
Testing Asset Pricing Models with Coskewness

Giovanni BARONE ADESI
Facolta’ di Finanza, Universita’ della Svizzera Italiana, Via Bu¢ 13, 6900,
Lugano (giovanni.barone-adesi@lu.unisi.ch)

Patrick GAGLIARDINI
Facolta’ di Finanza, Universita’ della Svizzera Italiana, Via Bu¢ 13, 6900,
Lugano (patrick.gagliardini@lu.unisi.ch)

Giovanni URGA
Faculty of Finance, Cass Business School, 106 Bunhill Row, London
EC1Y 8TZ (g.urga@city.ac.uk)

In this paper we investigate portfolio coskewness using a quadratic mar-
ket model as a return-generating process. We show that the portfolios of
small (large) …rms have negative (positive) coskewness with the market. An
asset pricing model including coskewness is tested by checking the validity
of the restrictions it imposes on the return generating process. We …nd ev-
idence of an additional component in expected excess returns, which is not
explained by either covariance or coskewness with the market. However, this
unexplained component is homogeneous across portfolios in our sample and
modest in magnitude. Finally, we investigate the implications of erroneously
neglecting coskewness for testing asset pricing models, with particular atten-
tion to the empirically detected explanatory power of …rm size.
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1 INTRODUCTION
Asset pricing models generally express expected returns on …nancial assets as
linear functions of covariances of returns with some systematic risk factors.
Several formulations of this general paradigm have been proposed in the
literature [Sharpe 1964; Lintner 1965; Black 1972; Merton 1973; Rubinstein
1973; Kraus and Litzenberger 1976; Ross 1976; Breeden 1979; Barone Adesi
and Talwar 1983; Barone Adesi 1985; Jagannathan and Wang 1996; Harvey
and Siddique 1999 and 2000; Dittmar 2002]. However, most of the empirical
tests suggested to date have produced negative or ambiguous results. These
…ndings have spurred renewed interest in the statistical properties of the
currently available testing methodologies. Among recent studies, Shanken
(1992) and Kan and Zhang (1999a,b) analyse the statistical methodologies
commonly employed and highlight the sources of ambiguity in their …ndings.

Although a full speci…cation of the return-generating process is not needed
for the formulation of most asset pricing models, it appears that only its a-
priori knowledge may lead to the design of reliable tests. Since this condition
is never met in practice, researchers are forced to make unpalatable choices
between two alternative approaches. On the one hand, powerful tests can be
designed in the context of a (fully) speci…ed return-generating process, but
they are misleading in the presence of possible model misspeci…cations. On
the other hand, more tolerant tests may be considered, but they may not
be powerful, as noted by Kan and Zhou (1999) and Jagannathan and Wang
(2001). Note that the …rst choice may lead not only to the rejection of the
correct model, but also to the acceptance of irrelevant factors as sources of
systematic risk, as noted by Kan and Zhang (1999a,b).

To complicate the picture, a number of empirical regularities have been
detected, which are not consistent with standard asset pricing models such as
the mean-variance Capital Asset Pricing Model (CAPM). Among other stud-
ies, Banz (1981) relates expected returns to …rm size, while Fama and French
(1995) link expected returns also to the ratio of book to market value. Al-
though the persistence of these anomalies over time is still subject to debate,
the evidence suggests that the mean-variance CAPM is not a satisfactory
description of market equilibrium. These pricing anomalies may be related
to the possibility that useless factors appear to be priced. Of course it is also
possible that pricing anomalies are due to omitted factors. While statistical
tests do not allow us to choose between these two possible explanations of
pricing anomalies, Kan and Zhang (1999a,b) suggest that perhaps a large
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increment in R2 and the persistence of sign and size of coe¢cients over time
are most likely to be associated with truly priced factors.

In the light of the above, the aim of this paper is to consider market
coskewness and to investigate its role in testing asset pricing models. A data
set of monthly returns on 10 stock portfolios is used. Following Harvey and
Siddique (2000), an asset is de…ned as having ”positive coskewness” with the
market when the residuals of the regression of its returns on a constant and
the market returns are positively correlated with squared market returns.
Therefore, an asset with positive (negative) coskewness reduces (increases)
the risk of the portfolio to large absolute market returns, and should com-
mand a lower (higher) expected return in equilibrium.

Rubinstein (1973), Kraus and Litzenberger (1976), Barone-Adesi (1985)
and Harvey and Siddique (2000) study non-normal asset pricing models re-
lated to coskewness. Kraus and Litzenberger (1976) and Harvey and Siddique
(2000) formulate expected returns as a function of covariance and coskew-
ness with the market portfolio. In particular, Harvey and Siddique (2000)
assess the importance of coskewness in explaining expected returns by the
increment of R2 in cross-sectional regressions. More recently, Dittmar (2002)
presents a framework in which agents are also adverse to kurtosis, implying
that asset returns are in‡uenced by both coskewness and cokurtosis with
the return on aggregate wealth. The author tests an extended asset pric-
ing model within a Generalized Method of Moment (GMM) framework (see
Hansen 1982).

Most of the above formulations are very general, since the speci…cation
of an underlying return-generating process is not required. However, we are
concerned about their possible lack of power, made worse in this context
by the fact that covariance and coskewness with the market are almost per-
fectly collinear across portfolios. Of course in the extreme case, in which
market covariance is proportional to market coskewness, it will be impos-
sible to identify covariance and coskewness premia separately. Therefore,
in order to identify and accurately measure the contribution of coskewness,
in this paper we propose an approach (see also Barone-Adesi 1985) based
on the prior speci…cation of an appropriate return-generating process: the
quadratic market model. The quadratic market model is an extension of the
traditional market model (Sharpe 1964; Lintner 1965), including the square
of the market returns as an additional factor. The coe¢cients of the quadratic
factor measure the marginal contribution of coskewness to expected excess
returns. Since market returns and the square of the market returns are al-
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most orthogonal regressors, we obtain a precise test of the signi…cance of
quadratic coe¢cients. In addition, this framework allows us to test an asset
pricing model with coskewness by checking the restrictions it imposes on the
coe¢cients of the quadratic market model. The speci…cation of a return-
generating process provides more powerful tests as con…rmed in a series of
Monte Carlo simulations (see Section 5).

In addition to evaluating asset pricing models that include coskewness, it
is also important to investigate the consequences on asset pricing tests when
coskewness is erroneously omitted. We consider the possibility that portfolio
characteristics such as size are empirically found to explain expected excess
returns because of the omission of a truly priced factor, namely coskewness.
To explain this problem, let us assume that coskewness is truly priced, but it
is omitted in an asset pricing model. Then, if market coskewness is correlated
with a variable such as size, this variable will have spurious explanatory
power for the cross-section of expected returns, because it proxies for omitted
coskewness. In our empirical application (see Section 4) we actually …nd
that coskewness and …rm size are correlated. This …nding suggests that
the empirically observed relation between size and assets excess returns may
be explained by the omission of a systematic risk factor, namely market
coskewness (see also Harvey and Siddique 2000, p. 1281).

The article is organized as follows. Section 2 introduces the quadratic
market model. An asset pricing model including coskewness is derived using
arbitrage pricing, and the testing of various related statistical hypotheses is
discussed. Section 3 reports estimators and test statistics used in the empir-
ical part of the paper. Section 4 describes the data, and reports empirical
results. Section 5 provides Monte Carlo simulations for investigating the
…nite sample properties of our test statistics, and Section 6 concludes.

