with non-zero Lebesgue measure restricted on Ω, starting from any initial point.
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Let us focus on a Markov process (Xt) with nonlinear autoregressive representation as in (a.4).

Let us define by A1(x) = {Ψ(x, ε) : ε ∈ R
m}, the set of states that can be accessed from x ∈ X ,

and letA1(C) = {A1(x) : x ∈ C} for set C ⊂ X . Then, we define recursively the set of accessible

states at horizon t, for t ≥ 2, by At(x) = A1(At−1(x)). The next result is similar to Propositions

7.2.4-7.2.6 in MT.

Lemma A.2: Let Markov process (Xt) admit the nonlinear autoregressive representation (a.4)

where (εt) is a strong white noise with positive p.d.f. on the support R
m and function Ψ is differ-

entiable w.r.t. both arguments. Let us assume that:

(i) The set At(x) has non-empty interior, for any x ∈ X and any t ∈ N sufficiently large.

(ii) The set Ω(x) :=
∞⋂

τ=1

∞⋃
t=τ

At(x) is independent of x ∈ X , that is, Ω(x) = Ω, for any x ∈ X and

some subset Ω ⊂ X of the state space.

Then, the Markov process (Xt) is λΩ-irreducible.

The set Ω(x) in condition (ii) of Lemma A.2 is the set of states accessible by the process (Xt) in

the long run when starting fromX0 = x. Thus, condition (ii) of Lemma A.2 requires that any state

in set Ω is accessible in the long run independently of the starting value of the process.

Let us apply Lemma A.2 for Markov process Xt = (μt, F
′
t)

′, for which function Ψ in the

NLAR representation is given by (a.5).

Proposition A.1: Under Assumptions A.4 (i)-(iii) the Markov process Xt = (μt, F
′
t )

′ defined in

equations (a.4)-(a.5) is λΩ-irreducible, where:

Ω = {(p11μ+ (1 − μ)p10(f, μ), f ′)′ : μ ∈ [0, 1], f ∈ R
q} . (a.6)

Proof of Proposition A.1: Let us derive the sets At(x) for x ∈ X and t ∈ N. Define ψ(μ, f) =

p11μ+ (1 − μ)p10(f, μ). We have for t = 1:

A1(x) = {(ψ(μ, a(f, ε)) , a(f, ε)′)′ : ε ∈ R
m} = {(ψ(μ, f̃), f̃ ′)′ : f̃ ∈ R

q}, x = (μ, f ′)′,

from Assumption A.4 (iii). Thus, set A1(x) depends on x = (μ, f ′)′ via μ only. To derive sets

At(x) for t ≥ 2, it is useful to derive first the sets of accessible states for component μt of the

process Xt. Define A1
∗(μ) = {ψ(μ, f) : f ∈ R

q} for μ ∈ [0, 1], A1
∗(C) = {A1

∗(μ) : μ ∈ C} for
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C ⊂ [0, 1], and recursively At
∗(μ) = A1

∗(A
t−1
∗ (μ)), for t ≥ 2. From Assumption A.4 (ii) we have

A1
∗(μ) = (a1(μ), b1(μ)), where a1(μ) = p11μ and b1(μ) = 1− (1− p11)μ. Functions a1 and b1 are

increasing, resp. decreasing, on [0, 1]. By induction we deduce that At
∗(μ) = (at(μ), bt(μ)), where

at(μ) = a1(at−1(μ)) = pt
11μ and bt(μ) = b1(at−1(μ)) = 1 − (1 − p11)p

t−1
11 μ, for t ≥ 2. Thus, we

get:

At(x) =
{

(ψ(μ̃, f̃), f̃ ′)′ : μ̃ ∈ At−1
∗ (μ), f̃ ∈ R

q
}

=
{

(ψ(μ̃, f̃), f̃ ′)′ : μ̃ ∈ (pt−1
11 μ, 1 − (1 − p11)p

t−2
11 μ
)
, f̃ ∈ R

q
}
,

for x = (μ, f ′)′ and t ≥ 2. From Assumption A.4 (i), conditions (i) and (ii) of Lemma A.2 are

satisfied with Ω = {(ψ(μ, f), f ′)′ : μ ∈ [0, 1], f ∈ R
q} and the process (Xt) is λΩ-irreducible. �

