Efficient Derivative Pricing by the Extended Method of Moments,
Supplementary material: APPENDIX B

In this Appendix we provide the proofs of theoretical results and technical Lemmas that have
been omitted in the paper. We first give in Section B.1 the proof of Lemma A.1. Then, in Section
B.2 we give a detailed proof of consistency of the XMM estimator (see Appendix A.1.3 in the paper).
In Sections B.3-B.6 we prove Lemma A.2; Corollary 6, Lemma A.3 and Corollary 8, respectively. In
Section B.7 we discuss regularity conditions for XMM estimation when the DGP is the stochastic
volatility model of Section 3.2 of the paper. In Section B.8 we derive the risk-neutral distribution
in the stochastic volatility model. In Section B.9 we prove Lemma A.4. Finally, in Section B.10 we
provide the Fourier transform methods used for option pricing and cross-sectional calibration in the
stochastic volatility model. We use the following notation. We denote by K7 and K5 the din/lensions

of functions g; and g,, respectively. Further, g, denotes function g, = (g5 ,1) = (g;, a, 1)

B.1 Proof of Lemma A.1

B.1.1 Conditions for weak convergence of the kernel empirical process

The process ¥r(6), 6 € O, can be written as:

br0) - VT (Elg:(0)] - El9:(0))) Vo -

~\ /10 (Bl 0)leo] ~ Elg30)la0]) )

’ ’ !
where g5 denotes function g5 = (gg, a ) . Let us rewrite the second component of ¥ (6). For § € O,

let us define (see Assumption A.12):

¢ (0) == ¢ (20;0) = E[95(0)]o] f(x0),

and the corresponding kernel estimator:

T
~ 1 . Tt — Zo
('0(9) = The ZQQ(yhe)K( hy ) :

We have:
E g5 * P (9) (0)
1 5 E[g5(6)]0] -
= T VI @0) -0 @) - W\/ﬁ (7 (o) = £ (z0)
5 (io) \/ﬁ (E [95(0)|x0] — E [g;(e)|xo]) (f(xo) _ ¥ (wo)) .

This can be rewritten as:

V704 (Elgs 0)]z0] — Elg3 (0)/20)) [1 + 7o (Fan -7 (:co))]

f
! 3 AAQIED -
= VI @O~ 0) - ZEE T (F(a0) ~ £ (@0))

)



Under Assumptions A.5-A.9, we have [see Bosq (1998), Theorem 2.3]:
7 (0) = £ (w0) = 0,(1). (B.3)
From (B.1)-(B.3) we get:
Up(0) =Ho(O) vy (0) (14 0,(1)), 6€0O, (B.4)

where process v (0) is defined by:
, 0e€0o, (B.5)

matrix Hy(0) is given by:

Idg 0 0
H 9 = ! * 9 9 @7
0( ) ( 0 (zO) IdK2+L - f(:lrg) E [gQ (0)“%0} ) <

K; := dim(g1), K2 := dim(g2) and the o0,(1) term is uniform in § € ©. The following Lemma
shows that process vk (0) is asymptotically equivalent to a zero-mean empirical process plus a bias
function.

Lemma B.1: Under Assumptions A.4, A.6, A.8, A.9 and A.12:

\/The (E[p \im Thg?m M2
( T J: o= 80(0)))) ) TTwm< A (wo; 0) >+0(1), uniformly in 6 € ©.

/Thd. ( { } B m! A™ f(x0)
(B.6)
Proof: From a standard bias expansion and Assumption A.8, we have
~ 1 X — Zo

EROL-00) = 28 ook ()| =0 0) = [To(an + hrust) - olaos 0] K (wha
T
hm

= HT' /VO‘ (zo + hrw; 0) u® K (u)du,

alal=

where @ is an intermediary point (depending on ). Since V®¢ is uniformly continuous on X' x© (As-
sumption A.12), and © is compact (Assumption A.4), we have that [ V¥ (zg + hra; 0) u® K (u)du
converges to V¢ (20;0) [u®K (u)du, uniformly in 6 € O, for any a € N? with |a| = m. A similar

argument applies for E [f (900)} — f (xo). Since K is a product kernel of order m (Assumption A.8),

the conclusion follows.

From (B.4)-(B.6) we deduce:
Ur(0) = [Ho (0) vy (0) +b(0) +0o(1)] (1 +0,(1)), 0€0O, (B.7)

uniformly in § € ©, where the empirical process v () is defined as:

(E!Jl Egl(e)])
vr@)=| JTH@O)-ERO) |, 6€o
VT (F o) = B[ w0)])



Lemma A.1 follows if the empirical process v (0) converges weakly:
vr(0) = v (), 6€0O, (B.8)

where v () is a Gaussian process on © with covariance operator:

50(977') 0 0
Lor) = | 0 wf(@o)E(g50)g5(n) [x0) wf(w) E(giO)o) |, 6.reo,
0 w?f (20) E (g3(r) o) w?f (o)

and: -
So(0,7)= Y Covlgr (X0, Y2;0), 91 (Xi i, Y5 7).
k=—oc0

To prove the weak convergence (B.8) of empirical process v (6), let us note that:

T
vr(0) =T72Y " (v.0(0) — Efoy7(0)]), 0€0O,

t=1

where

’ _ - ’ X —x /
) = (0 (X Yis0) 7 (o) 6 (F20))
and g2 denotes function go = (g;', 1) . From Theorem 10.2 of Pollard (1990), the weak convergence
of v (6) to Gaussian process v (0) over © C R? compact is implied by the conditions i) and ii) of

Proposition B.2 below.

Proposition B.2: The following conditions are satisfied:

1) Under Assumptions A.1, A.5-A.15, for any 01, ...,0, € R, n € N, the vector (VT(Hl)/, cey uT(en)/)

is asymptotically normally distributed with mean zero, and asymptotic variance-covariance matrix
such that:
AsCov (vp(0;),vr(0;)) =T (0:,6;), i,j=1,..,n

it) Under Assumptions A.4, A.5, A.8-A.9 and A.16-A.18, the empirical process v (0) is stochasti-
cally equicontinuous, that is, Ve, >0 36 > 0 :

lim sup P* sup lvr(0) —ve(D)|| >n| <e,
T—o00 0,7€0:d(0,7)<d

where d(.,.) is a metric on ©, and P* denotes the outer probability.

These conditions imply the weak convergence of empirical process v (and, thus, the weak
convergence of Up). Conditions i) and ii) of the previous proposition are verified below in Section
B.1.2 and B.1.3, respectively.

B.1.2 Finite dimensional convergence
To prove condition i) of Proposition B.2, we use Cramer-Wold device, and follow an approach similar

to Bosq (1998), Theorem 2.3, 3.4, and Tenreiro (1995), Theorem 1.3.10. Let A = (A;,...,A;l) €



RMEK1+K2+L+1) “and define the zero-mean triangular array:

n 1 ,
Zt,T = Z 7)\2 (Ut,T (91) — E ['Ut,T (91)]), t S T, T 2 1.
i=1 \/T

Then, we can write:
T
(VT(el)/7 ceey I/T(en)/) A= Z Zt,T-
t=1

Let m = my and g = qr be sequences of integer numbers such that:
my =0 (T, qr=0(T", 0<b<a<l,

and let us define k = kr = |T/(mr + gr)]. In particular kp = O (T'~). Let us divide the sample
into 2k+1 blocks, whose length is equal to m for blocks 1, 3, ..., 2k—1, equal to ¢ for blocks 2,4, ..., 2k,
and equal to T' — k(m + q) for the last block. More specifically, define:

Yir = Zir+..+Znr, Yll,T =Zm1, T+ o+ Znq,1s
Yor = Zmigr1,7+ o+ Zomtq,1, YQ,,T = Zom+4q+1,T + - + Zomy2q,Ts
Yer = Ze—1v)(mro+1, 7+ + Zimr-1)a. 7y Yo = Zkma(k—1)g+1,T T - + Zkm+kq,T-

Thus, we can write:

k k
(VT(el)/,...,yT(en)’) A= "Vir + > Y+ ¥Y (B.9)
=1 =1

where Y/ = Zi(m+q)+1,7 + -+ Zr . Then, we will prove that the first term in the decomposition
is asymptotically normal, and that the last two terms are negligible.

a) The first term is asymptotically normal

Lemma B.3: Under Assumptions A.1, A.5-A.9, A.11-A.1}, there exist i.i.d. random variables
Y =1, k, such that Vg £ Yip, L= 1,..k, and 35, Y — S, Yir = 0,(1).

