
Inference in Group Factor Models with an Application to Mixed

Frequency Data∗

E. Andreou†, P. Gagliardini‡, E. Ghysels§, M. Rubin¶

This version: January 5, 2019

First draft: October, 2014

∗We thank K. A. Aastveit, G. Barone-Adesi, M. Deistler, M. Del Negro, R. Engle, D. Giannone, T. Götz, K. Hrvol’ovà,
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Abstract

We derive asymptotic properties of estimators and test statistics to determine - in a grouped data

setting - common versus group-specific factors. Despite the fact that our test statistic for the number

of common factors, under the null, involves a parameter at the boundary (related to unit canonical

correlations) we derive a parameter-free asymptotic Gaussian distribution. We show how the group

factor setting applies to mixed frequency data. As an empirical illustration we address the question

whether Industrial Production (IP) is still the dominant factor driving the U.S. economy using

a mixed-frequency data panel of IP and non-IP sectors. We find that a single common factor

explains 89% of IP output growth and 61% of total GDP growth despite the diminishing role of

manufacturing.

Keywords: Large Panel, Unobservable pervasive factors, Mixed frequency, Canonical correlations,

Output growth

JEL Codes: C23, C38, C55, C12, E32



1 Introduction

Estimating and testing for the existence of common factors among large panels with group specific

factors, is of interest in various areas in economics as well as other fields. For instance, for the un-

observable pervasive factors h1,t and h2,t, estimated from two separate panels of data, one may be

interested in testing how many factors are common between them. In this paper a new test is in-

troduced for the number of canonical correlations between vectors h1,t and h2,t equal to one and its

asymptotic distribution is derived for large T and N, where N denotes the minimum cross-sectional

size across groups, in the context of approximate factor models in the spirit of Bai and Ng (2002),

Stock and Watson (2002), and Bai (2003). While there is an extensive literature on approximate group

factor models there does not exist a unifying inferential theory for large panel data framework.1 Our

main theoretical contribution is an inference procedure for the number of common and group-specific

factors based on canonical correlation analysis of the principal components (PCs) estimates on each

subgroup. The first stage estimation of PCs affects the subsequent canonical correlation analysis, and

this complicates the asymptotic analysis. As a result, the asymptotic distribution of the test statistics

is non-standard in terms of convergence rates and involves a non-trivial bias correction. We show that,

under the null of kc common factors across the two groups, the sum of the kc largest estimated canon-

ical correlations minus kc, recentered and rescaled by (parameter-dependent) functions of N and T,

converges in distribution to a standard Gaussian. We also provide a feasible version of the statistic,

propose estimators for the common and group-specific factors, and characterize their asymptotic dis-

tribution. The inference procedure is general in scope and also of interest in many applications other

than the one considered in this paper. Our work is most closely related to Chen (2010, 2012), Wang

(2012), Ando and Bai (2015) and Breitung and Eickmeier (2016). However, the existing literature

does not provide a comprehensive asymptotic treatment of group factor models for large T and N ,

especially regarding testing hypotheses on the number of common and group-specific factors.

As a specific application of group factor models, we consider panels of data sampled at different

frequencies and study the role of Industrial Production (IP) sectors in the U.S. economy. Our empirical

application revisits the analysis of Foerster, Sarte, and Watson (2011) who use factor methods to

1Most papers deal with large T and finite cross-sections (e.g. Tucker (1958), Flury (1984), Schott (1991), Gregory and
Head (1999), and Kose, Otrok, and Whiteman (2008)). Goyal, Pérignon, and Villa (2008) extend the classical group factor
setting to approximate group factor models, but do not derive any asymptotic results.
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decompose industrial production into components arising from aggregate shocks and idiosyncratic

sector-specific shocks. They focus exclusively on the IP sectors. We have fairly extensive data on

U.S. industrial production. They consist of 117 sectors that make up aggregate IP, each sector roughly

corresponding to a four-digit industry classification using NAICS. These data are published monthly,

and therefore cover a rich panel. On the other hand, contrary to IP, we do not have monthly or quarterly

data for the cross-section of U.S. output across non-IP sectors, but we do so on an annual basis. Indeed,

the U.S. Bureau of Economic Analysis provides Gross Domestic Product (GDP) and Gross Output by

industry - not only IP sectors - annually. Hence, we have a panel consisting of NH (H for high

frequency) IP sector growth series sampled across MT time periods, where M = 4 for quarterly data

and M = 12 for monthly data, with T the number of years. Moreover, we also have a panel of NL

(L for low frequency) non-IP sectors - such as Services and Construction for example - which is only

observed over T years. Hence, generically speaking we have a high frequency panel data set of size

NH × MT and a low frequency panel data set of size NL × T . We allow for the presence of three

types of unobservable factors: (1) those which explain variations in both panels/groups, and therefore

are common factors, (2) group-specific (in our application frequency-specific) factors - namely (a)

those exclusively pertaining to IP, and (b) those exclusively affecting non-IP sectors.

Using the inferential theory for group factor models developed in this paper, we find that a single

common factor explains around 89% of the variability in the aggregate IP output growth index, and a

factor specific to IP has very little additional explanatory power, during the period 1977-2011. This

implies that the single common factor can be interpreted as an IP factor. Moreover, a large part of the

variability of GDP output growth in service sectors, such as Transportation and warehousing (62%);

Arts, entertainment, recreation, accommodation and food services (53%) as well as other sectors e.g.

Retail trade (31%), are also explained by the common factor. A single low frequency factor, unrelated

to manufacturing but related to sectors such as Finance, insurance, real estate, rental and leasing (21%);

Educational services, health care social assistance (18%) as well as Government (22%), drive GDP

growth variability. The results reflect the great advantage of the mixed frequency setting - compared to

the single frequency one - in the context of our IP and GDP sector application. The mixed frequency

panel setting allows us to identify and estimate the high frequency values of factors common to IP and

non-IP sectors. With IP (i.e. high frequency) data only we cannot assess what is common with the

non-IP sectors. With low frequency data only, we cannot estimate the high frequency common factors

2



from a large cross-section.

The rest of the paper is organized as follows. In Section 2 we introduce the group factor model

and discuss identification. In Section 3 we study estimation and inference on the number of common

factors. The large sample theory appears in Section 4. Section 5 introduces mixed frequency group

factor models whereas Section 6 presents the results of a Monte Carlo study. Section 7 covers the

empirical application. Section 8 concludes the paper. The Technical Appendix of the paper provides

regularity conditions and proofs of theorems. The Online Appendix (henceforth OA) provides the

proofs of lemmas, reports supplementary theoretical results on identification and estimation, provides

an extensive description of the dataset used in the empirical application, supplementary empirical

results, as well as the details about the Monte Carlo simulation design and results.

2 Identification in Group Factor Models

We use the following notation for the group factor model setting:

 y1,t

y2,t

 =

 Λc
1 Λs

1 0

Λc
2 0 Λs

2



f ct

f s1,t

f s2,t

+

 ε1,t

ε2,t

 , (2.1)

where yj,t = [yj,1t, ..., yj,Njt]
′ collects observations for Nj individuals in group j, Λc

j = [λcj,1, ..., λ
c
j,Nj

]′

and Λs
j = [λsj,1, ..., λ

s
j,Nj

]′ are the matrices of factor loadings and εj,t = [εj,1t, ..., εj,Njt]
′ is the vector

of error terms, with j = 1, 2 and t = 1, . . . , T (for simplicity we focus on cases involving only

two groups). The dimensions of the common factor f ct and the group-specific factors f s1,t, f
s
2,t are

respectively kc, ks1 and ks2. In the absence of common factors, we set kc = 0, while in cases without

group-specific factors we set ksj = 0, j = 1, 2. The group-specific factors f s1,t and f s2,t are orthogonal to

the common factor f ct . Since the unobservable factors can be standardized, we assume:

E


f ct

f s1,t

f s2,t

 =


0

0

0

 , and V


f ct

f s1,t

f s2,t

 =


Ikc 0 0

0 Iks1 Φ

0 Φ′ Iks2

 , (2.2)
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where Ik denotes the identity matrix of order k (we refer to (2.2) as Assumption A.2 in the list of

regularity conditions in Appendix A). We allow for a non-zero covariance Φ between group-specific

factors.