Since P [Xt ∈ Ω|Xt−1 = x] = 1 for any x ∈ X , the measure λΩ is the maximal irreducible

measure of Markov processXt = (μt, F
′
t)

′ (see MT, Proposition 4.2.2 for the definition of maximal

irreducible measure).

ii) Feller property

A Markov process (Xt) with state space X ⊂ R
s is a (weak) Feller chain if, for any bounded

and continuous function h on X , the mapping x → E[h(Xt)|Xt−1 = x] on X is bounded and

continuous. Thus, a Markov process satisfies the Feller property if the associated conditional ex-

pectation operator maps bounded and continuous functions into bounded and continuous functions.

From Proposition 6.1.2 in MT, a Markov process (Xt) with NLAR representation as in (a.4) is

a Feller chain if the function Ψ is differentiable w.r.t. both arguments. Thus, from Assumption A.4

(ii), it follows that the Markov process Xt = (μt, F
′
t)

′ defined by equations (a.4)-(a.5) is a Feller

chain.

iii) Harris recurrence

A λΩ-irreducible Markov process (Xt) with state space X is Harris recurrent if

P [ηA = ∞|X0 = x] = 1 for any x ∈ A and any set A ∈ B(X ) such that λ(A ∩ Ω) > 0,

where ηA =
∞∑
t=1

1{Xt ∈ A} is the number of passages to set A. Hence a Markov process is

recurrent if it returns an infinite number of times to any accessible subset of the state space, with

probability 1.
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The next result follows directly from Theorems 6.0.1, 9.2.2 and 9.4.1 in MT.

Lemma A.3: Let (Xt) be a λΩ-irreducible Feller chain with state space X ⊂ R
s. Suppose that

there exist a function V : X → R+ and a compact set C ⊂ X such that:

ΔV (x) := E[V (Xt)|Xt−1 = x] − V (x) ≤ 0, x ∈ Cc, (a.7)

and V (x) → ∞ if x ∈ X and ‖x‖ → ∞. Then, the Markov process (Xt) is Harris recurrent.

The inequality (a.7) is a drift condition and requires that a certain nonlinear transformation of the

process reverts towards the center of the state space.

Let us now apply Lemma A.3 to the Markov process Xt = (μt, F
′
t )

′ defined by equations

(a.4)-(a.5).

Proposition A.2: Under Assumption A.4, the Markov process Xt = (μt, F
′
t )

′ is Harris recurrent.

Proof of Proposition A.2: From Section ii), process (Xt) is a λΩ-irreducible Feller chain. Let us

check the drift condition in (a.7). Consider the function V (x) = ‖f‖, for x = (μ, f ′)′. Then, from

Assumption A.4 (iv):

ΔV (x) = E[‖a(f, εt)‖] − ‖f‖ ≤ c− (1 − γ)‖f‖ ≤ 0, (a.8)

for ‖f‖ ≥ max{R, c
1−γ

} =: R1. Then, the drift condition (a.7) follows with compact set C =

[0, 1] × {f ∈ R
q : ‖f‖ ≤ R1}. Finally, we have V (x) → ∞ if ‖f‖ → ∞. �

In the proof of Proposition A.2 we can use a function V that is independent of μ, since process

(μt) is bounded.

iv) Existence of a unique invariant probability measure and Law of Large Numbers (LLN)

The next result follows from Theorems 10.4.9 and 17.1.7 in MT.

Lemma A.4: Let (Xt) be a λΩ-irreducible, Harris recurrent Markov process with state space

X ⊂ R
s. Then, there exists a unique invariant probability measure π, which is equivalent to the

Lebesgue measure λΩ. Moreover, we have:

1

T

T∑
t=1

h(Xt) →
∫
X
h(x)π(dx), T → ∞, (a.9)
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P -a.s., for any function h on X such that
∫
X
h(x)π(dx) <∞.