1/2
Proof: Let ¢y := F [(YlT)z] and 0 < £, < c¢p. From Bradley’s Lemma [e.g. Bosq (1998),

Lemma 1.2], there exist i.i.d. random variables Y'r, L =1,...,k, such that ¥, 4 Yir,l=1,..k,
and:
P (|Ylj<T - }/laTi > ET) <1 (CT/ET)2/5 Q@ (QT)4/5 s l= 17 ) k7

’

where « (.) are the mixing coefficients of process (X;,Yt/) . It will be proved below (see Lemma

B.4) that ¢p = O ((m/T)l/Q). Let € > 0 be given and let £, :=¢/kr =0 ((m/T)l/Q). Thus, we
have: Vs
P(|Yir = Yir| >¢e/kr) =0 (kT/ (m/T)l/5a(QT)4/5> ;o l=1k

o)

We deduce:

k k
P ( ZYI*T - ZYZ,T
=1 =1

IN

k k
P (zma Vil ) <3P (¥ip - Vir| > </kn)
=1

=1
= 0 (K m/1)a(ar)*”?).



Since « (.) has geometric decay by Assumption A.5, O ( kr/® (m /T)l/5 (qT)4/5> = 0(1). The proof

is concluded. n

Thus, we have:
k k
S Vir =Y Vir+o,(1). (B.10)
1= 1=1

The asymptotic normality of Zle Y

Z OU)

where 02 > 0 is given below, is proved by using Liapunov CLT [Billingsley (1965)]. For this purpose

we show that: A i
S E|(¥)] =t Y E|(n)] -~
=1 =1

These two conditions are verified below in Lemma B.4 and Lemma B.5, respectively.

Lemma B.4: Under Assumptions A.1, A.5-A.9 and A.11-A.1}, we have:

k

S B |(vin)*] - s

=1

where 3 = (X;5) is the matriz with blocks:

s Yoo oo Cov(gr (Xe,Y450:), 91 (Xi—k, Yiek; 65)) 0
v 0 W f (w0) B |G (Yi:0:) 52 (V15 05) 1X1 = o]
Proof: We have:
k m 1 ,
> E [ Y/'r) ] = KV I[Y p] =kV ZZAMT(el)}
=1 oo v
km o~ 1 & 1 <
= TZ )\iCO’U ?ZU@T (91),ﬁ2vt¢ (HJ) )\J
i,j=1 t=1 t=1

Since km/T — 1, it is sufficient to prove that:

=2 (09, 2= ur(0)

zT,ij = Cov

Let us write:



where:

1 & 1 &
Sty = Cov (Zgl (XuY};ei)aiZm (Xt7)/;§;0j)> :
’ m t=1 \/m t=1
sz = 32 _— ¢ Ly X,V 0;) — 3 o425, (v, 0,) I (=20
T,ij = T,ij = ov 7ngl( ty Lty l>’7mz T 92< ty j) hT 5
t=1 t=1
I =, /e Xt — o 1 & a/2; Xt — o
$22 — 125 (Y 0:) K —S h; Y 0.) K
T,y Cov (\/mtz_;hT g2( t,0 ) ( hT ) ) \/7%; ( t) ) hT ’

and derive the limit of each term for T" — oo.

i) For ©7!;; we have:

m—1
SIL, = Cou (gr (Xe, Vi 00) g0 (X Vi 0)) + 3 (1 - ") Cou (g1 (X0, Yis6:) . gn (X1, Yi1:6,))
I:|l|=1
From Assumption A.11 and Cauchy-Schwarz inequality, we get:
E [llgr (Xe, Y5 05)["] < o0

for 7 > 2. Then, by Davidov inequality [Bosq (1998), Corollary 1.1] and Assumption A.5, we get:
F1l/7 1/7
|Cov (g1 (X, Ys:0i), 91 (Xe—1,Ye—1365))| = O (PlE llgr (Xe, Yas 07T E [llgn (X4, Y2;0,)]] )
for some 0 < p < 1. Thus, the cross-autocovariances are summable, and:
Jim X3 = l_Z Cov (g1 (X¢,Y250:) . 91 (Xi—1,Yi1505)) -

ii) Let us now consider Z%Qij. We have:

B X, — ~ X, —
S = Cov (th/2§2 (Yt;Gi)K<t xo),h V25, (Vi;0, )K( t xo))
hT hT

+ 5 (1= 1) o (1 0 1 (K 2) 2 0 1 (Rt

1:)i|=1

Lo, + Z < >Fm] (B.11)

L:]l]=1

Let us first consider the covariance term I'gp ;. The functions E [g2 (Y3;0,) | X = .] f(.) and
E [Eg (Y3 0:) g2 (Y3 6 ) | X = ] f(.) are Lebesgue-integrable. Indeed, by applying twice Cauchy-

Schwarz inequality, we get:

/ HE [95‘ (Yis0) g5 (Yism) |X, = x] H f(a)de

IN

[ B [los o 1xe = 2] 7 B [ls (s = 0] f@yas

(/2 s cnon =<))o 012 1, = ] o)

= 2[lgs 0] [l 0] < o0

1/2

IN



by Assumption A.11, and similarly:
. . 9 1/2
[ 18165 (01X, = sl f@)de < B [l (is0)] " < oc.

Since the functions E [z (Vi 0;) |X; = .] f(.) and E [gZ (Ye:0:) 52 (Ye: 0;) | Xy = } £(.) are Lebesgue-
integrable and continuous at x = z¢ (Assumption A.12-A.13), we can apply Bochner’s Lemma [e.g.
Bosq, Lecoutre (1987), p.61] to deduce that:

- X, —
oy (552

E g2 (Yi;05) | Xy = x0] f (w0) + o(1),

h;'E

2
2 (Yist0) 3 (visty) 1 (20 ] = W?B [ (%200 2 (Y0, 10 = 0] £ (z0) + o(L)

Then:

_ ~ _ ’ X, — 20\ >
Tori; = hpE|Ge (Yi;0:) G2 (Y23 0;) K(thTo> +O(h%)

= w?f (@0) B [52 (Y33 0) 32 (Yi305) | X: = @) +0(1).

Let us now consider the term Z;n‘l_lil (1 — %) I';7,;; in equation (B.11). By repeating the argument

used by Bosq (1998), proof of Theorem 2.3, in the case of density estimator, it is possible to prove
that Assumptions A.5-A.9, A.11 and A.14 imply (see Section B.1.4 for the detailed derivation):

m—1 |Z|
Z ( — m> FlT,ij = 0(1) .
i:|l|=1

Finally, we conclude:

lim $7%; = w?f (z0) B [ﬁz (Yi30:) g2 (Y3;05) |Xe = 330} :

T—o0

iii) Finally, let us consider ZlT%ij. By a similar argument as for E%%ij, the cross-terms are negligible.
Thus, using Assumptions A.1, A.8, A.9, A.13 and Bochner’s Lemma, we get:

—d/2~ Xi—x
E%ij = Cov (gl (X4, Y3 0:) ,th/292 (Yi;6;) K ( thT 0)) +o0(1)
_ _ , X, —
= h'’E {91 (X, Y3:0:) g2 (Y43 0;) K( thT 0)} +0o(1)
d/2 2 ~ ’
= hy wf(z0)E {91 (X4, Y3:05) g2 (Y33 0;) | Xy = xo} +0(1)
= o(1).
The proof is concluded. m

Lemma B.5: Under the assumptions of Lemma B.J and Assumption A.15, the Liapunov condition

holds:
k

> E [(YlfT)g} —0.

=1



Proof: By Cauchy-Schwarz we have:

k 3 3 41\ 1/2 27\ /2
S E[vin)] = kB [(rin)] < (kB [(in)"]) T (RE[(0)?])
1=1
Since kE [(ijT)ﬂ = O(1) by Lemma B.4, it is sufficient to prove:

kE [(Y;ﬁT)ﬂ = o(1).