2 ASSET PRICING MODELS WITH COSKEW-
NESS

In this Section we introduce the econometric speci…cations considered in
this paper. In turn, we describe the return-generating process, we derive
the corresponding restricted equilibrium models, and …nally we compare our
approach with a GMM framework.
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2.1 The Quadratic Market Model
Factor models are amongst the most widely used return-generating processes
in …nancial econometrics. They explain co-movements in asset returns as
arising from the common e¤ect of a (small) number of underlying variables,
called factors (see for instance Campbell, Lo, and MacKinlay 1987; Gourier-
oux, Jasiak 2001). In this paper, a linear two-factor model, the quadratic
market model, is used as a return-generating process. Market returns and the
square of the market returns are the two factors. Speci…cally, let us denote
by Rt the N £1 vector of returns in period t of N portfolios, and by RM,t the
return of the market. If RF,t is the return in period t of a (conditionally) risk-
free asset, portfolio and market excess returns are de…ned by: rt = Rt¡RF,tι,
rM,t = RM,t ¡ RF,t, respectively, where ι is a N £ 1 vector of ones. Similarly,
the excess squared market return is de…ned by: qM,t = R2

M,t ¡ RF,t. The
quadratic market model is speci…ed by:

rt = α + βrM,t + γqM,t + εt, t = 1, ...., T ,
HF : γ 2 RN (1)

where α is a N£1 vector of intercepts, β and γ are N£1 vectors of sensitivities
and εt is an N £ 1 vector of errors satisfying:

E
h
εt j RM,t, RF,t

i
= 0.

with RM,t and RF,t denoting all present and past values of RM,t and RF,t.
The quadratic market model is a direct extension of the well-known mar-

ket model (Sharpe 1964; Lintner 1965), which corresponds to restriction
γ = 0 in (1):

rt = α + βrM,t + εt, t = 1, ...., T ,
H¤

F : γ = 0 in (1). (2)

The motivation for including the square of the market returns is to fully
account for coskewness with the market portfolio. In fact, deviations from the
linear relation between asset returns and market returns implied by (2) are
empirically observed. More speci…cally, for some classes of assets, residuals
from the regression of returns on a constant and market returns tend to be
positively (negatively) correlated with squared market returns. These assets
therefore show a tendency to have relatively higher (lower) returns when
the market experiences high absolute returns, and are said to have positive
(negative) coskewness with the market. This …nding is supported by our
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empirical investigations in Section 4, where, in accordance with the results
of Harvey and Siddique (2000), we …nd that portfolios formed by assets
of small …rms tend to have negative coskewness with the market, whereas
portfolios formed by assets of large …rms have positive market coskewness. In
addition to classical beta, market coskewness is therefore another important
risk characteristic: an asset which has positive coskewness with the market
diminishes the sensitivity of a portfolio to large absolute market returns.
Therefore, everything else being equal, investors should prefer assets with
positive market coskewness to those with negative coskewness. The quadratic
market model (1) is a speci…cation which provides us with a very simple way
to take into account market coskewness. Indeed, we have:

γ =
1

V [εq,t]
cov

£
εt, R2

M,t

¤
, (3)

where εt (respectively εq,t) are the residuals from a theoretical regression of
portfolio returns Rt (market square returns R2

M,t, respectively) on a constant
and market return RM,t. Since coe¢cients γ are proportional to cov

£
εt, R2

M,t

¤
,

we can use the estimate of γ in model (1) to investigate the coskewness
properties of the N portfolios in the sample. Moreover, although γ does not
correspond exactly to the usual probabilistic de…nition of market coskewness,
coe¢cient γ is a very good proxy for cov

¡
rt, R2

M,t

¢
/V

¡
R2

M,t

¢
, as pointed out

in Kraus and Litzenberger (1976). Within our sample the approximation
error is smaller than 1% (see Appendix A). Finally, the statistical (joint)
signi…cance of coskewness coe¢cient γ can be assessed by testing the null
hypothesis H¤

F against the alternative HF .

2.2 Restricted Equilibrium Models
From the point of view of …nancial economics, a linear factor model is only a
return-generating process, which is not necessarily consistent with notions of
economic equilibrium. Constraints on its coe¢cients are imposed for example
by arbitrage pricing (Ross 1976; Chamberlain and Rothschild 1983). The
arbitrage pricing theory (APT) implies that expected excess returns of assets
following the factor model (1) satisfy the restriction (Barone-Adesi 1985):

E(rt) = βλ1 + γλ2, (4)

where λ1 and λ2 are expected excess returns on portfolios whose excess re-
turns are perfectly correlated with factors rM,t and qM,t, respectively. Equa-
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tion (4) is in the form of a typical linear asset pricing model, which relates
expected excess returns to covariances and coskewnesses with the market. In
this paper we test the asset pricing model with coskewness (4) through the
restrictions it imposes on the coe¢cients of the return-generating process (1).
Let us derive these restrictions. Since the excess market return rM,t satis…es
(4), it must be that

λ1 = E(rM,t). (5)
A similar restriction doesn’t hold for the second factor qM,t since it is not a
traded asset. However, we expect λ2 < 0, since assets with positive coskew-
ness decrease the risk of a portfolio with respect to large absolute market
returns, and therefore should command a lower risk premium in an arbitrage
equilibrium. By taking expectations on both sides of equation (1) and sub-
stituting equations (4) and (5), we deduce that the asset pricing model (4)
implies the cross-equation restriction α = ϑγ, where ϑ is the scalar parame-
ter ϑ = λ2 ¡ E(qM,t). Thus arbitrage pricing is consistent with the following
restricted model:

rt = βrM,t + γqM,t + γϑ + εt, t = 1, ....., T ,
H1 : 9ϑ : α = ϑγ in (1). (6)

Therefore, the asset pricing model with coskewness (4) is tested by testing
H1 against HF .

When model (4) is not supported by data, there exists an additional
component eα (a N £ 1 vector) in expected excess returns, which cannot be
fully related to market risk and coskewness risk: E(rt) = βλ1 + γλ2 + eα.
In this case, intercepts α of model (1) satisfy: α = ϑγ + eα. It is crucial to
investigate how the additional component eα varies across assets. Indeed, if
this component arises from an omitted factor, it will provide us with infor-
mation about the sensitivities of our portfolios to this factor. Furthermore,
variables representing portfolio characteristics, which are correlated with eα
across portfolios, will have spurious explanatory power for expected excess
returns, since they are a proxy for the sensitivities to the omitted factor. A
case of particular interest is when eα is homogeneous across assets: eα = λ0ι,
where λ0 is a scalar, that is:

E(rt) = ιλ0 + βλ1 + γλ2, (7)

corresponding to the following speci…cation:

rt = βrM,t + γqM,t + γϑ + λ0ι + εt, t = 1, ....., T ,
H2 : 9ϑ, λ0 : α = ϑγ + λ0ι in (1). (8)
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Speci…cation (8) corresponds to the case where the factor omitted in model
(4) has homogeneous sensitivities across portfolios. From equation (7), λ0

may be interpreted as the expected excess returns of a portfolio with zero
covariance and coskewness with the market. Such a portfolio may correspond
to the analogous of the zero-beta portfolio in the Black version of the capital
asset pricing model (Black 1972). Alternatively, λ0 > 0 (λ0 < 0) may be
due to the use of a risk-free rate lower (higher) than the actual rate faced by
investors. With reference to the observed empirical regularities and model
misspeci…cations mentioned in the Introduction, the importance of model
(8) is that, if hypothesis H2 is not rejected against HF , we expect portfolio
characteristics such as size not to have additional explanatory power for
expected excess returns, once coskewness is taken into account. In addition,
a more powerful evaluation of the validity of the asset pricing model (4)
should be provided by a test of H1 against the alternative H2.

2.3 The GMM Framework
Asset pricing models of the type (4) are considered in Kraus and Litzen-
berger (1976) and Harvey and Siddique (2000). Harvey and Siddique (2000)
introduce their speci…cation as a model where the stochastic discount factor
is quadratic in market returns. Speci…cally, in our notation, the asset pricing
model with coskewness (4) is equivalent to the orthogonality condition:

E [rtmt (δ)] = 0, (9)

where the stochastic discount factor mt (δ) is given by: mt (δ) = 1¡ rm,tδ1 ¡
qm,tδ2 and δ = (δ1, δ2) is a two-dimensional parameter. A quadratic sto-
chastic discount factor mt (δ) can be justi…ed as a (formal) second order
Taylor expansion of a stochastic discount factor, which is non-linear in the
market returns. Thus, in the GMM approach, the derivation and testing of
the orthogonality condition (9) do not require a prior speci…cation of a data
generating process.