From Propositions A.1 and A.2, and Lemma A.4, we deduce:

Proposition A.3: Under Assumption A.4 the Markov process Xt = (μt, F
′
t )

′ defined by equations

(a.4)-(a.5) admits a unique invariant probability measure, which is equivalent to the Lebesgue

measure λΩ, where set Ω is defined in (a.6). Moreover, the LLN (a.9) holds for any function h on

X such that
∫
X
h(x)π(dx) <∞.

A.2.2 Geometric ergodicity of Markov process (Xt) [proof of Proposition 4

(i)]

i) Aperiodicity

A Markov process is aperiodic if there is no partition of the state space in two or more disjoint

subsets through which the process cycles. More precisely, let (Xt) be a λΩ-irreducible Markov

process with state space X ⊂ R
s. Then there exist an integer d and disjoint setsD1, ..., Dd ∈ B(X ),

called a d-cycle, such that (a) x ∈ Di ⇒ P [Xt ∈ Di+1|Xt−1 = x] = 1, for i = 1, ..., d (mod d),

and (b) λ

((
d⋃

i=1

Di

)c

∩ Ω

)
= 0. The d-cycle is unique in the sense of Theorem 5.4.4 in MT, and

the integer d is a property of process (Xt). If d = 1, Markov process (Xt) is aperiodic.

Let us now characterize aperiodicity for a Markov process (Xt) with NLAR representation as

in equation (a.4). From Proposition 7.2.5 in MT, under the conditions of Lemma A.2 the set Ω

is the unique minimal set, that is, a closed and invariant set, which does not contain any closed

and invariant set as a proper subset. Then, Propositions 7.2.5, 7.3.4 and 7.3.5 in MT allow to

characterize aperiodicity in terms of connectedness of set Ω.

Lemma A.5: Under the conditions of Lemma A.2, the Markov process (Xt) is aperiodic if, and

only if, the set Ω is connected.

We can apply this result for the Markov process Xt = (μt, F
′
t )

′ defined by equations (a.4)-(a.5).

From the proof of Proposition A.1, Assumptions A.4 (i)-(iii) imply the conditions of Lemma A.2.

Moreover, set Ω defined in equation (a.6) is connected. Therefore, we deduce:
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Proposition A.4: Under Assumption A.4, the Markov process Xt = (μt, F
′
t )

′ defined by equations

(a.4)-(a.5) is aperiodic.

ii) Geometric ergodicity

For an irreducible, aperiodic Feller chain, geometric ergodicity can be characterized in terms

of a drift condition. The next result corresponds to Theorem 15.0.1 in MT.

Lemma A.6: Let (Xt) be a λΩ-irreducible, aperiodic Feller chain with state space X ⊂ R
s.

Suppose there exist a function V on X , with V ≥ 1, a compact set C ⊂ X and constants b < ∞
and β > 0 such that:

ΔV (x) ≤ −βV (x) + b1{x ∈ C}, (a.10)

for any x ∈ X . Then, the Markov process (Xt) is V -geometrically ergodic.

We can apply this result for the Markov process Xt = (μt, F
′
t )

′ defined by equations (a.4)-(a.5).

Proposition A.5: Under Assumption A.4, the Markov process Xt = (μt, F
′
t )

′ is V -geometrically

ergodic, where the function V is defined by V (x) = 1 + ‖f‖ for x = (μ, f ′)′.