Since:

m

1

T (ver ( E [ver (0:)])

t=1

(kE[(YlT ])1 <Z||)\ I (kE

we have to show:

4
1 m
Z ver ( E v (0)] | =o0(1), Vi=1,...,n. (B.12)
T t=1
We have:
Z ver ( E [ver (0:)]) ZVth < *E (Z |Vth||> )
T t=1 t=1
(B.13)
where Vip; := vir (6;) — E [vgr (0;)]. Moreover,
m 4
B ( ) = DB [IVirall]
t=1 t
+ 3 B[ WVarrall Vearall (Ve ]
t1#t2
> B [IVeral® WVearall 1 Vearil]
t1F£taFts
+ > EVarill IVearil IVasrall Vasral]l,  (B.14)
t1FAtaFt3F£ts

where summations are over 1,...,m. Let us now derive the orders of the different terms. Since:
Vi, loer (00)]] + E [llver (0:)11],
—d/2 ~ Xt — w0
lver (0[] < llgr (Xe, Yis 05) || + by ™" g2 (Ye; 0:) || | K Ior
E [[[vgr (04)]]] 0(1),

and by Assumption A.11, the leading terms are either of order O(1) or the terms involving the
highest power of hy-*/? [|ga (Y43 6:) | | K (X¢ — wo/hr)|.

IN

N

)




i) We have:

B[ IViral'] = C><h;2dE

mocan'x (%))
el

K(&Mfﬁﬂ/EM@mwmﬂmm+m4fmﬁmwmemmu

- 0@?%m&EhmMﬂm4

From Assumption A.15:

@%D@mwm4

Thus, we get:
E [|Verall'] = 0 (h7%). (B.15)
ii) We have:

_ ~ - Xy, — Xy, —
B [Warall Wiarll] = 0 (i U1 B |1 0001 1 i) |1 (220 )| | (T2 ) ).

hT hr
From Assumption A.15:

- ~ Xy, —x X, —x
he® B (G2 (Yay; 011 G2 (Yay; 00)|| | B | =2— )| | K [ =2—=
hr hr

B /E [”52 (Y25 00)11% 192 (Ve 05)[| | X, = o + hru, Xe, = 20 + hT”] ftr.0 (20 + hru, xo + hrv) | K (u) K (v)| dudv
— 00)

Thus, we get:
E [Vl Vil = 0.(1). (B.16)

iii) Similarly, we have:

E [WVaral Waral?] = 0Q), i #ta,
E[Varall? Vil IViarill] = 000, 11 #t2 £ 85,
E Vil Varall Weszall IVesral] = O(1),  ta #t2 # b # ta.

(B.17)
Therefore, from (B.13)-(B.17), we get:

since km/T — 1, m/T — 0, Th%: — oco. (B.12) follows if we choose m such that m — oo and
m3/T — 0. [ |

% Z (ver (0:) — E [ver (65)])

t=1

kE

~

4} = 0<£(thd+m4)>

From (B.10), Lemma B.4 and Lemma B.5 we conclude that:

Xk:yw “L N (0,X30).

=1



b) The last two terms of the decomposition (B.9) are negligible

Lemma B.6: Under the assumptions of Lemma B./,

k
ZYl,T = op(1), Y7 = 0,(1).
=1

Proof: The proof is similar to the proof of Theorem 1.3.10 in Tenreiro (1995), p. 14.
i) We have:

) I{(m+q) no 1 l(m+q) n.,
Y= Yo Zir=>_ N\ W > (o1, (0:) = Eforr 0)) | =Y NiUim-
t=Im+(1—1)g+1 =1 t=Ilm+(l—1)q+1 =1

Thus
k 271/2 n k 271/2 n k 271/2
E (ZYZ,T> =’ (Z X; ( UlT,i)> <STINIE | Ui
1=1 i=1 1=1 i=1 1=1
Therefore, it is sufficient to prove:
i 2
E||> Umi| | =o(1), Vi (B.18)
1=1
We have:
k 2 k—1
E | Uil | = kE [UniUra) + > (= 1sDE (Ui Uiorii)
=1 |s]=1
and:
kE {U’ U } KTV (U] = My v iiv (0:) =@Tr(i )
IT,iYITi T T \/atZI t, T \Vq = T Ty | -

From the proof of Lemma B.4, ET” = O(1). Since kq/T = o(1), we get:

kE {UlIT’iUlT,i] = o(1).

Moreover,
k—1 , k—1 ,
> k= 1sDE (Uirlisra)| < kD |B (Uil
|s|]=1 |s|]=1
< [P (v @0 v 00) = B vr (09) B (v (0
k o0
< S N0 (o 03) v GO

s=1

10



Using the same argument as in the proof of Lemma B.4 (see also Section B.1.4), we can show that
> eZ1 ICov (v (8:) , ve—sz (6:))]] < oo. Thus,

S

-1
(k= sDE (UpUi-ori) = o(1).
1

s

Then (B.18) follows.
ii) We have:

T

n T n
vi= S Zr=> A % S (or (0) - Elor 09])] = 3 AU,
i=1 i=1

t=k(m+q)+1 t=k(m+q)+1

and:
1/2 n

()] < mae ]

Therefore, it is sufficient to prove:

E[|UrlP] =o(1), ¥i.
We have:
T—k(m+q)
E U IU il = |4 v Hi - 0,
UraU] T —_ o )
and the proof is concluded. |

B.1.3 Stochastic equicontinuity

Let us now prove the stochastic equicontinuity of empirical process v () [condition ii) in Proposition
B.2] along the lines of Theorem 1 in Andrews (1991). Let us introduce the matrix-valued triangular
array:

Zy 0
Wir = _ . L t<T, T>1,
6T 0 hi?K (thiTo) Idwy 111

where Z; denotes the instrument. We can write:
Ut, T (9) = Wt,Tw (}/ta 0) B 0 € @a

where

’

Y (y;0) = (g (:0) .3 (y;9)/) , feo.

Let {wj 1] € N} be the basis of L?(Fy) introduced in Assumption A.16. Without loss of generality,

we can set 1, (y) = 1. Thus, from Assumption A.16, there exist sequences {c;‘ 0):j€ N}, 0 €O,
of vector coefficients such that:

oo

V0 = ¢ 0)v; (v), ye,
j=1

11



for any 6 € ©, where

Thus, we have:

vr(0) —vr (1) = Z ( 1 Z Wiry; (Vi) — E [Wt)ij (Yt)])> [c;“ (0) — ;(Tﬂ

Jj=1 Tt:l
: Z( ”22?@”) ¢} (0) =< (7]
j=1

where X 47 := Wy r¢; W) - F [Wt7T’(/Jj (Y})] , and:

T
1/2 Z Xj,tT

vz () —vr (T)|? < Z)\

z_: IORAC]

(B.19)
Let d(.,.) denote the metric on O defined by:
1/2
* * 2
d@,7)= (>l O —c ()] , 0,7€0.
j=1
For any 7,6 > 0, we have:
lim sup P* sup vz (0) —vr (7)]| > 77]
T—o0 0,7€0: d(0,7)<d
< — hm sup E* sup lvr (0) —vr (7')”2
77 T—o00 0,7€0: d(0,7)<d
1 — 1 3 - 2
2
S - sup _ C*f 0 — Cyf T hm sup )\ E T_1/2 X T 9
n* \ o,rco: d(Q,T)S(Sj; A ®) =@ _’OO]'; ! ; t
(B.20)
using (B.19). Since:
2 T T '

E

- <T—1/2zxm) (rwzxﬂ)
t=1 t=1
S
TT (E |:Xj7tTXj,tT:|) + Z <1 - T> Tr (E |:Xj7tTXj,t—k‘7T:|) ’
k=1

T
T—1/2 ZX’,tT
t=1

(B.21)
we can study the asymptotic behaviour of the different terms in the decomposition.
Lemma B.7: Under Assumptions A.5, A.8-A.9 and A.17-A.18,
E XX | = (V[thj(m] X )—l—u‘
S 0 wB [y ()Xo = @] feo)dicynin )T
E[ XX x| = ( Cov (204, (Yt)(a)thk% (Ye-s)) ’ ) tujpr, k£,