More recently, in a conditional GMM framework, Dittmar (2002) uses a
stochastic discount factor model embodying both quadratic and cubic terms.
The validity of the model is tested by a GMM statistics using the weighting
matrix proposed in Jagannathan and Wang (1996) and Hansen and Jagan-
nathan (1997). As explained earlier, the main contribution of our paper,
beyond the results obtained by Harvey and Siddique (2000) and Dittmar
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(2002), is that we focus on testing the asset pricing model with coskewness
(4) through the restrictions it imposes on the return-generating process (1),
instead of adopting a methodology using an unspeci…ed alternative (e.g. a
GMM test).

3 ESTIMATORS AND TEST STATISTICS
In this Section we derive the estimators and test statistics used in our em-
pirical applications. Following an approach widely adopted in the literature
(see for instance Campbell, Lo, and MacKinlay 1997; Gourieroux and Jasiak
2001), we consider the general framework of Pseudo Maximum Likelihood
(PML) methods. We derive the statistical properties of the estimators and
test statistics within the di¤erent coskewness asset pricing models presented
in Sections 2.1 and 2.2. For completeness, full derivations are provided in
the Appendices.

3.1 The Pseudo Maximum Likelihood Estimator
We assume that the error term εt in model (1) with t = 1, ....., T is a ho-
moscedastic martingale di¤erence sequence satisfying:

E
h
εtjεt¡1, RM,t, RF,t

i
= 0, (10)

E
h
εtε

0
tjεt¡1, RM,t, RF,t

i
= §,

where § is a positive de…nite N £ N matrix. The factor ft = (rM,t, qM,t)
0 is

supposed to be exogenous in the sense of Engle, Hendry and Richard (1988).
The expectation and the variance-covariance matrix of factor ft are denoted
by µ and §f , respectively. Statistical inference in the asset pricing models
presented in Section 2 is conveniently cast in the general framework of PML
methods (White 1981; Gourieroux, Monfort and Trognon 1984; Bollerslev
and Wooldridge 1992). If θ denotes the parameter of interest in the model
under consideration, the PML estimator is de…ned by the maximization:

bθ = argmax
θ

LT (θ), (11)

where the criterion LT (θ) is a (conditional) pseudo-loglikelihood. More specif-
ically, LT (θ) is the (conditional) loglikelihood of the model when we adopt

9



a given conditional distribution for error εt, which satis…es (10) and is such
that the resulting pseudo true density of the model is exponential quadratic.
Under standard regularity assumptions, the PML estimator bθ is consistent for
any chosen conditional distribution of error εt satisfying the above conditions
(see references above). Estimator bθ is e¢cient when the pseudo conditional
distribution of εt coincides with the true one, being then the PML estima-
tor identical with the maximum likelihood (ML) estimator. Finally, since
the PML estimator is based on the maximization of a statistical criterion,
hypothesis testing can be conducted by the usual general asymptotic tests.

In what follows, we will systematically analyze in the PML framework
the alternative speci…cations introduced in Section 2.

3.2 The Return-Generating Process
The quadratic market model (1) [and the market model (2)] are Seemingly
Unrelated Regressions (SUR) systems (Zellner 1962), with the same regres-
sors in each equation. Let θ denote the parameters of interest in model (1),
where vech(§) is a (N+1)N

2 £ 1 vector representation of § containing only
elements on and above the main diagonal,

θ = (α
0
, β

0
, γ

0
, vech(§)

0
)
0
,

the PML estimator of θ based on the normal family is obtained by maximiz-
ing:

LT (θ) = ¡T
2
log det§ ¡ 1

2

TX

t=1

εt(θ)
0
§¡1εt(θ), (12)

where
εt(θ) = rt ¡ α ¡ βrM,t ¡ γqM,t, t = 1, ..., T .

As is well-known, the PML estimator for (α0 , β
0
, γ0)0 is equivalent to the

GLS estimator on the SUR system and also to the OLS estimator performed
equation by equation in model (1). Let B denote the N £3 matrix de…ned by
B = [α β γ]. The PML estimator bB =

h
bα bβ bγ

i
is consistent when T ! 1

and its asymptotic distribution is given by:

p
T

³
bB ¡ B

´
d¡! N(0,§ ­ E

h
FtF

0
t

i¡1
), (13)
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where Ft = (1, rM,t, qM,t)
0.

Let us now consider the test of the (joint) statistical signi…cance of the
coskewness coe¢cients γ, that is the test of hypothesis H¤

F : γ = 0, against
HF . This test can be easily performed computing a Wald statistics, which is
given by:

ξF¤
T = T

1
b§22

f

bγ0b§¡1bγ. (14)

where upper indices in a matrix denote elements of the inverse. Statistics
ξF¤

T is asymptotically χ2(p)-distributed, with p = N , when T ¡! 1.

3.3 Restricted Equilibrium Models
Let us now consider the constrained models (6) and (8) derived by arbitrage
equilibrium. The estimation of these models is less simple since they entail
cross-equation restrictions. We denote by:

θ =
³
β
0
, γ

0
, ϑ, λ0, vech (§)

0´0
,

the vector of parameters of model (8). The PML estimator of θ based on a
normal pseudo conditional loglikelihood is de…ned by maximization of:

LT (θ)= ¡ T
2
log det§ ¡ 1

2

TX

t=1

εt(θ)
0
§¡1εt(θ), (15)

where:
εt(θ) = rt ¡ βrM,t ¡ γqM,t ¡ γϑ ¡ λ0ι, t = 1, ..., T .

The PML estimator bθ is given by the following system of implicit equations
(see Appendix B):

³
bβ
0
,bγ0

´0
=

Ã
TX

t=1

(rt ¡ bλ0ι) bHt
0

!Ã
TX

t=1

bHt bHt
0

!¡1

, (16)

³
bϑ, bλ0

´0
= ( bZ 0b§¡1 bZ)¡1 bZ 0b§¡1

³
r ¡ bβrM ¡ bγqM

´
, (17)

b§ =
1
T

TX

t=1

bεtbε
0
t, (18)
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where:
bεt = rt ¡ bβrM,t ¡ bγqM,t ¡ bγbϑ ¡ bλ0ι,

bHt =
³
rM,t, qM,t + bϑ

´0
, bZ = (bγ, ι) ,

and r = 1
T

PT
t=1 rt, rM = 1

T

PT
t=1 rM,t, qM = 1

T

PT
t=1 qM,t. An estimator for

λ = (λ1, λ2)
0
is given by:

bλ = bµ +
µ

0
bϑ

¶
. (19)

Estimator
³
bβ
0
,bγ0

´0
is obtained by (time series) OLS regressions of rt ¡ bλ0ι

on bHt in a SUR system, performed equation by equation, whereas
³
bϑ, bλ0

´0
is

obtained by (cross-sectional) GLS regression of r¡bβrM ¡bγqM on bZ. A step of
a feasible algorithm consists in: a) starting from old estimates; b) computing³
bβ
0
,bγ0

´0
from equation (16); c) computing

³
bϑ, bλ0

´0
from equation (17) using

new estimates for bβ, bγ and bZ; d) computing b§ from equation (18), using new
estimates. The procedure is iterated until a convergence criterion is met. The
starting values for β, γ and § are provided by the unrestricted estimates on
model (1), whereas for the parameters λ0 and ϑ they are provided by equation
(17) (where estimates from equation (1) are used).

The asymptotic distributions of the PML estimator are reported in Ap-
pendix B. In particular, it is shown that the asymptotic variance of the
estimator of

³
β
0
, γ0 , ϑ, λ0, λ1, λ2

´
is independent of the true distribution of

the error term εt, as long as it satis…es the conditions for PML estimation.
The results for the constrained PML estimation of model (6) follow by setting
λ0 = 0, bZ = bγ, and deleting the vector ι.