Proof of Proposition A.5: From Propositions A.1-A.4, the Markov process (Xt) is a λΩ-irreducible,

aperiodic Feller chain. Let β ∈ (0, 1− γ), where γ is defined in Assumption A.4 (iv). Then, simi-

larly as in inequality (a.8), from Assumption A.4 (iv) we have:

ΔV (x) ≤ c− (1 − γ)‖f‖ = c+ 1 − γ − (1 − γ)V (x) ≤ −βV (x), (a.11)

for any x ∈ X such that ‖f‖ ≥ max{R, c+ 1 − γ

1 − γ − β
− 1} =: R2. Moreover, we have:

ΔV (x) ≤ sup
f :‖f‖≤R2

E[‖a(f, εt)‖] ≤ sup
f :‖f‖≤R2

E[‖a(f, εt)‖] + β(1 +R2) − βV (x), (a.12)

for any x ∈ X such that ‖f‖ ≤ R2, where sup
f :‖f‖≤R2

E[‖a(f, εt)‖] < ∞ from Assumption A.4

(iv). By combining inequalities (a.11) and (a.12), we get the drift condition (a.10) with compact

set C = [0, 1] × {f ∈ R
q : ‖f‖ ≤ R2} and constant b = sup

f :‖f‖≤R2

E[‖a(f, εt)‖] + β(1 +R2). �
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A.2.3 Strict stationarity of process (ξ∗t ) [Proof of Proposition 4 (ii)]

We use the next result for linear autoregressive processes with stochastic autoregressive coefficient

due to Brandt (1986).

Lemma A.7: Let process (ξ∗t ) be such that:

ξ∗t = ρ∗t ξ
∗
t−1 + Zt, (a.13)

where process (ρ∗t , Zt) is strictly stationary and ergodic, and:

E[log |ρ∗t |] < 0, E[max{log |Zt|, 0}] <∞. (a.14)

Then, equation (a.13) admits a strictly stationary solution (ξ ∗t ).

To prove Proposition 4 (ii), we apply Lemma A.7 with Zt = η∗t ε
∗
t . From equations (3.7)-(3.8)

we have that (ρ∗t , Zt) is a function of (μt−1, F
′
t , ε

∗
t )

′. From Proposition A.3, if process (μt, F
′
t )

′ is

initialized with its invariant distribution, then (ρ∗t , Zt) is strictly stationary and ergodic. Moreover,

since η∗t
2 ≤ 1/2, the second inequality in (a.14) is satisfied. Then, from Lemma A.7 we deduce

that process (ξ∗t ) is strictly stationary if inequality (3.11) holds.

APPENDIX 3: Gaussian model with logistic contagion

i) Let us first show that the solution μ = μ(a, b, p11) ∈ (0, 1) of equation (3.13) exists and is

unique. Define the function:

ψ(μ) =
1/μ− 1

1 + exp(−aμ − b)
, μ ∈ (0, 1).

Since function ψ is continuous on the interval (0, 1) and such that ψ(0) = ∞, ψ(1) = 0, the

equation ψ(μ) = 1 − p11 for p11 ∈ (0, 1) admits a solution μ ∈ (0, 1). The solution is unique, if

function ψ is monotonically decreasing. The first-order derivative is given by:

dψ(μ)

dμ
=

− 1
μ2 (1 + e−aμ−b) + (1/μ− 1)(−a)e−aμ−b

(1 + e−aμ−b)2

= − e−aμ−b

μ2(1 + e−aμ−b)2
[eaμ+b − (aμ2 − aμ− 1)].
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Since aμ2 − aμ − 1 < 0 for μ ∈ [0, 1], we get
dψ(μ)

dμ
< 0 for μ ∈ (0, 1), and the conclusion

follows.

ii) Let us now study the dependence of equilibrium μ on parameters a, b, p11. We make explicit the

dependence of function ψ on parameters a and b by writing ψ(μ) = ψ(μ; a, b). Then:

∂μ

∂a
= −∂ψ/∂a

∂ψ/∂μ
= μ

μ(1 − μ)

eaμ+b − (aμ2 − aμ− 1)
> 0,

∂μ

∂b
= − ∂ψ/∂b

∂ψ/∂μ
=

μ(1 − μ)

eaμ+b − (aμ2 − aμ− 1)
> 0,

∂μ

∂p11
= − 1

∂ψ/∂μ
=
μ2(1 + eaμ+b)(1 + e−aμ−b)

eaμ+b − (aμ2 − aμ− 1)
> 0.

iii) Let us finally show that ρ∗ = ρ∗(a, b, p11) is such that |ρ∗| < 1. We have from Corollary 1:

ρ∗ = p11 − p10(μ) + a(1 − μ)p10(μ)[1 − p10(μ)],

where μ = μ(a, b, p11) is the equilibrium value. Then ρ∗ > −p10(μ) ≥ −1. Moreover, by using

that μ = μ(a, b, p11) solves equation (3.13), we get:

ρ∗ = p11 − p10(μ) + aμ(1 − p11)[1 − p10(μ)] < 1

⇔ (1 − p11){aμ[1 − p10(μ)] − 1} < p10(μ)

⇔ aμ[1 − p10(μ)] − 1 <
μ

1 − μ

⇔ aμ(1 − μ)[1 − p10(μ)] < 1. (a.15)

Now, by using that 1− p10(μ) = e−aμ−b/(1 + e−aμ−b) and aμe−aμ < 1 for aμ ≥ 0, we deduce that

the latter inequality in (a.15) is satisfied for any values of the parameters.
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APPENDIX 4: INAR model with correlated risks and contagion

A.4.1 Proof of Proposition 5

We have:

ψ1t(u, v) = E[exp(−uNt+1 − vFt+1)|Nt, Ft]

= E
{
E[exp(−uNt+1 − vFt+1)|Nt, Ft+1]|Nt, Ft

}
= E [exp(−vFt+1) exp {−(c0 + c1Ft+1 + c2Nt)[1 − exp(−u)]

+Nt log[1 − ρ+ ρ exp(−u)]} |Nt, Ft

]
,

by applying equation (2.6) and Assumption A.5. Therefore, from Assumption A.6 we get:

ψ1t(u, v) = exp
{−c0[1 − exp(−u)] −Nt

(
c2[1 − exp(−u)] − log[1 − ρ+ ρ exp(−u)] )}

E [exp {−Ft+1(v + c1[1 − exp(−u)])} |Ft]

= exp
{−c0[1 − exp(−u)] − β

(
v + c1[1 − exp(−u)] )

−Nt

(
c2[1 − exp(−u)] − log[1 − ρ+ ρ exp(−u)] )

−Ft α
(
v + c1[1 − exp(−u)] )} .

A.4.2 Proof of Proposition 7

We use the following Lemma, which is proved at the end of this Appendix.

Lemma A.8: The conditional moments of order 1 and 2 of the joint process (Nt, Ft) are given by:

Et

⎛
⎝ Nt+1

Ft+1

⎞
⎠ =

⎛
⎝ c0 + δηc1

δη

⎞
⎠+

⎛
⎝ c2 + ρ γc1

0 γ

⎞
⎠
⎛
⎝ Nt

Ft

⎞
⎠ ,

and:

Vt

⎛
⎝ Nt+1

Ft+1

⎞
⎠ =

⎛
⎝ c0 + δηc1(1 + ηc1) + [c2 + ρ(1 − ρ)]Nt + (c1γ + 2c21ηγ)Ft δη2c1 + 2ηγc1Ft

δη2c1 + 2ηγc1Ft δη2 + 2ηγFt

⎞
⎠ ,

where Et and Vt denote conditional expectation and variance given the past (Nt, Ft) of the joint

process.
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The conditional means, variances and covariances are linear functions of Nt and Ft since the joint

process (Nt, Ft) is CaR(1) (see Proposition 5).

Let us now prove Proposition 7. The unconditional moments of process (Nt, Ft) are derived

from the conditional moments in Lemma A.8 by applying the Law of Iterated Expectation and the

variance decomposition formula. Specifically, from Lemma A.8 and the Law of Iterated Expecta-

tion we get:

E[Ft+1] = E [Et(Ft+1)] = δη + γE[Ft].

By stationarity we have E[Ft+1] = E[Ft], and we get:

E[Ft] =
δη

1 − γ
, (a.16)

[see also Gourieroux, Jasiak (2006) for the unconditional moments of the ARG process]. When

η = (1 − γ)/δ, we get E[Ft] = 1. Then, from Lemma A.8 and δη = 1 − γ:

E[Nt+1] = E[Et[Nt+1]] = c0 + δηc1 + E[Nt](c2 + ρ) + γc1E[Ft] = c0 + c1 + E[Nt](c2 + ρ),

which yields:

E[Nt] =
c0 + c1

1 − (c2 + ρ)
.