12



where V [Zyp; (V)] = E [tht’zpj (Yt)?} —E[Zw, (V)] B [Z; (V)] , Cov (Zb; (V) , Zu b (i i) =
B[22, 0, (Y, (Viw)| = E [Ze; ()] B [Ze s, (Via)] , and:

T
sup [ujrl =0 (1), sup)_ fujur] =o(1).
J —

Proof: i) We have:
] - B[220, (0)°] = B [Ze; (V)] B [Z; (V0] 0
S 0 hV [y ) K (%5522) | Tdicynin )

Let us consider the lower right block. The term:

Bt [wj (Vi) K (th‘T”:O)] - /E [0, (Y1) | X, = o + hru] f (2o + hru) K (u)du,

is bounded uniformly in j € N from Assumption A.17 and the Cauchy-Schwartz inequality. Moreover,
from standard bias expansion and Assumption A.17:

X — w0

2
e v 007 K (S )]:/ b+ hr) K (0 du = P 0) + O (sup [ D% | 12 ).
J

Thus:
Xt — X

h7dv [% (}Q)K( I

)} = wE {zﬂj (Y;:)? | X; = xo} Flzo) + o(1),

uniformly in j € N.

ii) We have:
! 9119%1] 0
E [Xj,tTXj,tfkT} = ( 0" oz )
where:
O, = E[ZZ; ()%, G| - B [Zw; )] B [Ze; (Vis)]
Qi%, j = thCOU ,(/}j (5/"4) K tio 7¢j (}/tfk) K M IdKerLJrl.
! hT hT

Let us consider QiQT ;- We can use the same arguments as in the proof of Lemma B.4 to get bounds
uniform in j € N from Assumptions A.5, A.8, A.9 and A.18. Thus,

T-1

>

k=1

ntCou v, 06 K (20 ), ) & (T2 ) o),

uniformly in j € N. The proof is concluded. |
From Davidov inequality, we have:

|Cov (Zeth; (Vi) , Zoitb,; (Yii)|| < const - p°E [|| 2, (V)|[1]7" (B.22)
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uniformly in j € N| for some 0 < p < 1 and r > 2 as in Assumption A.16. Thus, from Lemma B.7
and equations (B.21), (B.22) we get:

lim sup Z)\jE [

T—o0 j=1

2

T
T71/2 Z Xj,tT
t=1

[e.9]

< Y n{rr v [z, ) + CE ()| 20, )]

Jj=1

M B [0, () X =) }

for some constants C7,Cy < oo. Now:

Tr (V (2o, ))) = Tr (B [ 2200, (0)°]) = Tr (B [Ze; (0)] B [Ze; ()] ) -

Since:

Tr (B[220, %)?]) = E [ 20, 03]

and: ,
T (B [Zew; ()] B [Zew; ()] ) = | B [, 0| < B [ 20y (0)|]

we have:
Tr (V [Zo; (10)]) < 2B |20 0)||*] < 2B (1|22 (1) 17"

|

for some constants Cs, Cy < 0o from Assumption A.16. We deduce from (B.20):

Thus, we get:

lim sup Z)\jE |:

T—o00 =1

IN

T
T71/2 Z Xj,tT
t=1

Cs iAj (B 1Z00; GO + B [y (007 1%, = o] }

= (4 < x,

: . 1 o L. \
lim sup P sup lvr (8) — vr (7)|| > 7]] < 0477—2 ( sup Z - ||Cj ) —c; (7—)||2) .

T—o0

9.7€0: d(6,r)<5 6,7€0: d(6,7)<5 521 Aj

The conclusion follows from:

o0

. Los * -
I e pea 2 16O~ O =0

which is proved by Andrews (1991), Equation (2.6).

B.1.4 Bounds on covariance terms

In this section we derive a bound for the covariance term Zﬁl—\il (1 - Lﬁl—l) Ty i; in equation (B.11).
This is done by deriving two bounds for the covariance terms. i) For this purpose, let us define

functions:

&

®

S~—
|

Bl (Yii6:) X = a] f(x),
E (52 (Yi30:) 32 (Y1 05) 1X, = 2, Xo 1 = €] frai(@.€) .

Sy
<
—
&
i
~—
Il

14



We can write:

Cov (52 (¥::6,) <

s oo
- [ (® )dm/@(sm(f;f)df

= hyt <//¢l,ij (o + hru, o + hrv) K (u) K (v) dudv

_ / 6 (20 + hru) K (u) du / 6 (0 + hw) K (v) dv) .

From Assumptions A.6-A.7 and A.14, and by the Cauchy-Schwartz inequality, function ¢; and ¢, ;;
are bounded uniformly in [ € N. We get:

ICrrsl < (00 o1, + Dol ;.. ) 112 1 = G (B.23)

ii) From the strong mixing property (Assumption A.5) and Davidov inequality:

< const-pl - B

~ X — ~ X
Cov | g2 (Y;0;) K t — 20 ,Go (Yip30;) K At—1 — o
hT hT

1/7
- X —x - X,
g2 (Y4;0;) K <thT0> 92 (Yt—l§0j)K< = >H ]

E
for some 0 < p < 1 and 7 > 2. Moreover we have:

T

E

~ Xi—x r 7 ~ 7 7
g2 (Yi;0:) K (thTO>H 1 <KL E[lIg2 (Ye: 00)1"] = 1Kl ¢ < oo,

from Assumptions A.8 and A.11. We deduce:
ITur il < Cap'hz?, (B.24)

for some constant Co < oo (that depends on ¢ and j).
Let us now define Ly = Lh;d/Qj — 00. From (B.23) and (B.24) we have:

m—1 m—1
1

< iy

> (1= ey < 2 > il

l:|l|=1 =1
< <ZC1hd + Z C'zph )

I=Lr+1
d 02 —d Lr+1

< const (I/LT + LQTpLT“) — 0.

We deduce Zﬁl_lil (1 - %) Lir,ij = o(1).
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B.2 Proof of consistency

In this Section we prove that P [H@; — 05

25} — 0, as T — oo, for any ¢ > 0. We have:

Pllor -6 =] < P[ in Qr(07) < Qr (9’;)]
0*cOxB:||0*—0f||>¢e
< P inf Qr(0") < Qr (93)] . (B.25)
0*cOXB:||0*—0% || >

Let us derive the orders of the RHS term and the LHS term inside the probability. Write the criterion
as:

’

Qr (07) = [¥r(0) + mr(07)] Q[¥r(0) +mr(07)], 6" €O xB. (B.26)
Then, since Y7 (0y) = Op(1) from Lemma A.1, and my(0;) = 0, we get:
Qr (05) = Op(1). (B.27)
Let us now derive the order of inf Qr (0"). From Lemma A.1 and the Continuous
0*cOxB:||0*—0f||>¢e

Mapping Theorem [CMT, Billingsley (1968)], we have:

sup Ur(0) QUr(0) = O,(1),
6cO
sup mp(0°) QUL(0) = 0,(VT).
0*cOxB

From (B.26) it follows that:
Qr (67) = mr(6%) Qmr (67) + O,(VT),

uniformly in 6* € © x B. Now, let A > 0 be the smallest eigenvalue of 2 (Assumption A.20). We
get:

mp (%) Qmp(6%)
T2 (1B [g1 (Y, X )] + i 1B [g2 (i3 0)|Xe = wo]l” +hH 1| [a (Vi30) | X, = o] — B

v

V

T (1B g1 (Vi X 011 + |1 [g2 (¥is0) [ Xe = wolll® + 1B a (¥5:0) | X, = 2] = B

for T large, and any 0" € © x B. From continuity of moment functions (Assumption A.19), com-
pactness of © x B (Assumption A.4) and global identification (Assumption A.2), we have:

inf mr(0%) Qmp(6*) > CThe.,
0* €O x B:||0* -5 || >¢

for a constant C' = C. > 0. From bandwidth Assumption A.9, we have VT = o (Th%). Thus, we
get:

1
inf Qr (6*) > ~CTh, (B.28)
6*€Ox B:||6* 65 ||>¢ 2

with probability approching 1. Since Th% — oo from Assumption A.9, and by using (B.25), (B.27)
and (B.28), the conclusion follows.
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B.3 Proof of Lemma A.2

We use the following Lemma.