In standard linear latent factor models, the normalization induced by an identity factor variance-

covariance matrix identifies the factor space up to an orthogonal rotation (and change of signs). Under

an identification condition implied by our set of assumptions, the rotational invariance of (2.1) - (2.2)

allows only for separate rotations among the components of f s1,t, among those of f s2,t, and finally those

of f ct . The rotational invariance of (2.1) - (2.2) therefore maintains the interpretation of common and

group-specific factors.2

We consider the generic setting of equation (2.1) and let kj = kc + ksj , for j = 1, 2, be the dimen-

sions of the pervasive factor spaces for the two groups, and define k = min(k1, k2). We collect the

factors of each group in the kj-dimensional vectors hj,t := (f ct , f
s
j,t)
′, j = 1, 2, t = 1, ..., T, and define

their variance and covariance matrices: Vj` := E(hj,th
′
`,t), j, ` = 1, 2. From (2.2) we have Vjj = Ikj

for j = 1, 2. We want to show that the factor space dimensions kc, ks1, ks2 are identifiable using canon-

ical correlation analysis applied to h1,t and h2,t. In particular, we want to propose an identification

strategy for these dimensions and the corresponding factor spaces using canonical correlations and

directions. Before stating the main identification result, let us first recall some basics from canonical

analysis (see e.g. Anderson (2003) and Magnus and Neudecker (2007)). Let ρ`, ` = 1, ..., k, denote

the ordered canonical correlations between h1,t and h2,t. The k largest eigenvalues of matrices R =

V −1
11 V12V

−1
22 V21, and R∗ = V −1

22 V21V
−1

11 V12, are the same, and are equal to the squared canonical cor-

relations ρ2
` , ` = 1, ..., k between h1,t and h2,t. The associated eigenvectors w1,` (resp. w2,`), with

` = 1, ..., k, of matrix R (resp. R∗) standardized such that w′1,`V11w1,` = 1 (resp. w′2,`V22w2,` = 1) are

the canonical directions which yield the canonical variables w′1,`h1,t (resp. w′2,`h2,t).

The next Proposition deals with determining kc, the number of common factors, using canonical corre-

lations between the vectors h1,t and h2,t which are unobserved and estimated by principal components.

PROPOSITION 1. Under Assumption A.2 the following hold:

(i) If kc > 0, the largest kc canonical correlations between h1,t and h2,t are equal to 1, and the

remaining k − kc canonical correlations are strictly less than 1. (ii) Let Wj be the (kj, k
c) matrix

2More formally, Proposition D.1 in Appendix D.1 deals with the identification of factor spaces for given dimensions
kc, ks1, and ks2. Proposition D.1 is implied by Proposition 1 in Wang (2012).
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whose columns are the canonical directions for hj,t associated with the kc canonical correlations

equal to 1, for j = 1, 2. Then, f ct = W ′
jhj,t (up to an orthogonal matrix), for j = 1, 2. (iii) If kc = 0,

all canonical correlations between h1,t and h2,t are strictly less than 1. (iv) Let W s
1 (resp. W s

2 ) be the

(k1, k
s
1) (resp. (k2, k

s
2)) matrix whose columns are the eigenvectors of matrix R (resp. R∗) associated

with the smallest ks1 (resp. ks2) eigenvalues. Then f sj,t = W s′
j hj,t (up to an orthogonal matrix) for

j = 1, 2.

Proposition 1 shows that the number of common factors kc, the common factor space spanned by f ct ,

and the spaces spanned by group-specific factors, can be identified from the canonical correlations and

canonical variables of h1,t and h2,t (see OA Appendix C.1 for the proof). Therefore, the factor space

dimensions kc, ksj , and factors f ct and f sj,t, j = 1, 2, are identifiable (up to a rotation) from information

that can be inferred by disjoint Principal Component Analysis (PCA) on the two subgroups. Indeed,

disjoint PCA on the two subgroups allows us to identify the dimensions k1, k2, and vectors h1,t and h2,t

up to linear one-to-one transformations. The latter indeterminacy does not prevent identifiability of the

common and group-specific factors from Proposition 1, due to the invariance of canonical correlations

and canonical variables under linear one-to-one transformations of vectors hj,t.3

3 Estimation and inference on the number of common factors

3.1 Estimators

Let us first assume that the true number of factors kj > 0 in each subgroup j = 1, 2, is known, and

also that the true number of common factors kc > 0, is known. Proposition 1 suggests the following

estimation procedure for the common factors. Let h1,t and h2,t be estimated (up to a rotation) by

extracting the first kj Principal Components (PCs) from each sub-panel j, and denote by ĥj,t these

PC estimates of the factors, j = 1, 2. Let Ĥj = [ĥj,1, ..., ĥj,T ]′ be the (T, kj) matrix of estimated

PCs extracted from panel Yj = [yj,1, ..., yj,T ]′ associated with the largest kj eigenvalues of matrix

3 Computing PCs first is necessary because the alternative approach of canonical correlations applied to the raw data
may not necessarily uncover pervasive factors. The alternative approach to stack all groups into one panel and apply
standard PCA to estimate common factors is not a solution for at least two reasons: (1) the estimate of the common factor
obtained from the first kc principal components of the pooled data is inconsistent due to the correlation in the residuals
terms arising from the group-specific factors, and (2) the combined data may not give the common factors because the
common factors may not even be the leading factors in the combined data.
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1
NjT

YjY
′
j , j = 1, 2. Let V̂j` denote the empirical covariance matrix of the estimated vectors ĥj,t and

ĥ`,t, i.e. V̂j` = 1
T
Ĥ ′jĤ` = 1

T

∑T
t=1 ĥj,tĥ

′
`,t, j, ` = 1, 2, and let matrices R̂ and R̂∗ be defined as:

R̂ := V̂ −1
11 V̂12V̂

−1
22 V̂21, and R̂∗ := V̂ −1

22 V̂21V̂
−1

11 V̂12. (3.1)

Note that V̂jj = Ikj for j = 1, 2. Matrices R̂ and R̂∗ have the same non-zero eigenvalues. The kc

largest eigenvalues of R̂ (resp. R̂∗), denoted by ρ̂2
` , ` = 1, ..., kc, are the first kc squared sample canon-

ical correlation between ĥ1,t and ĥ2,t. The associated kc canonical directions, collected in the (k1, k
c)

matrix Ŵ1 (resp. (k2, k
c) matrix Ŵ2), are the eigenvectors associated with the kc largest eigenvalues

of matrix R̂ (resp. R̂∗), normalized to have length 1 with respect to V̂11 (resp. V̂22). It also holds that:

Ŵ ′
1V̂11Ŵ1 = Ikc , and Ŵ ′

2V̂22Ŵ2 = Ikc . (3.2)

DEFINITION 1. Two estimators of the common factors vector are f̂ ct = Ŵ ′
1ĥ1,t and f̂ c∗t = Ŵ ′

2ĥ2,t.

From equation (3.2) we have: 1
T

∑T
t=1 f̂

c
t f̂

c′
t = Ikc , and similarly for f̂ c∗t , i.e. the estimated common

factor values match in-sample the normalization condition of identity variance-covariance matrix in

(2.2). Let matrix Ŵ s
1 (resp. Ŵ s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix collecting ks1 (resp. ks2) eigen-

vectors associated with the ks1 (resp. ks2) smallest eigenvalues of matrix R̂ (resp. R̂∗), normalized to

have length 1 with respect to the matrix V̂11 (resp. V̂22). It also holds: Ŵ s ′
j V̂jjŴ

s
j = Iksj , j = 1, 2.