Let us now consider the unconditional variance of Ft. From Lemma A.8 and the variance decom-

position formula, we get:

V [Ft+1] = V [Et(Ft+1)] + E [Vt(Ft)] = V [δη + γFt] + E[δη2 + 2ηγFt]

= γ2V [Ft] + δη2 + 2
δη2γ

1 − γ
= γ2V [Ft] + δη2 1 + γ

1 − γ
,

which yields:

V [Ft] =
1

1 − γ2
δη2 1 + γ

1 − γ
=

δη2

(1 − γ)2
=

1

δ
. (a.17)

Let us now consider the unconditional covariance between Ft and Nt. We have:

Cov(Ft+1, Nt+1) = E [Covt(Ft+1, Nt+1)] + Cov (Et[Ft+1], Et[Nt+1])

= E
[
δη2c1 + 2ηγc1Ft

]
+ Cov (δη + γFt, c0 + δηc1 +Nt(c2 + ρ) + γc1Ft)

= δη2c1
1 + γ

1 − γ
+ γ2c1V [Ft] + γ(c2 + ρ)Cov(Ft, Nt)

=
c1
δ

+ γ(c2 + ρ)Cov(Ft, Nt),
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which yields:

Cov(Ft, Nt) =
c1
δ

1

1 − γ(c2 + ρ)
. (a.18)

Finally, let us consider the unconditional variance of Nt. We have:

V [Nt+1] = E [Vt(Nt+1)] + V [Et(Nt+1)]

= E
[
c0 + δηc1(1 + ηc1) +Nt(c2 + ρ(1 − ρ)) + Ft(c1γ + 2c21ηγ)]

+V [c0 + δηc1 +Nt(c2 + ρ) + γc1Ft]

= c0 + δηc1(1 + ηc1) +
c2 + ρ(1 − ρ)

1 − (c2 + ρ)
(c0 + c1) + c1γ + 2c21ηγ

+(c2 + ρ)2V [Nt] + γ2c21V [Ft] + 2(c2 + ρ)c1γCov(Nt, Ft)

= c0 + δηc1(1 + ηc1) +
c2 + ρ(1 − ρ)

1 − (c2 + ρ)
(c0 + c1) + c1γ + 2c21ηγ

+(c2 + ρ)2V [Nt] +
γc21
δ

[
γ +

2(c2 + ρ)

1 − γ(c2 + ρ)

]
.

We deduce:

V [Nt] =
1

1 − (c2 + ρ)2

{
c0 + δηc1(1 + ηc1) +

c2 + ρ(1 − ρ)

1 − (c2 + ρ)
(c0 + c1) + c1γ + 2c21ηγ

+
γc21
δ

[
γ +

2(c2 + ρ)

1 − γ(c2 + ρ)

]}
.

By using η = (1 − γ)/δ and rearranging terms, we get the formula for V [Nt] given in Proposition

7.

A.4.3 Proof of Proposition 8

Let Zt = (Nt, Ft)
′. Then, from Lemma A.8 we get Cov(Zt+h, Zt) = AhV (Zt), for h ≥ 0, where

the matrix A is given by :

A =

⎛
⎝ c2 + ρ γc1

0 γ

⎞
⎠ .

Now, for a generic triangular (2, 2) matrix we have:

⎛
⎝ a b

0 c

⎞
⎠

h

=

⎛
⎝ ah b

(
ah−1 + cah−2 + ... + ch−2a+ ch−1

)
0 ch

⎞
⎠ .
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Thus, we get:

Ah =

⎛
⎝ (c2 + ρ)h b(h)

0 γh

⎞
⎠ ,

where:

b(h) = γc1
[
(c2 + ρ)h−1 + γ(c2 + ρ)h−2 + ...+ γh−2(c2 + ρ) + γh−1

]
.