Lemma B.8: Under Assumptions A.1-A.20 and A.24: Hb\*T — 605

_o, <1/ Tth>.

Proof: We follow the approach in the proof of Lemma Al in Stock, Wright (2000). Since 9; is the
minimizer of Q1 we have:

/

Qr (07) - Qr (6) = |02 (0r) + me@r)] @ [02@r) +mr@r)] - vr(00) QU2 (8) <0,

that is,
mT(GT) QmT(GT) + 2mT(0T) Q\I’T(HT) + dl,T <0,
where dy 7 = Ur(07) QU (07) — Ur(6y) QU1 (). By using:

2

mr(0r) mr(@r) = A |ma@n)|
e (07) Q0 (Or) >~ [me @) ||0wr @)
we deduce:
[me @) — 20 [ @) + s < 0, (B.29)
where:

do.p = HQ\IJT(ET)H /N and  dsg=dip/A= [\IJT@T)/Q\I/T(@T) - @T(ao)’quT(ao)] /.

Inequality (B.29) implies:
o 1/2
HmT(QT)H S d27T + (d%T — d37T) / .

Let us now derive the order of the RHS. From Lemma A.1 and CMT we have:

IA

da,r sup [QWr(0)[| /A = Op (1),
(2O

dsr| < 2sup U2 (0) QU (0)| /A = 0, (1).
S

We get ”mT(E*T)H = Op (1) . Define:
G (0") = (El91(X0 Y 0)]  Eloa(Vis O], E [a (Vis0) — Blao] ),

for 0* € ©x B. Since |mr(0%)|> > Th |G (8)])%, 8" € Ox B, we deduce: HG(@’;)H =0, <1/ Th%) .
By the mean-value theorem we can write ':

| e @) (97 - 03)

‘:op (1/ Thﬁﬁ),

IMore precisely, the mean-value theorem is applied separately for any component of function G, and the interme-
. . ¥ .
diary point 01 can differ across components.
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where 5; is between E*T and 6. Since @; converges to 0; by consistency (Section B.2), and
8G/80*/ (™) is continuous by Assumption A.24, we have:

0G ~* oG | .,

o (07) = 5 (05),

00 00
where 8G/89*I (05) has full rank, by the local identification condition in Assumption A.3. The
conclusion follows. H

Let us now prove Lemma A.2. From Lemma B.8, it is enough to show that plim7_, % (@i}) Ry =

Jo, for any 07 such that | 07 — HSH =0, (1/ Thf}). We have:

o B3 (0r)| Rz 0B |9 (0r)| Rez 0
%(é;) Rr=| n{*E|2% (0r)|wo| Riz  E |25 (0r) lro| Raz 0

(6r)
h;lw/QE' 8a/ (éT) ‘Jio_ R1,Z E geal (éT) |.’170 R27Z _IdL

Thus, we have to show:

)y E {893 (eT): LR {agl (90)} ,

a0 o6’
o 5995 2 } » {593 ]
E 7 0 E ’ 9 )
ii) {39 ( T) |zg| — 20 (o) [0

i) hp?E BZ? (F)T)] Ryz —50.

Let us now prove these results.
i) From Assumptions A.4, A.5, A.21 and A.22, the ULLN [see Potscher, Prucha (1989), Corollary

1] implies that E [gg} (9)} 2 E [gg} (9)} uniformly in § € ©. Moreover, E [gg} (9)} is continuous

w.r.t. # by Assumption A.24. Then i) follows.
ii) Let g3 ; denote the i-th component of function g3, for i = 1, , K + L. We have:

E [aé’i’i (QT)|$O} -5 [32? (90)|$0:| +E gzgf (éT)|x0] (07 — 60),
where 07 is between 67 and 6. Under Assumptions A.5-A.9 and A.23 one can show that E [agi’i (6o) |m0] LR
E [8;%1’ (go)xo} and E 32%593 (éT)|m0] = 0,(1). Then ii) follows.
iii) Let ¢1,; denote the i-th component of function g1, i =1, ..., K;. We have:
B2 {aag;;" (F)T)} Ryz = Tlh% VTE {38901;1- (90)] Roz + \/%h%\/ITdT (07 — 00) E BZ?J (éT)] Ro.z,

where 07 is between 67 and 6. Let us derive the orders of the two terms in the RHS of (B.30). For
the first one:

~ 0914 1 o 991,i
\/TE[ (0 }R =—— (Y, X4300) Ra, z,
80 (0) 2,7 \/T; 80 (t t O) 2,7
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where F [89171-/89/ (Y, X4500) R27z} = 0. From Assumptions A.5 and A.22, the CLT for mixing
processes [e.g. Herrndorf (1984), Corollary 1] implies:

~ [0g1.4
\/TE[ 91, (90)} Raz = O,(1).
ol
Let us now consider the second term in (B.30). From Assumptions A.4, A.5, A.22 and A.24, the

ULLN implies:
~[0%91. (5 }
E =0 =0,(1).
{aeae (6r)] = 00 1)

Thus, from (B.30) we get:

—aon[Ogrs -
th/QE[ g;’ (eT)} Roz =

o, -1, 1 (1)
p T - = Op I
/Th% \/Th%

from bandwidth condition in Assumption A.9. The proof is concluded.

B.4 Proof of Corollary 6

If the bandwidth is such that ¢ = limThZ"" = 0, from (A.6) the optimal weighting matrix
for given instrument is 2 = Vofl. The proof that Z* = E (88% (Y3 6p) \X) W (X) is still an op-

timal instrument is similar to the proof of Proposition 3, replacing M (Z,¢,a) with V (Z,a) =
2

qu()l'o)

’ ’ -1
parametric efficiency bound is B (a, z¢) = #io)e (Ja‘ DI ) e. Corollary 6 follows from the

e (J§ 250" o, Z)fl e, which is the asymptotic variance of 3p. Thus, the bias-free kernel non-

block inversion formula.

B.5 Proof of Lemma A.3

B.5.1 Asymptotic expansion of the concentrated objective function

Since the conditional moment restrictions are satisfied asymptotically, we have A B 0, when
T — oo. Therefore, we can consider the second-order asymptotic expansion of function £5.(0, ) in
a neighbourhood of § = 0y, A = 0. Let us first derive the expansion w.r.t. \. We have:

logE (exp )\,92(9)|x0) ~ log [1 +NE (92(0)|z0) + %)\/E (92(0)92(9)/@0) )\]

’

N E (ga(0)10) + 33V (92(0) ) A

12

Therefore, we can asymptotically concentrate w.r.t. A:
A== =V (g2(6) o) ™" E (g2(0)|20) (B.31)

and the asymptotic expansion of the concentrated objective function becomes:

T
£5:0) = 2 B (9@)le) ¥ (9(@)le) ™ B (9(O)l) + 5H4E (20)lz0) T (92(6)lo) ™ B (92(6)lo).
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Criterion £5.(6) multiplied by T' is asymptotically equivalent to the criterion of the kernel moment
estimator (see Definition 4) with optimal instrument and weighting matrix.
Let us now consider the expansion around 6 = ,. We have:

Jg
00’

and similarly for the expectations of function go. Thus, we get:

Z{ (g)z) +E<§9 |1:t) (000)}/‘/(9xt)_l{E(g|xt)+E<§§|xt) (990)}
w5t { B anlan) + £ (52 10 ) 0 —90)}/ V(az [ 20) " { B anlon) + B (52 o) (0 - 60}

where functions g, go are evaluated at 6.

~

E (9(0)]2:) = B (g(00) 1) + E ( (6) | x) 000, V(@) =V (g(0) | ).

B.5.2 Asymptotic expansion of 5T

We have: 9 o
g g * *
B (55 120) 0~ 00) =5 (25 100 ) Ra (75 = ni0)
We get:
1 dg , = dg
£rr) = 7Y {Blalo+ B (ke ) B (i i) | V (ol {B alen) + £ (55 ) Ba o~ 1) |

t=1

9 L. 9o '
+5 hT { (92]0) + E (a‘g; |330) Ri(nf—mio) +E (80 550) Ry (5 — 5 0)}

(- g 0go . x
V (g2|z0) ! {E(92|$0) +E (89 |$U> Ry ( - 0) +FE (89 | 0) Ry (772 - 772,0)} .