The estimators of the group-specific factors can be defined analogously to the estimators of the com-

mon factors: f̆ sj,t = Ŵ s ′
j ĥj,t j = 1, 2. By construction, f̂ ct and f̆ s1,t (resp. f̂ c∗t and f̆ s2,t) are orthogonal

in-sample. An alternative estimator for the group-specific factors f s1,t (resp. f s2,t) is obtained by com-

puting the first ks1 (resp. ks2) principal components of the variance-covariance matrix of the residuals

of the regression of y1,t (resp. y2,t) on the estimated common factors.4 Let F̂ c = [f̂ c ′1 , ..., f̂ c ′T ]′ be the

(T, kc) matrix of estimated common factors, and Λ̂c
j = [λ̂cj,1, ..., λ̂

c
j,Nj

]′ the (Nj, k
c) matrix collecting

the estimated loadings:

Λ̂c
j = Y ′j F̂

c(F̂ c ′F̂ c)−1 =
1

T
Y ′j F̂

c, j = 1, 2. (3.3)

4 This alternative estimation method for the group-specific factors corresponds to the method proposed by Chen (2012)
who adopted an information criterion approach to estimate the number of factors, whereas we use a sequential testing
method. Compared to Chen (2012), our paper derives results on the asymptotic distribution of the sample canonical
correlations and estimated factors, whereas Chen (2012) only has consistency and rate of convergence results.
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Let ξj,t = yj,t − Λ̂c
j f̂

c
t be the residuals of the regression of yj,t on the estimated common factor f̂ ct , for

j = 1, 2 and Ξj = [ξj,1, ..., ξj,T ]′ be the (T,Nj) matrix of the regression residuals, for j = 1, 2.

DEFINITION 2. Estimators of the specific factors f̂ s1,t (resp. f̂ s2,t) are defined as the first ks1 (resp. ks2)

PCs of sub-panel Ξ1 (resp. Ξ2), namely, the columns of the (T, ksj ) matrix F̂ s
j = [f̂ sj,1, ..., f̂

s
j,T ]′ are

the eigenvectors associated with the ksj largest eigenvalues of matrix 1
NjT

ΞjΞ
′
j , normalized to have

F̂ s′
j F̂

s
j /T = Iksj for j = 1, 2.

Note that f̂ ct is orthogonal in-sample both to f̂ st,1 and to f̂ st,2. This sample orthogonality property match-

ing the population one (see (2.2)) explains why we focus of the estimation procedure in Definition 2

compared to f̆ sj,t, j = 1, 2. Moreover, we define Λ̂s
j = [λ̂sj,1, ..., λ̂

s
j,Nj

]′ as the (Nj, k
s
j ) matrix collecting

the loadings estimators:

Λ̂s
j = Y ′j F̂

s
j (F̂ s ′

j F̂ s
j )−1 =

1

T
Ξ′jF̂

s
j , j = 1, 2, (3.4)

where the second equality follows from the in-sample orthogonality of F̂ c and F̂ s
j , and the normaliza-

tion of F̂ s
j for j = 1, 2.

3.2 Inference on the number of common factors via canonical correlations

One of our objectives is to determine how many factors are common between groups in the generic

factor model in equation (2.1), that is we consider the problem of inferring the dimension kc of the

common factor space. To do so, we first consider the case where the number of pervasive factors

k1 and k2 in each sub-panel is known, hence k = min(k1, k2) is also known, and we relax this as-

sumption in the next section. From Proposition 1, dimension kc is the number of unit canonical

correlations between h1,t and h2,t. We consider the hypotheses: H(0) = {1 > ρ1 ≥ . . . ≥ ρk} , H(1) =

{ρ1 = 1 > ρ2 ≥ . . . ≥ ρk} , . . . , H(kc) = {ρ1 = . . . = ρkc = 1 > ρkc+1 ≥ . . . ≥ ρk} , . . . , and finally,

H(k) = {ρ1 = ... = ρk = 1} , where ρ1, ..., ρk are the ordered canonical correlations of h1,t and h2,t.

Hypothesis H(0) corresponds to the absence of common factors. Generically, H(kc) corresponds to

the case of kc common factors and k1−kc and k2−kc group-specific factors in each group. The largest

possible number of common factors is k = min(k1, k2). In order to select the number of common fac-

tors, let us consider the following sequence of tests: H0 = H(kc) against H1 =
⋃

0≤r<kc H(r), for each

7



kc = k, k − 1, ..., 1. To test H0 against H1, for any given kc = k, k − 1, ..., 1 we consider:

ξ̂(kc) =
kc∑
`=1

ρ̂`. (3.5)

The statistic ξ̂(kc) corresponds to the sum of the kc largest sample canonical correlations of ĥ1,t and

ĥ2,t. We reject the null H0 = H(kc) when ξ̂(kc) − kc is negative and large. The critical value is

obtained from the large sample distribution of the statistic when N1, N2, T →∞, provided in Section

4. The number of common factors is estimated by sequentially applying the tests starting from kc = k.

3.3 Estimation and inference when k1 and k2 are unknown

When the true number of pervasive factors is not known, but consistent estimators k̂1 and k̂2, say, are

available, the asymptotic distribution and rate of convergence for the test statistic ξ̂(kc) based on k̂1

and k̂2 is the same as those based on the true number of factors. Intuitively, this holds because the

consistency of estimators k̂j , i.e. P (k̂j = kj)→ 1 for j = 1, 2, implies that the estimation error for the

number of pervasive factors is asymptotically negligible.5 Therefore, the asymptotic distributions and

rates of convergence of the test statistics and factors estimators will be derived assuming that the true

dimensions kj > 0 in each subgroup, j = 1, 2, are known. Examples of consistent estimators for the

numbers of pervasive factors include the tests proposed by Bai and Ng (2002) (applied in Section 7),

Onatski (2010), or Ahn and Horenstein (2013).

4 Large sample theory

In this section we derive the large sample distribution of the test statistic for the dimension of the

common factor space and provide a feasible version of it. We also define a consistent selection pro-

cedure for the number of common factors (the asymptotic distribution of the factor and loading es-

timates is provided in the OA). We consider the joint asymptotics N1, N2, T → ∞. Let us denote

N = min{N1, N2} and µN =
√
N2/N1. Without loss of generality, we set N = N2, which implies

5For similar arguments, see footnote 5 of Bai (2003). A word of caution is warranted, however. It is known that
pre-testing generates problems in terms of lack of uniform properties, and we therefore abstract from uniformity.
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µN ≤ 1. We assume that:

√
T/N = o(1), N/T 5/2 = o(1) and µN → µ, with µ ∈ [0, 1], (4.1)

which we refer to as Assumption A.1 in the list of regularity conditions in Appendix A. The conditions

in (4.1) allow for a wide range of relative growth rates for the time-series and cross-sectional panel

dimensions as long as N grows faster than T 1/2 and slower than T 5/2. They accommodate both the

case where N1 and N2 grow at the same rate, and the case where N1 grows faster than N2, namely

µ = 0. To derive the large sample distribution of the test statistic for the number of common factors we

deploy an asymptotic expansion for the estimated PCs in each group, which extends results in Bai and

Ng (2002), Stock and Watson (2002), and Bai (2003), Bai and Ng (2006), and we report in Proposition

3 in Appendix B. For t = 1, . . . , T and j = 1, 2, the estimate ĥj,t is asymptotically equivalent (in a

sense made precise in Proposition 3), up to negligible terms, to

Ĥj

(
hj,t +

1√
Nj

uj,t +
1

T
bj,t

)
(4.2)

where uj,t =
(

1
Nj

∑Nj

i=1 λj,iλ
′
j,i

)−1
1√
Nj

∑Nj

i=1 λj,iεj,i,t, Ĥj is a nonsingular stochastic factor rotation

matrix, bj,t =
(

1
Nj

∑Nj

i=1 λj,iλ
′
j,i

)−1 (
1
T

∑T
t=1 hj,th

′
j,t

)−1

η2
j,thj,t, and η2

j,t = plim
Nj→∞

1
Nj

∑Nj

i=1E[ε2
j,i,t|Ft]

is the limit average error variance conditional on the sigma field Ft = σ(Fs, s ≤ t) generated by

current and past factor values Ft = (f c′t , f
s′
1,t, f

s′
2,t)
′, and λj,i = (λc′j,i, λ

s′
j,i)
′. The zero-mean term uj,t

drives the randomness in group factor estimates conditional on factor path. Vector bj,t is measurable

with respect to the factor path and induces a bias term at order T−1 in principal components estimates.