When γ = 0, we have b(h) = 0, which implies Cov(Nt+h, Nt) = (c2 + ρ)hV (Nt) and thus

Corr(Nt+h, Nt) = (c2 + ρ)h. Let us now consider the case γ > 0. Then:

b(h) = c1γ
h

[
1 +

c2 + ρ

γ
+

(
c2 + ρ

γ

)2

+ ...+

(
c2 + ρ

γ

)h−1
]

= c1γ
h
1 −
(

c2+ρ
γ

)h

1 − c2+ρ
γ

= c1γ
γh − (c2 + ρ)h

γ − (c2 + ρ)
,

if γ �= c2 + ρ, and:

b(h) = c1hγ
h,

if γ = c2 + ρ. It follows:

Cov(Nt+h, Nt) = (c2 + ρ)hV (Nt) + b(h)Cov(Nt, Ft),

and:

Corr(Nt+h, Nt) = (c2 + ρ)h + b(h)
Cov(Nt, Ft)

V (Nt)
.

The conclusion follows.

A.4.4 Conditional dispersion

From the Law of Iterated Expectation and the variance decomposition formula we have:

E[Nt+1|Nt] = E[E(Nt+1|Nt, Ft)|Nt],

V [Nt+1|Nt] = E[V (Nt+1|Nt, Ft)|Nt] + V [E(Nt+1|Nt, Ft)|Nt].

From Lemma A.8, we get:

E[Nt+1|Nt] = c0 + δηc1 + (c2 + ρ)Nt + γc1E[Ft|Nt],
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and:

V [Nt+1|Nt] = c0 + δηc1(1+ ηc1)+ [c2 + ρ(1 − ρ)]Nt +
(
c1γ + 2c21ηγ

)
E[Ft|Nt]+γ2c21V [Ft|Nt].

By using η = (1 − γ)/δ, equation (4.1) follows.

A.4.5 Proof of Lemma A.8

The conditional moments are derived from the expansion of the log conditional Laplace transform

in Proposition 5 around u = v = 0. At second order in u, v, we have:

logψ1t(u, v) = −c0[1 − exp(−u)] − β
(
v + c1[1 − exp(−u)] )

−Nt

(
c2[1 − exp(−u)] − log[1 − ρ+ ρ exp(−u)] )− Ft α

(
v + c1[1 − exp(−u)] )


 −c0(u− u2/2) − β
(
v + c1[u− u2/2]

)
−Nt

(
c2[u− u2/2] − log[1 − ρu+ ρu2/2]

)− Ft α
(
v + c1[u− u2/2]

)

 −c0(u− u2/2) − β

(
v + c1[u− u2/2]

)
−Nt

(
c2[u− u2/2] + ρu− ρ(1 − ρ)u2/2

)− Ft α
(
v + c1[u− u2/2]

)
. (a.19)

By using the expansions at second order of functions α and β:

α(u) =
γu

1 + ηu

 γu− γηu2, β(u) = δ log (1 + ηu) 
 δηu− 1

2
δη2u2,

we get:

α
(
v + c1[u− u2/2]

) 
 γ(v + c1u− c1u
2/2) − γη(v + c1u)

2,

β
(
v + c1[u− u2/2]

) 
 δη
(
v + c1u− c1u

2/2
)− 1

2
δη2 (v + c1u)

2 . (a.20)

By replacing expansions (a.20) into expansion (a.19), and gathering the terms proportional to u, v,

u2, v2 and uv, we get:

logψ1t(u, v) 
 − [c0 + δηc1 +Nt(c2 + ρ) + γc1Ft] u− [δη + γFt] v

+
1

2

[
c0 + δηc1(1 + ηc1) +Nt(c2 + ρ(1 − ρ)) + Ft(c1γ + 2c21ηγ)

]
u2

+
1

2

[
δη2 + 2ηγFt

]
v2 +
[
δη2c1 + 2Ftηγc1

]
uv.

The conclusion follows.

62