The asymptotic expansion of 7] 7 is obtained from the maximization of the first term in L% (n*),
since the contribution of the second term is asymptotically negligible. We get:

1 & g’ Jdg -
T2 RE <%x> Vgl E (39 ) Ry
T ’
1 / 0 _ -~
2 B (ai,ws) Vgl ™ [ alysbn)Fluledy

, -1
dg —1 dg
E (80 |37t> V(gle,)  E (80 ) R1>

’

~\/T//R1E (%%m) V (glx) ™" gy; 00) f(y, x)dwdy

VT (ﬁIT - UT,O) = =

Thus:

\/T (ﬁTT - 771‘,0)

1R
|
—
=
=

R
|
/
=
=




The bias term induced by the kernel estimator is asymptotically negligible since Thh™™ = o(1).
The asymptotic expansion of ﬁ;T can be deduced from the maximization of the second component
of £L5(n*). Estimator 75 7 converges at a nonparametric rate, and terms involving (77 7 — 7} ) can

be neglected. We get:
| g, - d
RyE (;;VCO) V (g2lz0) " E ( g?|$0> Ry

\/Th% (%,T—W;o) = = a0
, dq. _ ~
Ry B (;;%) V (galwo) ™ \/Th%/gz(y;%)f(ylwo)dy-

Then, point i) of Lemma A.3 is proved.

B.5.3 Asymptotic expansion of /)\\T

We have from (B.31):

~

N =V (0:0n)le0) B (9200)]e0) =~V (02000)l0) " B (92(0r) o).

Moreover,

R

E (92(5T)|xo) /gz(y; 00) f(ylzo)dy + E (ZZ?I%) (5T - 90)

12

iy 0 sk *
/gz(y; 00)f(ylzo)dy + E ($|x0> Ry (5.0 — 5,0)

(since the contribution of 77} - — 7} ¢ is asymptotically negligible)

(1d — M) / 02(; 60) Fly]zo)dy,

12

where M is the matrix in (A.19). Then:

~

R~V (ga(60) o)~ (Id — M) / 92y 60) Fylzo)dy,

and point ii) of Lemma A.3 is proved.

B.6 Proof of Corollary 8

From Appendix A.1.4, equation (A.5), the asymptotic distribution of the optimal kernel moment
estimator of 6 is such that:

<\/T(771,T - 77170)/7 vV Tth(%,T - 77270)/7 \ Th% (BT - 50)) == (J(/)QJO)_l JSQQT(QS) + Op(1)>

(B.32)
where Q = V!, matrix V; is given in (A.2), and:
991
E(69,>R1 0 0 E(agl R 0
Jo = 0 E ggﬂiﬂo Rs 0 ::< 3%) ! J*>.
0 E(2wo) Ry —1d; 0
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09(Y;00)
00

E @Z}) - F {E @%p{) VigX)'E <g{;",|X>] =V ().

For Z=FE ( |X> V (9(Y:60)|X) ™", we have:

Thus:
, _ ) -1
vt | (e o s @)]R) R
0 (J5'sa8) " ISyt
We get:

(i [ (351X) V6107 B (31X)| Ra) " RIVTE o)

(Jo2Jo) " J5Qar (03) = ° )
(J3'=gMJg) " TS0t The-E [g5]o]

(B.33)
Let us now compute £ := (Jg’zgng;‘)_l Ji'S5 E [g3]wo). Let us denote G := E (gg? \xo) Ry,
A:=F (g:/ |m0) Ry. Then & = (£,,£,) € R*™ x RE solves Ji'Sg! (E lg5|m0] — JS'E) =0, that is

( G,Z(l)1+14/2%1 G/Z(l)2+A’Z(2)2 ) ( A E[g2|x0] —G§1 ) —0
iy -x22 Ela— Bylzo] — A&y + &5 ’

where Zéj, 1,7 = 1,2, denote the blocks of Eal. Solving for &, in the second block equation, we get:
A —1 A
&2 = —Ela— Bolno] + A&, — (58) ' 58 (Blgalao] - G, ) -

By replacing in the first block equation, and using ¥}, = S§' — 342 (£32) “ty2land (23?) Y
—¥0,21 %0, 1, from the formulas of the inverse of a block matrix, we get:

’ _ -1 ’ _ ~
§ = (G Eo,hG) G Z0,%1E [92]z0] ,
and:

& = —Ela—Bolro] + 0215011 E [92|70]

’ -1 ’ ~
+[A—Ton% 1,6 (G 2(;}10) G5t B [galo]

Thus, using (B.32), (B.33) and X 11 = V (g2|0), 0,21 = Cov (a, g2|x¢), we get:

Vg -mo = ~(mE[5(%1x) v B (B1x)] 1) mVTBR 00,

/ —1
. / Jg _ g
\/ Th(flyr —120) = — <RzE <802|$0> V (ga|zo) ' E <80? 330) R2>

| g, - :
RyE (5]5le> V (galro) ™" \/ ThE [g2]o] + 0,(1),
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and:

VT (Br )
\/7 — Bolol = Cov (a, galo) V (gslw0) ™ /Tha.E [galao)

0
|:ro> Ry — Cov (a, g2|xo) V (g2|x0) ™ 'E (a‘? >R2}

-1
0g 0 / dg _ .
<R2 (59 ) ko) E(ag'x>R> RzE(ae m")””'xo)l Th B [gakeo] + 0y (1),

The asymptotic expansions for ), 1, 75 ¢ correspond to the asymptotic expansions of the XMM
estimators 7y 7, )5 7 in Lemma A.3 (i). The conclusion follows.

B.7 Regularity conditions in the stochastic volatility model

In this Section, we discuss the technical regularity assumptions for the XMM estimator (see Appendix
A.1.1 in the paper) when the DGP Py is compatible with the stochastic volatility model (3.6)-(3.8).
They concern the stationary distribution (Section B.7.1) and the existence of moments (Section
B.7.2).

B.7.1 Stationary distribution

Let us consider process {X; = (y,07) : t € Z}, where the dynamics of 7, = 7, — ry, and o7 under
the DGP P, are defined in Section 3.2. Markov process X; is exponential affine:

Bo[em X | Xi] = By [emmmimio | K] = By [emOmeirto gy [emmnen | (07), X | X
. 1 1
= E {e_(“’O“J““_%“Q)UfH | af} = exp [—ao (’you +v— 2u2) o? — by <70u +v— 2u2>}

= exp [—A(Z),Xt - B(Z)} )

where A(z) = (0,a0 (you+v — fuz))/, B(z) = by (you+v — 3u?), for z = (u,v)" € C? such that
Re (’you +v— fuz) —1/cp, and functions ag and by are deﬁned in Section 3.2.

i) Strict stationarity and geometric strong mixing

From Proposition 2 in Gouriéroux, Jasiak (2006), the ARG process (U%) is stationary if 0 < py < 1,
with marginal invariant distribution such that [(1 — p,) /co] 07 ~ v (d0), where 7 (dp) denotes the
gamma distribution with parameter dyo. Thus, when p, < 1, process (X;) admits the marginal
invariant distribution:

1 (F—7y02) [(1- %0 _ipg 0 o N
flx) = qu(r ZOU)[( FP(O(S)O/)CO} e co (02)6 ' ,x:(r,UQ)GRXR+:X.

(B.34)

To prove that (X;) is geometrically strongly mixing, we use Proposition 4.2 in Darolles, Gouriéroux,
Jasiak (2006), and verify the condition:

0A
lim

Jim = )" =o. (B.35)
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We have: A
0 0
a7 (0) = ( ) :
0z YoPo  Po
Condition (B.35) is satisfied if p, < 1. Thus, with ¥; = (Xt+1,---,Xt+ﬁ)/ for given h € N, we
conclude that Assumption A.5 is satisfied if 0 < p, < 1.

ii) Smoothness of the marginal distribution

The stationary distribution f in (B.34) is in C* (X). Moreover, we have:

0 52 (02)50—3/2

1—p
fla) < Cre” o0 zeX,

)

for a constant Cy > 0. Thus, || f||,, < oo if, and only if, §o > 3/2. Moreover, we have the following
Lemma B.9.