Vectors uj,t and bj,t depend on sample sizes but, for convenience, we omit the indices Nj , T .

Let Σ̃u,jk,t(h) = Cov(uj,t, uk,t−h|Ft) be the conditional covariance between uj,t and uk,t−h, i.e.

Σ̃u,jk,t(h) =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
NjNk

Nj∑
i=1

Nk∑
`=1

λj,iλ
′
k,`Cov(εj,i,t, εk,`,t−h|Ft)

(
1

Nk

Nk∑
i=1

λk,iλ
′
k,i

)−1

,

and Σ̃u,jk,t(−h) = Σ̃u,kj,t(h)′, for j, k = 1, 2 and h= 0, 1, . . .. We set Σ̃u,jj,t ≡ Σ̃u,jj,t(0). Moreover, let

us define the (probability) limits Σu,jk,t(h) = plim
Nj ,Nk→∞

Σ̃u,jk,t(h) and Σλ,j = lim
Nj→∞

1
Nj

∑Nj

i=1 λj,iλ
′
j,i, and

9



let b̄j,t = Σ−1
λ,jη

2
j,thj,t be the large sample counterpart of bj,t.

THEOREM 1. Under Assumptions A.1 - A.7, and the null hypothesis H0 = H(kc) of kc common

factors, we have:

N
√
T

(
ΩU,1 +

N

T 2
ΩU,2

)−1/2 [
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+

1

2T 2
tr
{

Σ̃−1
cc Σ̃B

}]
d−→ N (0, 1) , (4.3)

where Σ̃cc = 1
T

∑T
t=1 f

c
t f

c′
t , Σ̃B = 1

T

∑T
t=1 ∆̃bt

(c)
∆̃bt

(c)′
, and

∆̃bt = b1,t − b2,t −

(
1

T

T∑
s=1

(b1,s − b2,s)F ′s

)(
1

T

T∑
s=1

FsF
′
s

)−1

Ft,

Σ̃U =
1

T

T∑
t=1

(
µ2
N Σ̃

(cc)
u,11,t + Σ̃

(cc)
u,22,t − µN Σ̃

(cc)
u,12,t − µN Σ̃

(cc)
u,21,t

)
,

ΩU,1 =
1

2

∞∑
h=−∞

E
[
tr
{

ΣU,t(h)ΣU,t(h)′
}]
, ΩU,2 =

∞∑
h=−∞

E
[
tr
{

ΣU,t(h)∆b
(c)
t−h∆b

(c)′
t

}]
,

∆bt = b̄1,t − b̄2,t − E
[(
b̄1,t − b̄2,t

)
F ′t
]
V (Ft)

−1Ft,

ΣU,t(h) = µ2Σ
(cc)
u,11,t(h) + Σ

(cc)
u,22,t(h)− µΣ

(cc)
u,12,t(h)− µΣ

(cc)
u,21,t(h), h = ...,−1, 0, 1, ...,

and where the upper index (c) denotes the upper (kc, 1) block of a vector, and the upper index (c, c)

denotes the upper-left (kc, kc) block of a matrix.

Proof: See Appendix B.1.

The matrix ΣU,t(h) is the upper-left (kc, kc) block of the limit covariance matrix between µNu1,t−

u2,t and µNu1,t−h−u2,t−h, where the weight µN =
√
N2/N1 accounts for the different sample sizes in

the two sub-panels. Vectors ∆̃bt and ∆bt are residuals of the orthogonal projection of b1,t−b2,t onto Ft

in-sample, and of b̄1,t − b̄2,t onto Ft in the population, respectively. In fact, the orthogonal projection

of vector bj,t along vector hj,t can be absorbed in the transformation matrix Ĥj in expansion (4.2), and

therefore is asymptotically immaterial for the computation of canonical correlations and for the large

sample distribution of the test statistic.

The asymptotic distribution in Theorem 1 is valid for
√
T � N � T 5/2 (Assumption A.1). It

covers the variety of convergence rates and asymptotic biases and variances the statistic ξ̂(kc) features,

for different relative growth rates of sample dimensions N, T when ΩU,2 > 0, namely:

10



T 1/2 � N � T 3/2 : N
√
T
[
ξ̂(kc)− kc + 1

2N
tr
{

Σ̃−1
cc Σ̃U

}]
d−→ N (0,ΩU,1) ,

T 3/2 / N � T 2 : N
√
T
[
ξ̂(kc)− kc + 1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+ 1

2T 2 tr
{

Σ̃−1
cc Σ̃B

}]
d−→ N (0,ΩU,1) ,

T 2 � N � T 5/2 : T
√
TN

[
ξ̂(kc)− kc + 1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+ 1

2T 2 tr
{

Σ̃−1
cc Σ̃B

}]
d−→ N (0,ΩU,2) ,

and N
√
T
[
ξ̂(kc)− kc + 1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+ 1

2T 2 tr
{

Σ̃−1
cc Σ̃B

}]
d−→ N (0,ΩU,1 + λΩU,2) if λ := lim

N/T 2 ∈ (0,∞). In particular, the convergence rate of the statistic is min{N
√
T , T
√
NT}. When

ΩU,2 = 0 (see below), the convergence rate is N
√
T and the asymptotic variance is ΩU,1 for T 1/2 �

N � T 5/2. Note that, if the PCs in the groups were observed, then testing for unit canonical cor-

relations would be degenerate, as it involves testing for deterministic relationships between random

vectors. The estimation errors of the PCs drive the asymptotic distribution of the statistic, with a

non-standard convergence rate.

It might be surprising that we find an asymptotic Gaussian distribution when testing a hypothesis for a

parameter at the boundary, i.e. canonical correlations equal to one. What makes the test asymptotically

Gaussian, is the fact that there is a re-centering of the statistic due to the sampling error in the first step

estimates of the PCs, and a CLT applies to the re-centered squared estimation errors. The re-centering

term involves a component of orderN−1 and a component of order T−2. One may wonder whether this

Gaussian asymptotic distribution is a good approximation for the small sample distribution of the re-

centered and re-scaled ξ̂(kc). In Section 6 and OA Section E, we report the results of extensive Monte

Carlo simulations showing that this is the case in a setting that mimics our empirical application.

To get a feasible distributional result for the statistic ξ̂(kc), we need consistent estimators for the

unknown scalars tr
{

Σ̃−1
cc Σ̃U

}
and tr

{
Σ̃−1
cc Σ̃B

}
, and matrices ΩU,1 and ΩU,2 in Theorem 1. To sim-

plify the analysis, we assume at this stage that the errors εj,i,t are (i) uncorrelated across sub-panels

j and individuals i, at all leads and lags, and (ii) a conditionally homoscedastic martingale difference

sequence for each individual i, conditional on the factor path, i.e.