Let us now consider the problem of testing hypotheses H1 and H2, cor-
responding to models (6) and (8) respectively, against the alternative HF . If
θ denotes the parameter of model (1), each of these two hypotheses can be
written in mixed form:

fθ : 9a 2 A ½ Rq : g(θ, a) = 0g, (20)

for an appropriate vector function g with values in Rr and suitable dimensions
q and r. Let us assume that the rank conditions:

rank
µ

∂g
∂θ0

¶
= r, rank

µ
∂g
∂a0

¶
= q,
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are satis…ed at the true values θ0, a0. The test of hypothesis (20) based on
Asymptotic Least Squares (ALS) consists in verifying whether the constraints
g(bθ, a) = 0 are satis…ed, where bθ is an unconstrained estimator of θ, the
PML estimator in our case (Gourieroux, Monfort, and Trognon 1985). More
speci…cally the test is based on the following statistics:

ξT = argmin
a

Tg(bθ, a)0 bSg(bθ, a),

where bS is a consistent estimator for

S0 =
µ

∂g
∂θ0

­0
∂g0

∂θ

¶¡1
,

evaluated at the true values θ0, a0, where ­0 = Vas

hp
T

³
bθ ¡ θ0

´i
. Un-

der regularity conditions, ξT is asymptotically χ2(r ¡ p)-distributed and is
asymptotically equivalent to the other asymptotic tests.

By applying these general results, we deduce the ALS statistics for testing
the hypotheses H1 and H2 against the alternative HF (see Appendix C for
a full derivation). The hypothesis H1 against HF is tested by the statistics:

ξ1T = T

³
bα ¡ eϑbγ

´0
b§¡1

³
bα ¡ eϑbγ

´

1 + eλ
0b§¡1f

eλ
d¡! χ2(p), (21)

with p = N ¡ 1, where eλ = bµ +
³
0, eϑ

´0
, and:

eϑ = argmin
ϑ

(bα ¡ ϑbγ)0 b§¡1 (bα ¡ ϑbγ)

= (bγ0b§¡1bγ)¡1bγ0b§¡1bα.

The ALS statistics for testing hypothesis H2 against HF is given by:

ξ2T = T

³
bα ¡ eϑbγ ¡ eλ0ι

´0
b§¡1

³
bα ¡ eϑbγ ¡ eλ0ι

´

1 + eλ
0b§¡1f

eλ
d¡! χ2(p), (22)

with p = N ¡ 2, where eλ = bµ +
³
0, eϑ

´0
, and:

³
eϑ, eλ0

´0
= argmin

ϑ,λ0
(bα ¡ ϑbγ ¡ λ0ι)

0 b§¡1 (bα ¡ ϑbγ ¡ λ0ι)

= ( bZ 0b§¡1 bZ)¡1 bZ 0b§¡1bα, bZ = (bγ, ι) .
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Finally, a test of hypothesis H1 against H2 is simply performed as a t-test
for the parameter λ0.

4 EMPIRICAL RESULTS
In this Section we report the results of our empirical application, performed
on monthly returns of stock portfolios. We …rst estimate the quadratic mar-
ket model, and then test the di¤erent associated asset pricing models with
coskewness. Finally we investigate the consequences of erroneously neglect-
ing coskewness when testing asset pricing models. The Section begins with
a brief description of the data.

4.1 Data Description
Our dataset consists of 450 (percentage) monthly returns of the 10 stock port-
folios formed according to size by French, for the period July 1963-December
2000. Data are available from the web site:
http://web.mit.edu/kfrench/www/datan_library.html, in the …le ”Portfolios
Formed on Size”. The portfolios are constructed at the end of June each year,
using June market equity data and NYSE breakpoints. The portfolios from
July of year t to June of t + 1 include all NYSE, AMEX, and NASDAQ
stocks for which we have market equity data for June of year t. Portfolios
are ranked by size, with portfolio 1 being the smallest and portfolio 10 the
largest.

The market return is the value-weighted return on all NYSE, AMEX, and
NASDAQ stocks. The risk-free rate is the one-month Treasury bill rate from
Ibbotson Associates. The market return and risk-free return are available
from the web site: http://web.mit.edu/kfrench/www/datan_library.html,
in the …les ”Fama-French Benchmark Factors” and ”Fama-French Factors”.
We use the T-bill rate because other money-market series are not available
for the whole period of our tests.
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4.2 Results

4.2.1 Quadratic Market Model

We begin with the estimation of the quadratic market model (1). PML-SUR
estimates of the coe¢cients α, β, γ and of the variance § in model (1) are
reported in Tables 1 and 2, respectively.

[Insert somewhere here Tables 1 and 2]

As explained in Section 3.2, these estimates are obtained by OLS regressions,
performed equation by equation on system (1). As expected, the beta coe¢-
cients are strongly signi…cant for all portfolios, with smaller portfolios having
higher betas in general. From the estimates of the γ parameter, we see that
small portfolios have signi…cantly negative coe¢cients of market coskewness
(for instance γ = ¡0.017 for the smallest portfolio). Coskewness coe¢cients
are signi…cantly positive for the two largest portfolios (γ = 0.003 for the
largest portfolio). In particular, we observe that the β and γ coe¢cients
are strongly correlated across portfolios. We can test for joint signi…cance of
the coskewness parameter γ by using the Wald statistics ξF¤

T in (14). The
statistics ξF¤

T assumes the value: ξF¤
T = 35.34, which is strongly signi…cant

at the 5 percent level, because its critical value is χ2
0.05(10) = 18.31. Finally,

from Table 2, we also see that smaller portfolios are characterized by larger
variances of the residual error terms.

We performed several speci…cation tests of the functional form of the
mean portfolios return in equation (1). First, we estimated a factor SUR
model including also a cubic power of market returns, R3

M,t ¡RF,t, as a factor
in addition to the constant, market excess returns and market squared excess
returns. The cubic factor was found not to be signi…cant for all portfolios.
Furthermore, in order to test for more general forms of misspeci…cations
in the mean, we performed Ramsey (1969) Reset Test on each portfolio,
including quadratic and cubic …tted values of (1) among the regressors. In
this case, too, the null of correct speci…cation of the quadratic market model
was accepted for all portfolios in our tests.

From the point of view of our analysis, one central result from Table 1
is that the coskewness coe¢cients are (signi…cantly) di¤erent from zero for
all portfolios in our sample, except for two of moderate size. Furthermore,
coskewness coe¢cients tend to be correlated with size, with small portfolios
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having negative coskewness with the market, and the largest portfolios hav-
ing positive market coskewness. This result is consistent with the …ndings
of Harvey and Siddique (2000). It is worth noticing that the dependence
between portfolios returns and market returns deviates from that of a linear
speci…cation (as assumed in the market model), generating smaller (larger)
returns for small (large) portfolios when the market has a large absolute re-
turn. This …nding has important consequences for the assessment of risk
in various portfolio classes: small …rm portfolios, having negative market
coskewness, are exposed to a source of risk additional to market risk, related
to the occurrence of large absolute market returns. In addition, as we have
already seen, market model (2), when tested against quadratic market model
(1), is rejected with a largely signi…cant Wald statistics. In the light of our
…ndings, we conclude that the extension of the return-generating process to
include the squared market return is valuable.

4.2.2 Restricted Equilibrium Models

Let us now investigate market coskewness in the context of models which are
consistent with arbitrage pricing. To this end we consider constrained PML
estimation of models (6) and (8). Speci…cation (6) is obtained from the
quadratic market model after imposing restrictions from the asset pricing
model (4). Speci…cation (8) instead allows for a homogeneous additional
constant in expected excess returns. The corresponding PML estimators are
obtained from the algorithm based on equations (16) to (18), as reported in
Section 3.3. The results for model (6) are reported in Table 3 and those for
model (8) in Table 4.