Lemma B.9: ||[D™ f||, < oo if, and only if, 6o > 3/2 +m.
Proof: Let m € N. Since f € C™ (X), to prove ||[D™f| ., < o0, it is sufficient to show that any
partial derivative of order m of function f is bounded at the boundary of X, that is, for 7 — +o0,

0? — 00, 02 — 0. From (B.34), let us write:

f(f,az) =Co¢ [h(f, 02)] e=>o’ (02)50_3/2 , (7;,02) e X,

where A = (1 — py) /co, C = A/ [T (80)], and:

o
The function h is such that:
Oh,_ o 1
5(7",0' ) - ;a
Oh - —(r— 2) /202 1 1
Oh oy = 00 oo /2VoR 1L )
Oo? o2 O 202

We deduce that:
i) Any partial derivative of f is a linear combination of functions of the type:

¢(”) [h(f,a2)} h(7, 02)]“67)“’2 (02)1, n,k €N, [ e€R.

ii) Since function h — ¢>(")(h)hk is bounded, for any n, k € N, it is sufficient to prove that partial
derivatives of order m are bounded for o> — 0. This is the case if, and only if, the smallest power I
of o2, which occurs in partial derivatives of order m, is non-negative.

iii) The smallest power of o is featured by 8™ f /0 (02)m and is | = 09 — 3/2 —m. We conclude that
[|ID™ f|l . < oo if, and only if, 69 > 3/2+m. B

Thus, Assumption A.6 is satisfied if 69 > 3/2 + m. For instance, for m = 2, we get §y > 7/2.
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B.7.2 Existence of moments

For expository purpose, let us assume that the actively traded derivatives at date ¢ty have times-to-
maturity h; = 1 (and moneyness strikes k;), for j = 1,...,n, and that we are interested in estimating
the price of the derivative with time-to-maturity h = 1 and moneyness strike k. The moment
function g5 (y; ), is given by:

eTf,t+1 1
e"’t+1 1
ert+ — k)T ceo (k1,1
g3 (s0) = et -tartoactoir | (TR e
(e"'t+1 — kn)+ Cto (]Cn, ].)
(ert+r — k)T 0

where y; = (7:t+17 U?H, 0’%)/ and 7441 = Tt41+7f,t+1. Therelevant variables are Y; = (ft+1, afﬂ, af) ,

and X; = (Ft,af), respectively. Note that function g5 does not depend on 7; and thus we have
dropped this variable from Y;. The following Lemma B.10 provides a condition for Ej [|| g5 (Yy;00) ||4] < o0
(see Assumption A.11).

Lemma B.10: The function g} (.;00) is such that Eo [||lg3 (Y3;00) |*] < oo if, and only if:

’ 11— 14 + 46003 2 +
0o €T =13 (01,02,05,05) €R*| 05> —1/4co, Oy > —— ——C——" — 40, + 2603 + (2 — 46 :
0€ {( 1,02,03,04) €R™ |05 > —1/4co, 02 > dcg 1+ deobs Yobla + 205 + (2 + 7 1)
Proof: Since (¢" —s)* < e, for any r, s € R, condition E {Hgi (Vs 9)||4] < 00 is satisfied if, and
only if:

E, |:e—491—4920?+1—4630?—494Ft+1:| < 00 , Ey [6—491_492U?+1_493‘7?_4(94_1)7:t+1} < Q0. (B36)
We have:
2 2 = 2 2
EO {6740174620t+174030t 7404T’t+1:| — EO [6740174(92+7094)0t+174930‘,4 EO (674040t+1€t+1 Ut2+1, O_?):|

E, |:€—401—4(92+W094—203)0f+1—4930$:|

2 2 2
— i, [67403@ Ey (674(9#70047294)0”1|J?>]

_ 6—491—b0(4(02+»y094—29§))E0 |:e—[493—0—(10(4(02+7004—20§))]o‘f:|

if:
1+ 4¢p (92 + ’)/094 — 293) > 0.
Moreover, since [(1 — py) /co] 07 ~ 7 (o), we have:

1

8
(14 722 463+ ao (4 (02 + 081 — 263))] )

)

Ey [ef[493+a0(4(02+70047203))]0;%} _

if:
Co

14+ 463 + ao (4 (62 + voba — 263))] > 0.

— Po

25



We deduce that conditions (B.36) are satisfied if, and only if:

1+ 4cy (92 + vob4 — 20

“ [405 + ag (4 (02 + Y004 — 262)

~ BN
 ~—
\
o

1
+1_

Po
1+ 4¢o (92+%(94—1) —2(94—1)2) > 0,
]

{493 +ag (4 (92 g (01— 1) —2(6y — 1)2)>

Co

1
+1_

Po
(B.37)

Since O+, (04 — 1) =2 (04 — 1) = Oa+y,04—20%+ (464 — v, — 2) , and function aq is increasing, we
can distinguish between two parameter regions to solve system (B.37). i) First case: 40,4 —v,—2 > 0,
that is, 04 > (2 4 7y,)/4. In this region system (B.37) is equivalent to:

1+4co (02 +790s —2037) > O,

€0 [403 + ap (4 (02 + 7094 — 20?0)] > 0.

1+
1= po

Let us introduce the new variable x = 4c¢g (92 + Vb4 — 292). Then, this system becomes:

z > -1,
40093 Lo T

> 0.
L=py 1=pgltuz

1+

By transforming the second equation, we get:
r > -1,
(I144cobs)x > —(1— py+4cobs).
There is no solution for which 1 + 4¢yf3 < 0. Indeed, the second equation becomes:

lopotdelds 0 e

rs 1+ 40093 1+ 46093 B

)

which is incompatible with the first equation. Instead, for 1 + 4cof3 > 0, the second equation
becomes:

1-— 4cpf
oo _Lzpotdels ok
1+ 40093 1+ 48003
and implies the first equation. To summarize, a first region of solutions is:
1— Po + 4cob3
0, > (2 4 ,  1l+4cefs >0 > -

that is,

11— py+ 4eod
00> (2470)/4 , O3>—1/dcg , 03> —— - _Pot2cls

— 004 + 262,
4eg 1+ 4egbs Yoba + 204

ii) Second case: 464 —yy—2 < 0, that is, 04 < (2+,)/4. In this region, system (B.37) is equivalent
to:

1+ 4cg (92—&-70(94—1)—2(94_1)2) > 0,

c [493+a0(4(92+70(94—1)—2(94—1)2))} > 0.

1
+1_

Po
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By introducing the new variable y = 4c¢q (02 +9 (0 —1)—2(04 — 1)2>, and repeating the same

argument as above, we get the second region of solutions:

1 — pgy + 4cyb:
1< (2+7)/4 , 1+dchs >0 _y>—1’_’£T0093‘Jd
that is,
1 1—p0+40()93 2
04 < (2 4 03 > —1/4 g > ——-———— = —~,0 20 2 — 404.
1<(2+79)/4 , 03 [dco 02 dcg 1+ degfs Yola + 205 +2+ 7 4
|

From Lemma B.10, the condition Ey [[|g5 (Y2;60) [|*] < oo is satisfied, whenever the risk premia

parameters 98 and 93 for stochastic volatility are above some thresholds. In particular, the lower
bound for 65 depends on 63 and 6}. Imposing the no-arbitrage restriction 65 = ~, + 1/2, the
inequality constraints become:

11— 4¢063
9g>_1/460; 08>_7M

+70/2 4 3 (=) +1/4.
Ao 1+4000§ Yo/ (=) /

These constraints are satisfied for the parameter values used in Section 3.4 iii).