Cov(εj,i,t, εk,`,t−h|Ft) = 0, if either j 6= k, or i 6= `,

E[εj,i,t|{εj,i,t−h}h≥1,Ft] = 0, E[ε2
j,i,t|{εj,i,t−h}h≥1,Ft] = γj,ii (say), (4.4)

11



for all j, i, t, h (see Assumption A.9). Then, we have:

Σ̃U = µ2
N Σ̃

(cc)
u,11 + Σ̃

(cc)
u,22, ΣU(0) ≡ ΣU = µ2Σ

(cc)
u,11 + Σ

(cc)
u,22, ΩU,1 =

1

2
tr
{

Σ2
U

}
, ΩU,2 = 0. (4.5)

Matrices Σ̃u,jj and Σu,jj ≡ Σu,jj(0) do not depend on time. The projection residual ∆bt vanishes

because b̄j,t = Σ−1
λ,jη

2
jhj,t, where η2

j = lim
Nj→∞

1
Nj

∑Nj

i=1 γj,ii, is spanned by Ft. This explains why ΩU,2 is

null and the convergence rate is N
√
T . Similarly, Σ̃B = 0, so that the bias term at order T−2 is zero.6

Under (4.4) the bias component T−1bj,t in the PC estimates is immaterial since it can be absorbed in

the transformation matrix Ĥj in (4.2). In fact, Connor and Korajczyk (1986) and Bai (2003) Theorem

4 show that the principal component estimator is consistent even for fixed T in such a case. In Theorem

2 below, we replace Σ̃cc with its large sample limit Ikc , matrices Σ̃U and ΣU by consistent estimators.

We show that the estimation error for 1
N
tr
{

Σ̃−1
cc Σ̃U

}
in the bias adjustment is of order op

(
1

N
√
T

)
, and

therefore the asymptotic distribution of the statistic is unchanged.

THEOREM 2. Let Σ̂U = (N2/N1)Σ̂
(cc)
u,11+Σ̂

(cc)
u,22, with Σ̂u,jj =

(
1
Nj

Λ̂′jΛ̂j

)−1 (
1
Nj

Λ̂′jΓ̂jΛ̂j

)(
1
Nj

Λ̂′jΛ̂j

)−1

where Λ̂j = [Λ̂c
j

... Λ̂s
j ], Λ̂c

j and Λ̂s
j are the loadings estimators defined in equations (3.3) and (3.4),

Γ̂j = diag(γ̂j,ii, i = 1, ..., Nj) with γ̂j,ii = 1
T

∑T
t=1 ε̂

2
j,i,t, and ε̂j,i,t = yj,i,t − λ̂c ′j,if̂

c
t − λ̂s ′j,i f̂

s
j,t, for

j = 1, 2. Define the test statistic:

ξ̃(kc) := N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2 [

ξ̂(kc)− kc +
1

2N
tr
{

Σ̂U

}]
, (4.6)

and let Assumptions A.1 - A.9 hold. Then:

(i) Under the null hypothesis H0 = H(kc) of kc common factors, we have: ξ̃(kc) d−→ N (0, 1) .

(ii) Under the alternative hypothesis H1 =
⋃

0≤r<kc
H(r), we have: ξ̃(kc)

p−→ −∞.

Proof: See Appendix B.2.

The feasible asymptotic distribution in Theorem 2 is the basis for a one-sided test of the null hypothesis

of kc common factors. The rejection region for a test of the null hypothesis at asymptotic level α is

ξ̃(kc) < zα, where zα is the α-quantile of the standard Gaussian distribution for α ∈ (0, 1). From

Theorem 2 (ii), the test is consistent.
6If the errors are weakly correlated across series and/or time, consistent estimation of Σ̃U and ΩU,1 requires thresholding

of estimated cross-sectional covariances and/or HAC-type estimators. If the errors are conditionally heteroskedastic, we
need consistent estimators of ΩU,2 and Σ̃B as well.
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One way to implement the model selection procedure to estimate the number of common factors

kc proposed in Section 3.2 consists in testing sequentially the null hypothesis H0 = H(r), against the

alternative H1 =
⋃

0≤`<r
H(`), using the test statistic ξ̃(r) defined in Theorem 2 for any generic number

r of common factors. A “naive” procedure is initiated with r = k, proceeds backwards and is stopped

at the largest integer k̂cnaive = r such that the null H(r) cannot be rejected, i.e. ξ̃(r) ≥ zα. Otherwise,

set k̂cnaive = 0 if the test rejects the null H(r) for all r = k, ..., 1. This “naive” procedure is not a

consistent estimator of the number of common factors. Indeed, asymptotically a non-zero probability

α of underestimating kc exists coming from the type I error of the test of H(kc0) against
⋃

0≤`<kc0
H(`),

when the true number of factors kc0 is strictly positive.

Building on the results in Pötscher (1983), Cragg and Donald (1997), and Robin and Smith (2000),

a consistent estimator of the number of common factors kc0, for any integer kc0 ≥ 0, is obtained allowing

the asymptotic size α to go to zero as N , T → ∞. The following Proposition 2 (proved in OA

Appendix C.2) defines a consistent inference procedure for the number of common factors.

PROPOSITION 2. Let αN,T be a sequence of real scalars defined in the interval (0, 1) for any N, T ,

such that (i) αN,T → 0 and (ii) (N
√
T )−1zαN,T

→ 0 for N, T → ∞. Then, under Assumptions A.1 -

A.9 the estimator of the number of common factors defined as:

k̂c = max
{
r : 1 ≤ r ≤ k, ξ̃(r) ≥ zαN,T

}
and k̂c = 0, if ξ̃(r) < zαN,T

for all r = 1, ..., k, is consistent, i.e. P (k̂c = kc0) −→ 1 under H(kc0), for

any integer kc0 ∈ [0, k].

Condition (i) ensures asymptotically zero probability of type I error when testing H(kc0) against⋃
0≤`<kc0

H(`). Condition (ii) is a lower bound on the convergence rate to zero of the asymptotic size,

and is used to keep asymptotically zero probability of type II error of each step of the procedure. The

conditions in Proposition 2 are satisfied e.g. for αN,T such that:

zαN,T
= −c(N

√
T )γ, (4.7)

for constants c > 0 and 0 < γ < 1.7

7In the empirical application we use c = 0.95 and γ = 0.1, which yields e.g. αN,T close to 0.05 for N = 40 and
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5 Mixed frequency group factor models

The idea to apply group factor analysis to mixed frequency data is novel as frequency-based grouping

can indeed be the basis of identification strategies and statistical inference. In this section we explore

this topic as it pertains to our empirical application. We consider a setting where both low and high

frequency data are available. Let t = 1, 2, . . . , T be the low frequency (LF) time units. Each time

period (t − 1, t] is divided into M sub-periods with high frequency (HF) dates t − 1 + m/M , with

m = 1, . . . , M. Moreover, we assume a panel data structure with a cross-section of size NH of high

frequency data and NL of low frequency data. It will be convenient to use a double time index to

differentiate low and high frequency data. Specifically, we let xHim,t, for i = 1, . . . , NH , be the high

frequency data observation i during sub-periodm of low frequency period t. Likewise, we let xLit , with

i = 1, . . . , NL, be the observation of the ith low-frequency series at t. These observations are gathered

into the NH-dimensional vectors xHm,t, for all m, and the NL-dimensional vector xLt , respectively.

We assume that there are three types of latent pervasive factors, which we denote by gCm,t, g
H
m,t and

gLm,t, respectively. The former represents a vector of factors which affect both high and low frequency

data (we use again superscriptC for common), whereas the other two types of factors affect exclusively

high (superscript H) and low (marked by L) frequency data. We denote by kC , kH and kL, the

dimensions of these factors. The latent factor model with high frequency data sampling is:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

xL∗m,t = ΛLCg
C
m,t + ΛLg

L
m,t + eLm,t,

(5.1)

where m = 1, ...,M and t = 1, ..., T , and ΛHC , ΛH , ΛLC and ΛL are matrices of factor loadings.

The vector xL∗m,t is unobserved for each high frequency sub-period and the measurements, denoted by

xLt , depend on the observation scheme, which can be either flow-sampling or stock-sampling (or some

general linear scheme).