[Insert somewhere here Tables 3 and 4]

The point estimates and standard errors of parameters β and γ are similar
in the two models. Their values are close to those obtained from quadratic
market model (1). In particular, the estimates of parameter γ con…rm that
small (large) portfolios have signi…cantly negative (positive) coskewness co-
e¢cients. Parameter ϑ is found signi…cantly negative in both models, as
expected, but the implied estimate for the risk premium for coskewness, bλ2,
is not statistically signi…cant in either model. However, the estimate in model
(8), bλ2 = ¡7.439, has at least the expected negative sign. Using this estimate,
we deduce that, for a portfolio with coskewness γ = ¡0.01 (a moderately-
sized portfolio, such as portfolio 3 or 4), the coskewness contribution to the
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expected excess return on an annual percentage basis is approximately 0.9.
This value increases to 1.5 for the smallest portfolio in our data set.

We test the empirical validity of asset pricing model (4) in our sample by
testing hypothesis H1 against the alternative, HF . The ALS test statistics
ξ1T given in (21) assumes the value ξ1T = 16.27, which is not signi…cant at
the 5 percent level, even though very close to the critical value χ2

0.05(9) =
16.90. Thus, there is some evidence that asset pricing model (4) may not
be satis…ed in our sample. In other words, an additional component, other
than covariance and coskewness to market, may be present in expected excess
returns. In order to test for the homogeneity of this component across assets,
we test hypothesis H2 against HF . The test statistics ξ2T in equation (22)
assumes the value ξ2T = 5.32, well below the critical value χ2

0.05(8) = 15.51. A
more powerful test of asset pricing model (4) should be provided by testing
hypothesis H1 against the alternative, H2. This test is performed by the
simple t-test of signi…cance of λ0. From Table 4 we see that H1 is quite
clearly rejected. This con…rms that asset pricing model (4) may not be
supported by our data. However, since H2 is not rejected, it follows that, if
the additional component which is unexplained by model (4) comes from an
omitted factor, its sensitivities should be homogeneous across portfolios in
our sample. We conclude that size is unlikely to have explanatory power for
expected excess returns, when coskewness is taken into account. Moreover,
the contribution to expected excess returns of the unexplained component,
deduced from the estimate of parameter λ0, is quite modest, approximately
0.4 on a annual percentage basis. Notice in particular that this is less than
half the contribution due to coskewness for portfolios of modest size. As
explained in Section 2.2, λ0 > 0 may be due to the use of a risk-free rate
lower than the actual rate faced by investors.

4.2.3 Misspeci…cation from Neglected Coskewness

As already mentioned in Section 2, we are also interested in investigating
the consequences on asset pricing tests of erroneously neglecting coskewness.
The results presented so far suggest that market model (2) is misspeci…ed,
since it does not take into account the quadratic market return. Indeed,
when tested against quadratic market model (1), it is strongly rejected. For
comparison, we report the estimates of parameters α and β in market model
(2) in Table 5.

[Insert somewhere here Table 5]

17



The β coe¢cients in Table 5 are close to those obtained in the quadratic
market model in Table 1. Therefore, neglecting the quadratic market returns
does not seem to have dramatic consequences for the estimation of parameter
β. However, we expect the consequences of this misspeci…cation to be serious
for inference. Indeed, we have seen above that the coskewness coe¢cients are
correlated with size, small portfolios having negative market coskewness and
large portfolios positive market coskewness. This feature suggests that size
can have a spurious explanatory power in the cross-section of expected excess
returns since it is a proxy for omitted coskewness. Therefore, as anticipated
in Section 2, the ability of size to explain expected excess returns could be
due to misspeci…cation of models neglecting coskewness risk.

Finally, it is interesting to compare our …ndings with those reported in
Barone Adesi (1985), whose investigation covers the period 1931-1975. We
see that the sign of the premium for coskewness has not changed over time,
with assets having negative coskewness commanding, not surprisingly, higher
expected returns. On the contrary, both the sign of the premium for size and,
consequently, the link between coskewness and size, are inverted. While it
appears di¢cult to discriminate statistically between a structural size e¤ect
and reward for coskewness, according to Kan and Zhang (1999a,b)’s criterion
the size e¤ect is more likely explained by neglected coskewness.

5 MONTE CARLO SIMULATIONS
In this …nal Section we report the results of a series of Monte Carlo simula-
tions undertaken to assess the importance of specifying the return-generating
process to obtain reliably powerful statistical tests. We compare the …nite
sample properties (size and power) of two statistics for testing the asset pric-
ing model with coskewness (4): i) the ALS statistics ξ1T in equation (21),
which tests model (4) by the restrictions imposed on the return-generating
process (1), and ii) a GMM test statistics ξGMM

T , which tests model (4)
through the orthogonality conditions (9). In addition, we investigate the ef-
fects on the ALS statistics ξ1T induced by the non-normality of errors εt or
by the misspeci…cation of the return-generating process (1).
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5.1 Experiment 1.
The data-generating process used in Experiment 1 is given by:

rt = α + βrM,t + γqM,t + εt, t = 1, ..., 450,

where rM,t = RM,t ¡ Rf,t, qM,t = R2
M,t ¡ Rf,t, with:

RM,t » iidN(µM , σ2
M),

εt » iidN(0,§), (εt) independent of (Rm,t) ,
Rf,t = rf , a constant,

and:
α = ϑγ + λ0ι.

The values of the parameters are chosen to be equal to the estimates obtained
in the empirical analysis reported in the previous section. Speci…cally, β and
γ are the third and fourth columns, respectively, in Table 1, matrix § is
taken from Table 2, ϑ = ¡14.995 from Table 3, µm = 0.52, σm = 4.41, and
rf = 0.4, corresponding to the average of the risk-free return in our data
set. Di¤erent values of parameter λ0 are used in the simulations. We will
refer to this data-generating process as DGP1. Under DGP1, when λ0 = 0,
quadratic equilibrium model (4) is satis…ed. When λ0 6= 0, equilibrium model
(4) is not correctly speci…ed, and the misspeci…cation is in the form of an
additional component, which is homogeneous across portfolios, corresponding
to model (8). However, for any value of λ0, quadratic market model (1) is
well speci…ed.

We perform a Monte Carlo simulation (10, 000 replications) for di¤erent
values of λ0, and report the rejection frequencies of the two test statistics,
ξ1T and ξGMM

T , at the nominal size of 0.05 in Table 6.

[Insert somewhere here Table 6]

The second row, λ0 = 0, reports the empirical test sizes. Both statistics
control size quite well in …nite samples, at least for sample size T = 450. The
subsequent rows, corresponding to λ0 6= 0, report the power of the two test
statistics against alternatives corresponding to unexplained components in
expected excess returns, which are homogeneous across portfolios. Note that
such additional components, with λ0 = 0.033, were found in the empirical
analysis in Section 4. Table 6 shows that the power of the ALS statistics ξ1T
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is considerably higher than that of the GMM statistics ξGMM
T . This is due to

the fact that the ALS statistics ξ1T uses a well-speci…ed alternative given by
(1), whereas the alternative for the GMM statistics ξGMM

T is left unspeci…ed.

5.2 Experiment 2
Under DGP1, residuals εt are normal. When residuals εt are not normal,
the alternative used by the ALS statistics ξ1T [i.e. model (1)] is still correctly
speci…ed, since PML estimators are used to construct ξ1T . However, these
estimators are not e¢cient. In experiment 2 we investigate the e¤ect of
non-normality of residuals εt on the ALS test statistics. The data-generating
process used in this experiment, called DGP2, is equal to DGP1 but residuals
εt follow a multivariate t-distribution with df = 5 degrees of freedom. The
correlation matrix is chosen so that the resulting variance of residuals εt is
the same as under DGP1. The rejection frequencies of this Monte Carlo
simulation (10, 000 replications) for the ALS statistics ξ1T are reported in
Table 7.