B.8 ARG risk-neutral dynamics

In this section, we derive the dynamics of the ARG stochastic volatility model under the risk-neutral
distribution @ defined by the sdf M ;41 (6p) = e "7+t exp (=0 — 0507, — 6907 — 037+1). In Sec-
tion B.7.1, we derived the historical conditional moment generating function of X;411 = (ft+1, o? +1):

- 1 1
Eq [exp (—ufyy1 — vo7, ) |ze] = exp [—ao <'you +v— 2u2> o? — by ('you +v— 2u2>} . (B.3%)
Let us compute the risk-neutral conditional moment generating function of ('Ft+1, o? +1). We have:

E(? [exp (—Uft+1 — 1)0'?+1) |(L’t] = EO [Mt,thl(ao) exp (_u’f:t+1 — ,UJ§+1) |(£t} /EO [Mt,t+1(90)|xt]
— BB [exp (— (w4 69) Fryr — (v+69) 02,1) |2]

1
_ exp{_ [ao (vo (uw+0) + (v 03) - & (u+eg)2) +eg} o

1
i (0 (e 8) + (o5 08) = 5 (u )°) =01}

by using Eg [M;¢11(00)|z] = e~ "+ and (B.38). From equations (3.9) we have:

0 0 1 02 0 1y 0 0 (991)2
70(u+64)+<v+92)_§(u+94) = u(70_94)+7}_§u +9470+62_ 5
= —lu—i—v—luQ—i—)\g,

2 2
where A5 = 65 +~2/2 — 1/8, and:

09 = —bo(N), 65 = —ao(\y).
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Thus, we get:

1 1 1 1
E(? [exp (—ufpy1 —vopyy) 7] = exp [—aé (—2u +v— 2u2> o? — b (—2u +v— 2u2>} ,
(B.39)
where: .
" pou
ap(u) = ag(u+A3) —ag(he) = T +OC(>§U7
b (w) = bo(u + A3) — bo(AY) = 8% log(1 + chu),
with:
p* _ pO _ pO
0 - - ’
(1+cor)”  [L+eco(69+73/2—1/8)]
dy = o,
* Co €o
CO =

L1+coXy  L1+co(09+42/2—1/8)

By comparing (B.38) and (B.39), we deduce that, under the risk neutral distribution, the returns
follow a stochastic volatility model with risk premium parameter 7§ = f% and ARG stochastic
volatility with parameters pf, 05, ¢g.

B.9 Proof of Lemma A.4

We have to show that:
POQ [Utzﬂ + 4 aerh > z\of+h =s5,07 = 03] is increasing w.r.t. s,for any z.

This condition is implied by:

POQ (0701 + 4 0Fn_1 = 2|0}y, = 8,07 = 0p] is increasing w.r.t. s, for any z. (B.40)
Since the ARG process is time-reversible, condition (B.40) is equivalent to:

POQ (071 + 4 0fin_y = 2|0} = 5,044, = 0g] is increasing w.r.t. s, for any z. (B.41)
To show (B.41) we use the stochastic representation of Markov process (o?):

U?+1 = g(0, urr1), (B.42)

where the innovation w1 is independent of cﬁ . By Il-fold compounding of function g w.r.t. the first

2 2 2 2 2
argument, we have 07, = g1(07, Usr1, 1), say, and oy + 407, = G(07, Utg1, - s Utyh—1),
2 2 2 ‘e
where G(07,utq1,+ ,Utpn—1) = 907, Ut1) + -+ + gh—1(0F, Uts1, -+ ,Uryn—1). Condition (B.41)
becomes:
POQ [G(s,urs1, "+ sutpn—1) > 2|0}, ), = og] is increasing w.r.t. s, for any .

This condition is satisfied if function G is increasing w.r.t. the first argument, that is, if the function
g in the stochastic representation (B.42) is increasing w.r.t. the first argument. The latter condition
is equivalent to o2 1 being stochastically increasing in o? under Q.

Finally, let us show that o7, is stochastically increasing in o7 under @ for the ARG process.
This follows from the gamma-Poisson mixture representation of the ARG process:

0§+1/CS 1Ce1 ~ (00 + Cipn), Ct+1|0§ ~ P(psoi/cy),

where v and P denote gamma and Poisson distributions, respectively. Then o? 1 is stochastically
increasing in ¢, ,, and (,,, is stochastically increasing in o7. The conclusion follows.
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B.10 Calibration of the parametric stochastic volatility model

In this Section we describe the computation by Fourier transform methods of the option prices in
the parametric stochastic volatility model of Section 2.6 i) in the paper. These Fourier transform
methods are used for the cross-sectional calibration of the model parameters. The risk-neutral
distribution @ is given in equations (2.15)-(2.16). The option price is such that:

~ ~\ T
(b, k) = B(t,t+ W) [(exp Ry — B)F 03] = B9 [(eprt,h ~F) w} 7

where Rt, h = Tt41+ -+ Teyn is the cumulated excess return of the underlying asset between ¢ and

t+ h and k = B(t,t 4+ h)k is the discounted moneyness of the option. Let us introduce the variable
s:=log(k) and define the function:

~ + 9
b (s) = e EQ (exp Repn — es> o], s€R,
for a given o > 0 (for expository purpose we omit the dependence of function ¢ on time-to-maturity

h and current volatility value 7). Following Carr and Madan (1999), the Fourier transform of ¢ is
(see below):

PN L B D (iu—a-—1)
d)(u)_/ e ¢(S)ds_a2+a—u2—iu(2a+1)’UGR’ (B.43)

where R
®(2) = B9 [exp (—thyh) \of} .

For the ARG model, function ® is given by (see below):
®(z) = exp [~Apo} — By , (B.44)

where A;, = Ay (z) and By, = By, (z) are defined recursively by:

Ap = ag(w+Ap1) , Av=ag(w),
B, = Bh_1+b3 (w+Ah_1) , B :bé (w),
w=—2(1+2)/2, aj(u) = lf;cgu, by (u) = 651og(1 + cju). By inverse Fourier transform, we get the

option price:

e (k)= / " e (u)du,

2 J_

where s = log(B(t,t + h)k) in the RHS. Since function ¢(s) is real valued, we have ¢(—u) = ¢(u).
It follows

—Qas

e

i (hy k) = Re /0 b € d(u)du. (B.45)

To compute the integral (B.45), we introduce a finite upper integration boundary A > 0 and we
discretize the resulting integral over [0, A]. More precisely, let A > 0 be such that ‘(}(u) is small for

u > A. Define the grid uy = (A/N)(k—1), for k = 1,..., N, where N € N is the number of grid
points. Then we have:

e a8 A N
¢t (hyk) =~ - Re/ e p(u)du
0
N
Ae=2s 1 As 5
~ - i (k—1)
~ - Re N ;e N Ok,
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where ¢y, := d(uz).
To summarize, the algorithm to compute ¢; (h, k) is as follows:

1. Compute the coefficients

~ 71 exp [—A;LO'% — Bh]

= k=1,2,...N
d)k 9 wy, ) ) &y ) )
where
An = ay(wp +Ap—1) , AL =ag(w),
B, = Bp_1+ bg (U}k + Ah71) , B = b;; (wk) ,

wk,:—%(a2+a—ui—iuk(2a+l)),Uk:(A/N)(kfl)'

2. Compute the inverse Fourier transform of the coefficients

N

A —Qas 1 CAs N
¢t (b, k) = eﬁ Re > ¥4,
k=1

Proof of Equation (B.43): We have
. © . +
o(u) = / ¢~ (lu=a)s gl [(eR” - es) } ds

= B[ et (o) ]

[ Ry Rin
— EtQ eRt'h/ e—(iu—a)sds_/ e—(iu—a—l)sds

oo — 00
_ EtQ - 1 ef(iufafl)fitﬁh I - 1 e(iual)Rt‘h:|
| U —« w—a—1
— 1 Q |:ef(iu7a71)}~2t,h,:|
a?+a—u2—iua+1) " ’

where EC[] = EQ[|02].
[ |

Proof of Equation (B.44): Under the risk-neutral distribution @ we have 7, = —%O’% + o,
where g, ~ IIN(0,1) and (07) follows an ARG process independent of (;) with parameters p, 0, ¢§;.
Thus:

®(2)

z
EtQ [exp (io'?_rt‘kh -z (Jt+15t+1 + ...+ Jt+h8t+h)>]

1
— EtQ [exp <2 (z + z2) 0?,t+h>:| ,

where atz)Hh =02 4+ Jf+h. From standard results for affine processes in discrete time [e.g.,
Darolles, Gouriéroux, Jasiak (2006)], equation (B.44) follows. W
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