In the case of flow-sampling, the low frequency observations are the sum (or average) of all xL∗m,t

T = 35, that are the smallest cross-sectional size and the low-frequency time series dimension in our dataset. In the Monte
Carlo study we find a good performance of the selection procedure with this choice.
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across all m, that is: xLt =
∑M

m=1 x
L∗
m,t.

8 Then, model (5.1) implies:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLC

∑M
m=1 g

C
m,t + ΛL

∑M
m=1 g

L
m,t +

∑M
m=1 e

L
m,t.

(5.2)

Let us define the aggregated variables and innovations xHt :=
∑M

m=1 x
H
m,t, ē

U
t :=

∑M
m=1 e

U
m,t, U =H,L,

and the aggregated factors: ḡUt :=
∑M

m=1 g
U
m,t, U = C, H, L. Then we can stack the observations xHt

and xLt and write:  xHt

xLt

 =

 ΛHC ΛH 0

ΛLC 0 ΛL



ḡCt

ḡHt

ḡLt

+

 ēHt

ēLt

 , (5.3)

i.e. the group factor model, with common factor ḡCt and group-specific factors ḡHt and ḡLt . The nor-

malized latent common and group-specific factors ḡUt , U = C,H,L, satisfy the counterpart of (2.2).

The results in Sections 2, 3 and 4 can be applied for identification and inference in the mixed

frequency factor model. Using the same arguments in the mixed frequency setting of equation (5.3),

identification can be achieved for the aggregated factors ḡCt , ḡHt , and ḡLt , and the factor loadings ΛHC ,

ΛLC , ΛH , and ΛL. Consequently, the estimators and test statistics developed for the group factor model

(2.1) can also be used to define estimators for the loadings matrices ΛHC , ΛH , ΛLC , ΛL, and the

aggregated factor values gUt , U = C,H,L, and the test statistic for the common factor space dimension

kC in equation (5.3). We denote these estimators Λ̂HC , Λ̂H , Λ̂LC , Λ̂L, ĝ
U

t , and also the infeasible

and feasible test statistics ξ̂(kC) and ξ̃(kC). Once the factor loadings are identified from (5.3) and

estimated, the values of the common and high frequency factors for sub-periods m = 1, ...,M are

identifiable by cross-sectional regression of the high frequency data on loadings ΛHC and ΛH in (5.1).

More specifically, the estimators of the common and high frequency factor values are:
[
ĝC′m,t , ĝ

H′
m,t

]′
=(

Λ̂′1Λ̂1

)−1

Λ̂′1x
H
m,t, m = 1, . . . , M, t = 1, . . . , T, where Λ̂1 = [Λ̂HC

... Λ̂H ] (the asymptotic distribution

of the factor estimates is provided in OA Proposition D.7). Hence, ĝCm,t and ĝHm,t are obtained by

regressing xHim,t on λ̂HC,i and λ̂H,i across i = 1, 2, ..., NH , for any m = 1, ...,M and t = 1, ..., T .

Consequently, with flow-sampling, we can identify and estimate gCm,t and gHm,t at all high frequency

sub-periods. On the other hand, only ḡLt =
∑M

m=1 g
L
m,t, i.e. the within-period sum of the low frequency

8In the remainder of this section we study identification and inference for the model with flow-sampling as it corre-
sponds to the empirical application. The identification with stock-sampling is discussed in OA Section D.3.
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factor, is identifiable by the paired panel data set consisting of xHt combined with xLt . This is not

surprising, since we have no high-frequency observations available for the LF data.

One can consider an alternative approach to inference on the number of common factors and their

estimated values. Instead of first aggregating the high-frequency data as in equation (5.3) and then

applying PCA in each group, one can extract the principal components directly on the high-frequency

panel (and the low frequency panel) and then aggregate the high-frequency PCA estimates. The proce-

dure then continues identically in both approaches. In our Monte Carlo experiments the performances

of the two approaches are found to be similar (see Section 6 and OA Section E for more details). In

the empirical application the results are almost indistinguishable (see OA Section D.11.2).

6 Monte Carlo simulation analysis

The objectives of the Monte Carlo simulation study are: to assess the adequacy of the asymptotic

distribution of ξ̂(kC) to approximate its small sample counterpart, to evaluate the finite sample size

and power properties of tests for kC based on the statistics ξ̂(kC) and ξ̃(kC), and to compare the

sequential testing procedure for kC in Proposition 2, vis-à-vis the alternative procedures suggested by

Chen (2012), and Wang (2012). We perform our simulations in the context of the mixed frequency

setting of Section 5 to align the analysis with the empirical application.

Section E of the OA reports a detailed description of the simulation designs and tables of results.

The data generating process (DGP) is the high frequency model (5.1) with flow-sampled LF variables.

The idiosyncratic innovations are independent of the factors, serially i.i.d., and possibly weakly cross-

sectionally correlated within each panel - corresponding to an approximate factor model. We consider

M = 4 high frequency sub-periods, as in our empirical application with yearly and quarterly data, and

different numbers of factors across DGPs, namely kC = 1, 2, and kH = kL = 1, and 5. The DGP for the

vector of stacked factors gm,t = [gC′m,t, g
H′
m,t, g

L′
m,t]
′ is gm,t = aFgm−1,t +

√
ς ηm,t, where aF is a common

scalar AR coefficient for all the kC +kH +kL factors and ς = [M + 2
∑M−1

m=1 (M −m)amF ]−1(1−a2
F ).

The innovations ηm,t =
[
ηC′m,t, η

H′
m,t, η

L′
m,t

]′ are i.i.d. N(0,Ση), where Ση is a block-matrix such that

V
(
ηUm,t

)
= IkU , for U = C,H,L, Cov(ηCm,t, η

H
m,t) = Cov(ηCm,t, η

L
m,t) = 0 and Cov(ηHm,t, η

L
m,t) = φIkH .

The scaling term ς ensures that the factor normalization in (2.2) holds for [ḡC′t , ḡ
H′
t , ḡ

L′
t ]′, while the

scalar parameter φ generates correlation between pairs of HF and LF specific factors. Factor loadings
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are simulated from a multivariate zero-mean Gaussian distribution, such that the cross-sectional dis-

tribution of R2′s of the regressions of observables on factors mimics the empirical application. We

run 4000 simulations for each DGP, and consider NH , NL, T as small as the ones in our empirical

applications, and progressively increase them.

All the results summarized below are qualitatively similar (1) when different values of the factor

autocorrelation aF are considered, namely 0 and 0.6, (2) for different (small) levels of the weak cross-

sectional correlation of the idiosyncratic errors, and (3) for different magnitudes of the pervasiveness

of the factors as measured by the theoretical R2s for regressions of the simulated observables on the

factors. We refer the reader to the OA for additional details.

6.1 Asymptotic Gaussian distribution, size and power properties

First, we want to verify whether the Gaussian asymptotic distribution provides a good small sample

approximation for the infeasible statistic ξ̂(kC). Figure 1 displays the empirical distribution of ξ̂(kC),

computed under the null of kC = 1 common factors from data simulated from a DGP with kC =

kH = kL = 1, and overlapped with the asymptotic N(0, 1) distribution. For small sample sizes as

NH = NL = 50, and T = 35, the empirical distribution approximates well a normal distribution with

unit standard deviation, but is centered around a small positive value: the empirical mean and standard

deviation are 0.16, and 1.14, respectively. Nevertheless, the left tail of this empirical distribution

resembles relatively well the one of a standard Gaussian. As the sample sizes grow to NH = NL =

1000, and T = 600, the empirical distribution of ξ̂(kC) has empirical mean and standard deviation of

0.02 and 1.01, respectively, and almost perfectly overlaps with the asymptotic distribution. As these

results are qualitatively similar for alternative DGPs and sample sizes, we conclude that our asymptotic

theory provides a good approximation also in small samples.