[Insert somewhere here Table 7]

The ALS statistics appears to be only slightly oversized. As expected, power
is reduced compared to the case of normality. However the loss of power
caused by non-normality is limited. These results suggest that the ALS
statistics does not unduly su¤er from non-normality of the residuals.

5.3 Experiment 3
In the Monte Carlo experiments conducted so far, the alternative used by the
ALS statistics was well speci…ed. In this last experiment we investigate the
e¤ect of a misspeci…cation in the alternative hypothesis in the form of condi-
tional heteroscedasticity of errors εt. We thus consider two data-generating
processes having the same unconditional variance of the residuals εt, but
so that the residuals εt are conditionally heteroscedastic in one case, and
homoscedatic in the other. Speci…cally, DGP3 is the same as DGP1, but
innovations εt follow a conditionally normal, multivariate ARCH(1) process
without cross e¤ects:

cov
³
εi,t, εj,t j εt¡1

´
=

½
ωii + ρε2i,t¡1, i = j
ωij, i 6= j .
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Matrix ­ = [ωij] is chosen as in Table 2, and ρ = 0.2. DGP4 is similar to
DGP1, with i.i.d. normal innovations with the same unconditional variance
matrix as innovations εt in DGP 3. Thus under DGP4 the alternative of
the ALS statistics is well speci…ed, but not under DGP3. The rejection
frequencies of the ALS statistics under DGP3 and DGP4 are reported in
Table 8.

[Insert somewhere here Table 8]

The misspeci…cation in the form of conditional heteroscedasticity has no
e¤ect on the empirical size of the statistics in these simulations. The power
of the ALS test statistics is reduced, but not drastically.

6 CONCLUSIONS
In this paper we have considered market coskewness and investigated its im-
plications for testing asset pricing models. By estimating a quadratic market
model, which includes the market returns and the square of the market re-
turns as the two factors, we showed that portfolios of small (large) …rms have
negative (positive) coskewness with market returns. This …nding implies that
small …rm portfolios are exposed to a source of risk, that is market coskew-
ness, which is di¤erent from the usual market beta and arises from negative
covariance with large absolute market returns. The coskewness coe¢cients
of the portfolios in our sample are shown to be statistically signi…cant. This
…nding rejects the usual market model and demonstrates the validity of the
quadratic market model as a possible extension.

The analysis of the premium in expected excess returns induced by mar-
ket coskewness requires the speci…cation of appropriate asset pricing models
including coskewness among the rewarded factors. In order to obtain test-
ing methodologies that are more powerful compared to a GMM approach,
we tested asset pricing models including coskewness through the restrictions
they impose on the quadratic market model. We used asymptotic test sta-
tistics whose …nite sample properties are validated by means of a series of
Monte Carlo simulations. We found evidence of a component in expected
excess returns that is not explained by either covariance or coskewness with
the market. However, this unexplained component is relatively small and
is consistent for instance with a minor misspeci…cation of the risk-free rate.
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More importantly, the unexplained component is homogeneous across port-
folios. This …nding implies that additional variables, representing portfolios
characteristics such as …rm size, have no explanatory power for expected
excess returns once coskewness is taken into account.

Finally, the homogeneity property of the unexplained component in ex-
pected excess returns is not satis…ed when coskewness is neglected. Therefore
our results have important implications for testing methodologies, showing
that neglecting coskewness risk can cause misleading inference. Indeed, since
coskewness is positively correlated with size, a possible justi…cation for the
anomalous explanatory power of size in the cross-section of expected returns
is that it is a proxy for omitted coskewness risk. This view is supported by
the fact that the sign of the premium for coskewness, contrary to that of size,
has not changed in a very long time.
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APPENDIX A: RELATIONSHIP BETWENN CROSS
MOMENT COSKEWNESS AND THE γi PARAMETER

In this Appendix we show how the parameter γi relates to the coskewness
term of our quadratic market model. We also report error estimates when

the cross moment coskewness is approximated by the parameter γi.

Our basic model is [see (1)]:

rt,i = αi + βi(RM,t ¡ RF,t) + γi(R
2
M,t ¡ RF,t) + εi,t,

where rt,i = Rt,i ¡ RF,t.

The probabilistic measure of coskewness is de…ned by:

cov(rt,i, R2
M,t) = E[rt,iR2

M,t] ¡ E[rt,i]E[R2
M,t],

which can be rewritten as:

cov(rt,i, R2
M,t) = βi(E[R3

M,t]¡E[R2
M,t]E[RM,t])+γiV ar[R2

M,t]+E[R2
M,t]E[εt,i].

In the …nal equation, the …rst term is a measure of the market asymmetry,
the second is essentially our measure of coskewness and the …nal term is equal
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to zero by assumption (10). Evidently, our approach considers the second
term only. However, our claim is motivated by the negligible e¤ects of the
…rst term. In fact, for values β = 1 and γi = ¡0.01, which are representative
for small …rm portfolios, the …rst term is 0.1, while the second is ¡15. If γi
is equal to 0.003, as in large …rm portfolios, then the terms are equal to 0.1
and 4 respectively. Finally, if the portfolio has a γi = 0, the second term is
also 0.

We are greatly indebted to one of the referees, whose comments high-
lighted this point.

APPENDIX B: PML IN MODEL (8).

In this Appendix we consider the Pseudo Maximum Likelihood (PML)
estimator of model (8), de…ned by maximization of (15). Let us …rst derive
the PML equations. The score vector is given by:

∂LT

∂
¡
β0 , γ0

¢0 =
TX

t=1

Ht ­ §¡1εt,

∂LT

∂ (ϑ, λ0)
0 =

TX

t=1

Z
0
§¡1εt,

∂LT

∂vech(§)
=

1
2
P T§¡1 ­ §¡1Pvech

"
TX

t=1

³
εtε

0
t ¡ §

´#
,

where Ht = (rM,t, qM,t + ϑ)
0
, εt = rt ¡ βrM,t ¡ γqM,t ¡ γϑ ¡ λ0ι, Z = (γ, ι)

and P is such that vec (§) = Pvech (§). By equating the score to 0, we
immediately …nd the equations (16) to (18).

Let us now derive the asymptotic distribution of the PML estimator in
model (8). Under usual regularity conditions (see references in the text) the
asymptotic distribution of the general PML estimator bθ de…ned in (11) is
given by: p

T
³
bθ ¡ θ0

´
d¡! N

¡
0, J¡10 I0J¡10

¢
,

where J0 (the so called information matrix), and I0 are symmetric, positive
de…nite matrices de…ned by:

J0 = lim
T!1

E
·
¡ 1

T
∂2LT

∂θ∂θ0
(θ0)

¸
, I0 = lim

T!1
E

·
1
T

∂LT

∂θ
(θ0)

∂LT

∂θ0
(θ0)

¸
.
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Let us compute matrices J0 and I0 in model (8). The second derivatives of
the pseudo-loglikelihood are given by:

∂2LT

∂
¡
β0 , γ0

¢0
∂

¡
β0 , γ0

¢ = ¡
TX

t=1

HtH
0
t ­ §¡1,

∂2LT

∂
¡
β0 , γ0

¢0
∂ (ϑ, λ0)

0 = ¡
TX

t=1

Ht ­ §¡1Z,

∂2LT

∂ (ϑ, λ0) ∂ (ϑ, λ0)
0 = ¡TZ

0
§¡1Z,

∂LT

∂vech(§)∂vech(§)0
=

T
2

P T§¡1 ­ §¡1P ¡ T
2

P T§¡1 ­ §¡1
Ã

TX

t=1

εtε
0
t

!
§¡1P

¡T
2

P T§¡1
Ã

TX

t=1

εtε
0
t

!
§¡1 ­ §¡1P ,

with the other ones vanishing in expectation. It follows that matrices J0 and

I0 are given by [in the block representation corresponding to
³
β
0
, γ0 , ϑ, λ0

´0

and vech (§)]:

J0 =
·

J¤0
eJ0

¸
, I0 =

"
J¤0 ηS eJ0

eJ0S
0η0 eJ0K eJ0

#
,

where:
eJ0 =

1
2

¡
P T§¡1 ­ §¡1P

¢
,

S = cov
·
εt, vech

³
εtε

0
t

´0¸
, K = V ar

h
vech

³
εtε

0
t

´i
,

and [in the block form corresponding to
³
β
0
, γ0

´0
, (ϑ, λ0)

0
]:

J¤0 =
·

E [HtHt] ­ §¡1 λ ­ §¡1Z
λ
0 ­ Z 0§¡1 Z 0§¡1Z

¸
, η =

·
λ ­ §¡1

Z 0§¡1

¸
.