The tables in OA Section E.5 display the empirical size of the tests for the null hypotheses of

kC = 1, or 2, common factors corresponding to nominal sizes of 1%, 5% and 10%. They also report

the empirical power of tests for the null hypothesis of kC + 1 common factors, when the true number

of common factors is kC . We observe that the asymptotic Gaussian distribution provides an overall

very good approximation for the left tail of the infeasible test statistics ξ̂(kC) under the null, even for

samples as small as NH = NL = 50, and T = 35, corroborating the graphical evidence of Figure 1.
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Figure 1: Small sample distribution of the re-centered and re-scaled ξ̂(kC) statistic

(a) NH = NL = 50, and T = 35 (b) NH = NL = 1000, and T = 600

The figure displays the histograms of the empirical distribution of the re-centered and re-scaled ξ̂(kC) statistic computed
on mixed frequency panels of observations, for different sample sizes NH , NL, T , simulated from a DGP where kC =
kH = kL = 1, all factors and idiosyncratic terms are generated from Gaussian random variables, and M = 4. The solid
line corresponds to the asymptotic standard Gaussian distribution of the re-centered and re-scaled statistic.

For the vast majority of sample sizes, and simulation designs, the size distortions are in the order of

1% to maximum 3% for the designs in which kC = 1. The size distortions for the feasible statistic

ξ̃(kC) are from 1% to 12% larger than those of the infeasible statistic when max(NH , NL) ≤ 200, and

T ≤ 50. The designs in which kC = 2 for samples as small as T ≤ 50, and max(NH , NL) ≤ 200

feature larger size distortions for smaller samples due to the fact that, by construction of the designs,

the signal-to-noise ratio for each of the two common factors is halved compared the designs in which

kC = 1. As expected, when either the sample sizes, or the signal-to-noise ratio of the common factors

increase, the size distortions monotonically disappear. The power of the feasible test statistics is always

equal to 1, with the exception of designs with min(NH , NL) ≤ 50, and T = 35.

6.2 Estimation of the number of common factors

We compare the following three estimators of kC : (a) the consistent sequential testing procedure of

our Proposition 2, (b) a selection procedure based on the penalized information criterion of Theorem

3.7 in Chen (2012), and (c) the three-steps selection procedure proposed by Wang (2012).9 We focus

on the average estimated number of common factors computed over the 4000 simulations.

9We thank an anonymous referee for suggesting the following three-steps estimation procedure for kC , which is a
special case of the one suggested by Wang (2012): (i) estimate the numbers k1 and k2 of pervasive factors in each panel
separately, (ii) estimate the number R of pervasive factors in the stacked panel of flow-sampled HF and LF data, (iii)
estimate kC as k̂1 + k̂2 − R̂. We use the ICp criteria of Bai (2003) to estimate the number of factors in the first two steps.
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We consider both the case in which the true numbers of pervasive factors k1 = kC + kH and

k2 = kC + kL in the two panels are known, and the case where they are estimated using the ICp2

information criterion of Bai and Ng (2002). Generally the estimates of k1 and k2 are very precise

and do not affect significantly the estimation of kC . The only exceptions are the smaller samples with

T ≤ 50, and the DGPs with many pervasive factors in the LF panel, say k2 ≥ 5, where the ICp2

criterion tends to severely underestimate the values of k2, while the ICp3 produces better estimates. 10

The critical value for our selection procedure is as in equation (4.7), with γ = 0.1, and c = 0.95.

For a small number - say not larger than 3 - of uncorrelated specific factors, the penalized informa-

tion criterion proposed in Chen (2012) yields the correct number of factors in almost all simulations

for any sample size, while our selection procedure is less accurate only for sample sizes as small as

max(NH , NL) ≤ 200, and T ≤ 50: the average value of k̂C ranges between 0.85 and 1 for kC = 1.

The average value of k̂C for our selection procedure approaches quickly the true value kC as the sample

sizes increase.

The procedure of Chen (2012) overestimates kC when the correlation φ among the specific factors

increases from 0 to 0.7, and 0.95. The overestimation is much less severe for our sequential test

procedure, also in larger samples, which also features a faster improvement in performance as the

sample sizes increase. We observe a monotonic decrease in the precision across all the estimators when

the number of specific factors becomes as large as 5, nevertheless the deterioration in performance is

less pronounced for our procedure. Finally, the consistent three-steps selection procedure of Wang

(2012) performs similarly to the one of Chen (2012) in DGPs with a small number of uncorrelated

specific factors. However, as either φ or the numbers of specific factor increase, this procedure largely

overestimates kC and becomes the worse among the three considered.

7 Empirical application

Recent public policy debates argue that manufacturing has been declining in the United States and

most jobs have migrated overseas to lower wage countries. The share of the Industrial Production (IP)

sector declined from more than 25% to roughly 18% during our sample period 1977-2011. However,

10In unreported results we have estimated k1, k2, and also R, using the ER and GR ratios of Ahn and Horenstein (2013),
and noted that they perform similarly or worse than the ICp2 criterion. Alternative estimators, such as the one proposed
by Onatski (2010), could also be considered.
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the fact that its size shrank does not necessarily exclude the possibility that the IP sector still is a key

factor of total U.S. output. When studying the role of the IP sector we face a conundrum. On the one

hand, we have 117 sectors that make up aggregate IP. These data are published monthly, and therefore

cover a rich time series and cross-section. On the other hand, contrary to IP, we do not have monthly

or quarterly data regarding the cross-section of US output across non-IP sectors, but we do so on an

annual basis. Using the class of mixed frequency group factor models proposed in Section 5, the

objective of the empirical application is to shed light on the key question of interest, namely whether,

despite the shrinking size of IP sectors, the factors related to IP are still dominant determinants of

U.S. output fluctuations.

7.1 Data description

For the IP sectors we use the same 117 IP sectoral growth rates indices sampled at quarterly frequency

from 1977.Q1 to 2011.Q4, as in Foerster, Sarte, and Watson (2011) for comparison.11 The data for

all the remaining non-IP sectors consist of the annual growth rates of real GDP for the following 42

sectors: 35 Services, Construction, Farms, Forestry-fishing and related activities, General government

(federal), Government enterprises (federal), General government (state and local) and Government en-

terprises (state and local). These LF data are published by the Bureau of Economic Analysis (BEA).12

Hence we consider the panel of these yearly GDP sectoral and the quarterly IP data given that one

of the objectives of this application is to study the comovements among these different sectors. A

description of the practical implementation of our procedure appears in OA Section D.9. 13

11 Following Foerster, Sarte, and Watson (2011), we focus only on quarterly IP data, as they share the main features
of the monthly ones but are less noisy/volatile. Details about the data are in the OA, Section D.10. Note also that we
cover the statistical factor model specification of Foerster, Sarte, and Watson (2011), not their structural analysis involving
input-output linkages.

12The sectoral GDP data are not available at quarterly frequency (in contrast to the aggregate GDP index). All growth
rates refer to seasonally adjusted real output indices, and are expressed in percentage points.

13In OA Section D.11.1 we replicate the analysis in Section II.B of Foerster, Sarte, and Watson (2011), in order to rule
out the possibilities that (a) sectoral weights in GDP and IP aggregate indexes are the major determinants in explaining the
variability of the indexes themselves, and (b) that their aggregate variability is driven mainly by sector-specific variability.
Our analysis confirms their findings, which justifies the use of a mixed frequency factor model to study the comovement
among sectors.
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7.2 Common, low- and high-frequency factors

We assume that our dataset follows the factor structure for flow-sampling as in equation (5.2), with

xHm,t and xLt corresponding to the 117 quarterly IP series and the 42 annual GDP non-IP sector data

series, respectively, for the period 1977.Q1-2011.Q4. We exclude the annual series related to IP sectors

from the annual GDP panel in order to avoid double counting. Let XH be the (T,NH) panel of the

yearly observations of the IP indices growth rates computed as the sum of the quarterly growth rates

xHm,t, m = 1, ..., 4, for year t, and let XL be the (T,NL) panel of the yearly growth rates of the non-IP

indices. Let also XHF = [xH1,1, x
H
2,1, ..., x

H
m,t, ..., x

H
4,T ]′ be the (4T,NH) panel of quarterly IP indices

growth rates.