(All parameters are evaluated at true value). Therefore, the asymptotic
variance-covariance matrix of the PML estimator bθ in model (8) is given by:

Vas

hp
T

³
bθ ¡ θ0

´i
= J¡10 I0J¡10 =

·
J¤¡10 J¤¡10 ηS

S0η0J¤¡10 K

¸
.
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Notice that the asymptotic variance-covariance of
³
bβ
0
,bγ0 , bϑ, bλ0

´0
, that is

J¤¡10 , does not depend on the distribution of error term εt, and in partic-
ular it coincides with the asymptotic variance-covariance matrix of the max-

imum likelihood (ML) estimator of
³
bβ
0
,bγ0 , bϑ, bλ0

´0
when εt is normal. On

the contrary, asymmetries and kurtosis of the distribution of εt in‡uence
the asymptotic variance-covariance matrix of vech(§) and the asymptotic

covariance of
³
bβ
0
,bγ0 , bϑ, bλ0

´0
and vech(b§), through matrices S and K.

The asymptotic variance-covariance of
³
bβ
0
,bγ0

´0
and

³
bϑ, bλ0

´0
is given ex-

plicitly in block form by:

J¤¡10 =
·

J¤110 J¤120
J¤210 J¤220

¸
,

where:

J¤110 =
³
§f + λλ

0
´¡1

­ §+
·
§¡1f λλ

0
³
§f + λλ

0
´¡1¸

­ Z
³
Z
0
§¡1Z

´¡1
Z
0
,

J¤120 = ¡§¡1f λ ­ Z
³
Z
0
§¡1Z

´¡1
,

J¤210 = J¤12
0

0

J¤220 =
³
1 + λ

0
§¡1f λ

´³
Z
0
§¡1Z

´¡1
.

Finally, let us consider the asymptotic distribution of estimator bλ de…ned
in (19). The estimator:

bµ =
1
T

TX

t=1

ft,

where ft = (rM,t, qM,t)
0
, can be seen as a component of the PML estimator

on the extended pseudo-likelihood:

LT (θ, µ,§f) = LT (θ) ¡ T
2
log det§f ¡ 1

2

TX

t=1

(ft ¡ µ)
0
§¡1f (ft ¡ µ) ,

where LT (θ) is given in (15). It is easily seen that θ and (µ,§f) are asymp-
totically independent. It follows:

Vas

hp
T

³
bλ2 ¡ λ2,0

´i
= §f,22 + Vas

hp
T

³
bϑ ¡ ϑ0

´i
.
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APPENDIX C: ASYMPTOTIC LEAST SQUARES

In this Appendix we derive the ALS statistics ξ1T in (21) and ξ2T in (22).
In both cases the restrictions [see (20)] are of the form:

g(θ, a) = A1(a)vec(B) + A2(a),

where B is the N £ 3 matrix de…ned by B = [α β γ] and A1(a) is such that:

A1(a) = (1, 0,¡ϑ) ­ IN ´ A¤
1(a) ­ IN .

Let us derive the weighting matrix S0 = (∂g/∂θ
0
­0∂g/∂θ)¡1, where ­0 =

Vas

³p
T

³
bθ ¡ θ

´´
. From (13) we get:

∂g
∂θ0

­0
∂g0

∂θ
= A¤

1E
h
FtF

0
t

i¡1
A¤0

1 ­ §

=
³
1 + λ

0
§¡1f λ

´
§.

The test statistics follow.
It should be noted that exact tests (under normality) can be constructed

for testing hypotheses H1 and H2 against HF (see e.g. Zhou 1995; Velu and
Zhou 1999). These tests are asymptotically equivalent to the Asymptotic
Least Squares tests and are used in our paper for their computational sim-
plicity. An evaluation of the …nite sample properties of the ALS test statistics
is presented in Section 5.
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Table 1. Coe¢cient Estimates of Model (1).

Portfolio i bαi bβi bγi

1 0.418
(1.84)
[1.70]

1.101
(24.23)
[20.24]

¡0.017
(¡3.32)
[¡2.94]

2 0.299
(1.65)
[1.56]

1.188
(32.62)
[27.07]

¡0.013
(¡3.05)
[¡2.65]

3 0.288
(1.88)
[1.86]

1.182
(38.37)
[29.18]

¡0.010
(¡2.84)
[¡2.45]

4 0.283
(1.96)
[1.83]

1.166
(39.99)
[30.98]

¡0.010
(¡3.00)
[¡2.82]

5 0.328
(2.73)
[2.51]

1.135
(46.94)
[34.16]

¡0.009
(¡3.34)
[¡2.68]

6 0.162
(1.59)
[1.53]

1.110
(54.02)
[37.85]

¡0.006
(¡2.58)
[¡2.28]

7 0.110
(1.29)
[1.24]

1.105
(64.37)
[50.66]

¡0.002
(¡0.88)
[¡0.84]

8 0.076
(1.02)
[0.90]

1.083
(72.59)
[56.61]

¡0.000
(¡0.18)
[¡0.23]

9 ¡0.016
(¡0.30)
[¡0.28]

1.017
(92.76)
[98.43]

0.003
(2.06)
[2.26]

10 ¡0.057
(¡1.10)
[¡0.99]

0.933
(88.77)
[66.71]

0.003
(2.64)
[2.73]

NOTE: This table reports for each portfolio i, i = 1, ..., 10, the PML-
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SUR estimates of the coe¢cients αi, βi, γi of the quadratic market model:

ri,t = αi + βirM,t + γiqM,t + εi,t, t = 1, ...., T , i = 1, ..., N ,

where ri,t = Ri,t ¡ RF,t, rM,t = RM,t ¡ RF,t, qM,t = R2
M,t ¡ RF,t. Ri,t is the

return of portfolio i in month t, and RM,t (RF,t) denotes the market return
(the risk free return). In round parentheses we report t-statistics computed
under the assumption:

E
h
εtjεt¡1, RM,t, RF,t

i
= 0,

E
h
εtε

0
tjεt¡1, RM,t, RF,t

i
= §, εt = (ε1,t, ..., εN,t) ,

while t-statistics, calculated with Newey-West (1987) heteroscedasticity and
autocorrelation consistent estimator with 5 lags, are in square parentheses.
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Table 2. Variance Estimates of Model (1).

1 2 3 4 5 6 7 8 9 10
1 17.94 13.42 10.69 9.41 6.93 5.20 4.02 2.64 0.51 ¡3.11

2 11.50 9.02 8.27 6.35 4.81 3.69 2.61 0.58 ¡2.72

3 8.24 7.18 5.65 4.51 3.34 2.39 0.68 ¡2.40

4 7.39 5.56 4.37 3.40 2.41 0.78 ¡2.33

5 5.07 3.71 2.82 2.21 0.77 ¡1.93

6 3.67 2.42 1.85 0.78 ¡1.59

7 2.56 1.68 0.75 ¡1.29

8 1.93 0.85 ¡1.05

9 1.04 ¡0.50

10 0.96

NOTE: This table reports the estimate of the variance§ = E
h
εtε

0
t j rM,t, qM,t

i

of the error εt in the quadratic market model:

rt = α + βrM,t + γqM,t + εt, t = 1, ...., T , i = 1, ..., N ,

where rt = Rt ¡ RF,tι, rM,t = RM,t ¡ RF,t, qM,t = R2
M,t ¡ RF,t. Rt is the

N-vector of portfolios returns, RM,t (RF,t) is the market return (the risk free
return), and ι is a N-vector of ones.
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Table 3. PML Estimates of Model (6).

Portfolio i bβi bγi

1 1.106
(24.50)

¡0.017
(¡3.25)

2 1.191
(32.97)

¡0.012
(¡2,99)

3 1.186
(38.79)

¡0.009
(¡2.74)

4 1.170
(40.41)

¡0.009
(¡2.90)

5 1.140
(47.38)

¡0.009
(¡3.14)

6 1.112
(54.56)

¡0.006
(¡2.50)

7 1.107
(65.07)

¡0.001
(¡0.76)

8 1.085
(73.37)

¡0.001
(¡0.05)

9 1.017
(93.66)

0.002
(2.14)

10 0.933
(89.53)

0.003
(2.63)

bϑ = ¡14.955
(¡2.23)

bλ2 = 4.850
(0.70)

NOTE: This table reports PML estimates of the coe¢cients of the re-
stricted model (6):

rt = βrM,t + γqM,t + γϑ + εt, t = 1, ....., T,

where ϑ is a scalar parameter, derived from the quadratic market model (1)
by imposing the restriction given by the asset pricing model with coskewness:
E (rt) = λ1β + λ2γ. The scalar ϑ and the premium for coskewness λ2 are
related by: ϑ = λ2 ¡ E (qM,t). The restricted model (6) corresponds to
hypothesis H1: 9ϑ : α = ϑγ in (1). t-statistics are reported in parentheses.
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Table 4. PML Estimates of Model (8).

Portfolio i bβi bγi

1 1.100
(24.38)

¡0.017
(¡3.32)

2 1.187
(32.84)

¡0.012
(¡3.05)

3 1.183
(38.70)

¡0.010
(¡2.91)

4 1.167
(40.31)

¡0.010
(¡3.07)

5 1.137
(47.35)

¡0.009
(¡3.52)

6 1.110
(54.45)

¡0.006
(¡2.62)

7 1.107
(65.07)

¡0.002
(¡1.06)

8 1.085
(73.40)

¡0.001
(¡0.38)

9 1.018
(93.72)

0.002
(1.90)

10 0.934
(89.60)

0.003
(2.57)

bϑ = ¡27.244
(¡3.73)

bλ2 = ¡7.439
(1.01)

bλ0 = 0.032
(3.27)

NOTE: This table reports PML estimates of the coe¢cients of the re-
stricted model (8):

rt = βrM,t + γqM,t + γϑ + λ0ι + εt, t = 1, ....., T,

where ϑ and λ0 are scalar parameters, derived from the quadratic market
model (1) by imposing the restriction: E (rt) = λ0ι+ λ1β + λ2γ. Under this
restriction, asset expected excess returns contain a component λ0 which is
not explained by neither covariance nor coskewness with the market. The
restricted model (8) corresponds to hypothesis H2: 9ϑ, λ0 : α = ϑγ + λ0ι in
(1). t-statistics are reported in parentheses.
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Table 5. Estimates of Model (2).

Portfolio i bαi bβi

1 0.080
(0.39)

1.102
(23.97)

2 0.050
(0.31)

1.188
(32.34)

3 0.092
(0.67)

1.183
(38.09)

4 0.088
(0.67)

1.167
(39.65)

5 0.148
(1.36)

1.135
(46.43)

6 0.044
(0.48)

1.110
(53.69)

7 0.076
(1.00)

1.105
(64.39)

8 0.069
(1.05)

1.083
(72.67)

9 0.034
(0.71)

1.017
(92.41)

10 0.005
(0.10)

0.933
(88.18)

NOTE: This table reports for each portfolio i, i = 1, ..., 10, the PML-
SUR estimates of the coe¢cients αi, βi of the traditional market model :

ri,t = αi + βirM,t + εi,t, t = 1, ...., T , i = 1, ..., N ,

where ri,t = Ri,t ¡ RF,t, rM,t = RM,t ¡ RF,t. Ri,t is the return of portfolio
i in month t, and RM,t (RF,t) is the market return (the risk free return).
t-statistics are reported in parentheses.
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Table 6. Rejection Frequencies in Experiment 1

λ0 ξGMM
T ξ1T

0.00 0.0404 0.0559
0.03 0.0505 0.4641
0.06 0.0712 0.9746
0.10 0.1217 0.9924
0.15 0.2307 0.9945

NOTE: This table reports the rejection frequencies of the GMM statistics
ξGMM

T [derived from (9)] and the ALS statistics ξ1T [in (21)] for testing the
asset pricing model with coskewness (4):

E (rt) = λ1β + λ2γ,

at 0.05 con…dence level, in experiment 1. The data generating process (called
DGP1) used in this experiment is given by:

rt = α + βrM,t + γqM,t + εt, t = 1, ..., 450,

where rM,t = RM,t ¡ rf,t, qM,t = R2
M,t ¡ rf,t, with

RM,t » iidN(µM , σ2
M),

εt » iidN(0,§), (εt) independent of (Rm,t) ,
rf,t = rf , a constant,

and
α = ϑγ + λ0ι.

Parameters β and γ are the third and fourth columns respectively in Table
1, the matrix § is taken from Table 2, ϑ = ¡14.995 from Table 3, µm = 0.52,
σm = 4.41, and rf = 0.4, corresponding to the average of the risk free return
in our data set. Under DGP1, when λ0 = 0, the quadratic equilibrium model
(4) is satis…ed. When λ0 6= 0, the equilibrium model (4) is not correctly
speci…ed, and the misspeci…cation is in the form of an additional component
homogeneous across portfolios, corresponding to model (8).
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Table 7. Rejection Frequencies in Experiment 2

λ0 ξ1T
0.00 0.0617
0.03 0.3781
0.06 0.9368
0.10 0.9876
0.15 0.9910

NOTE: This table reports the rejection frequencies of the ALS statistics
ξ1T [in (21)] for testing (4):

E (rt) = λ1β + λ2γ,

at 0.05 con…dence level, in experiment 2. The data generating process used
in this experiment (called DGP2) is the same as DGP1 (see Table 4), but
the residuals εt follow a multivariate t-distribution with df = 5 degrees of
freedom, and a correlation matrix such that the variance of εt is the same as
under DGP1.
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Table 8. Rejection Frequencies in Experiment 3

λ0
ξ1T under DGP 4
(homosced.)

ξ1T under DGP 3
(cond. heterosced.)

0.00 0.0587 0.0539
0.03 0.3683 0.1720
0.06 0.9333 0.5791
0.10 0.9855 0.9373

NOTE: This table reports the rejection frequencies of the ALS statistics
ξ1T [in (21)] for testing (4):

E (rt) = λ1β + λ2γ,

at 0.05 con…dence level, in experiment 3. In this experiment we consider
two data generating processes (called DGP3 and DGP4) having the same
unconditional variance of the residuals εt, but such that the residuals εt are
conditionally heteroscedastic in one case and homoscedastic in the other.
Speci…cally, DGP3 is the same as DGP1 (see Table 6), but the innovations εt

follow a conditionally normal, multivariate ARCH(1) process without cross
e¤ects:

cov
³
εi,t, εj,t j εt¡1

´
=

½
ωii + ρε2i,t¡1, i = j
ωij, i 6= j .

The matrix ­ = [ωij] is chosen as in Table 2, and ρ = 0.2. DGP4 is similar
to DGP1 (see Table 6), with i.i.d. normal innovations whose unconditional
variance matrix is the same as the unconditional variance of εt in DGP 3.
Thus under DGP4 the alternative of the ALS statistics is well-speci…ed, but
not under DGP3.
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