We start by selecting the number of factors in each sub-panel, which are of dimensions kC + kH

for XH and XHF and kC + kL for XL. We use the ICp1 and ICp2 information criteria of Bai and

Ng (2002), following the empirical literature. For the panels of IP growth rate at quarterly (XHF )

and annual (XH) frequencies, ICp1 selects two factors for each panel, whereas the more strict ICp2

criterion selects one factor for XHF and two factors for XH . For the annual GDP (non-IP) sectors

panel, both ICp1 and ICp2 select a single factor.14 Our results corroborate the evidence in Foerster,

Sarte, and Watson (2011) suggesting that there is either one or two pervasive factors in the quarterly IP

growth data. While the ICp1 and ICp2 choose factors in an unconditional setup, we are also interested

in the explanatory power of these factors in a conditional setup. Hence the empirical analysis proceeds

with two factors for each panel, kC + kH = kC + kL = 2, in order to avoid potentially omitted

factors/variables in explaining economic activity growth and subsequently re-assess the conditional

significance of factors using the BIC criterion.15

In order to select the number of common and frequency-specific factors, we follow our proposed

procedure in Proposition 2. The estimated canonical correlations of the first two PC’s estimated in

each sub-panel XH and XL are used to compute the value of the feasible standardized test statistic

ξ̃(r) in (4.6) and Theorem 2, for testing the null hypotheses of r = 2 and r = 1 common factors.16 The

first canonical correlation is ρ̂1 = 0.84, while the second one is ρ̂2 = 0.06. These results are consistent

with the presence of one common factor in each of the two mixed frequency datasets considered, as

14We use kmax = 15 as maximum number of factors when computing ICp1 and ICp2.
15Foerster, Sarte, and Watson (2011) also use two factors while they emphasize the importance of the first factor.
16Given the good finite sample properties presented in the simulations (in Section 6 and OA) for a range of DGPs, we

expect that for our empirical application, the asymptotic theory also provides a good approximation.
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represented by hypothesis H(1) in Section 3.2. The values of the statistics are ξ̃(2) = −2.76 and

ξ̃(1) = −1.39 for the null hypotheses of r = 2 and r = 1 common factors, respectively. The test

rejects the null hypothesis of the presence of two common factors (r = 2), for significance levels as

small as 0.05%, while we cannot reject the null of one common factor at the 5% significance level. Our

selection procedure detailed in Proposition 2 with critical level as in (4.7) with γ = 0.1 and c = 0.95,

produces the estimate k̂C = 1. Hence, we select a model with kC = kH = kL = 1.

Figure 2: Sample paths of IP and GDP growth rates and the estimated factors, 1977 -2011
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(a) IP and GDP growth rates
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(c) High Frequency-specific factor
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(d) Low Frequency-specific factor

Panel (a) displays the dashed/circled line which corresponds to the quarterly growth rates of the aggregate IP index for
sample period 1977.Q1-2011.Q4, and the solid line which represents the annual growth rates of GDP for the entire U.S.
economy. Panel (b) displays the path of the estimated common factor. Panel (c) displays that of the HF-specific factor and
Panel (d) that of the LF-specific factor. The factors are estimated from the panels of 42 annual non-IP GDP sectoral series
and 117 quarterly IP indices using a mixed frequency group factor model with kC = kH = kL = 1.

In Figure 2, Panel (a) plots the IP and GDP growth rates during the period 1977-2011 and the
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Table 1: Adjusted R2 and percentage values of BIC of the regressions with common and/or frequency-
specific factors from economic activity indices growth rates

R̄2: Quantiles

Factors 10% 25% 50% 75% 90% % BIC

Observables: Gross Domestic Product, 1977-2011

common -2.2 -0.5 11.5 28.9 42.9 38.1
common, LF-specific 0.1 9.2 25.4 34.5 60.3 28.6
LF-specific -2.8 -2.3 5.7 15.7 22.4 33.3

Observables: IP, 1977.Q1-2011.Q4

common 0.3 4.8 20.3 36.0 60.0 42.7
common, HF-specific 1.1 6.8 28.7 45.3 63.4 48.7
HF-specific -0.7 -0.1 3.0 11.2 23.5 8.5

The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables, while those
in the last three lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory variables are
factors estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1. Reported are the
adjusted R2 of the regressions on common and high frequency indices for different quantiles of the cross-section. The last
column reports the percentage values that the BIC chooses the specific factor type regression model.

remaining Panels (b)-(d) present the estimated factor paths from the panels of 42 GDP sectors and

117 IP indices for the common, the HF-specific and the LF-specific factors, respectively. All factors

are standardized to have zero mean and unit variance in the sample and their sign is chosen so that

the majority of the associated loadings are positive. A visual inspection of the plots reveals that the

common factor in Panel (b) resembles the IP index in Panel (a), with a large decline corresponding to

the Great Recession following the financial crisis of 2007-2008 and the positive spike associated to the

recent economic recovery. On the other hand, the LF-specific factor displayed in Panel (d) features a

less dramatic fall during the Great Recession, and actually features a positive spike in 2008, followed

by large negative values in the following years. This constitutes preliminary evidence suggesting that

some non-IP sectors could feature different responses to the recent financial crisis.

The relationship of factors with the sectoral GDP and IP growth series, in a regression context,

reveals additional information about the conditional correlations of the factors with specific economic

activity growth sectors. This in turn can help us shed light on which IP and non-IP series are driving

the factors. We start with a disaggregated analysis, and examine the relative importance of the common

and frequency-specific factors in explaining the variability across all sectoral growth rates. For each

sector in the panel, we regress the GDP or IP index growth rates on (i) the common factor only, (ii) the
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specific factor only, for non-IP and IP series respectively, and (iii) both common and specific factors.

In Table 1 we report the quantiles of the empirical distribution of the adjusted R2 (denoted R̄2) of

these regressions. In addition, we report the percentage value of the times the BIC (denoted by %BIC)

selects, among the aforementioned three regression models (i)-(iii), the alternative factor conditional

information set (common and/or frequency-specific), for each sectoral index in the cross-section.17

From the first three lines in Table 1 we observe that adding the LF-specific factor to the common

factor regressions for the non-IP indices yields an increment of the median R̄2 around 14% (going

from 11.5% to 25.4%) and the 90% quantile of R̄2 increases by 17%. Adjusting for the number of

the variables in the factor regression models, the BIC favors the model with both the common and the

LF-specific factors in explaining the GDP growth rate in 29% of the sectors, whereas the model with

the common factor alone is selected in about 38% of the series. When the high frequency-specific

factor is added to the common factor, it contributes an increment of around 8% in the median R̄2 for

the IP sectors. The 49% BIC value provides strong evidence that both the common and high frequency

factors explain the IP sectoral growth rate. Overall, the results in Table 1 show that, the common factor

turns out to be pervasive for most of the IP and non-IP sectors alike as demonstrated by both the relative

R̄2 vis-à-vis those with just the frequency-specific factor. In order to investigate which sectors drive

the variation of our estimated factors and provide an economic interpretation to our factors, we list in

Table 2 the highest and lowest ten GDP non-IP sectors in terms of R̄2 when regressed on the common

factor only (in Panel A), and both the common and LF-specific factors (in Panel B). We also report the

top and bottom ten ranked GDP non-IP sectors with the highest and lowest absolute increments in R̄2

when the LF-specific factor is added to the common one (in Panel C).18

From Panel A we first note that the common factor alone explains most of the variability of service

sectors with direct economic links to IP sectors like Truck transportation, Administration & Support

Services and Warehousing, with an R̄2 ranging from 63% to 43%, as well as Accommodation with

R̄2 of 63%. This indicates that the common factor is driven by service sectors related to IP and could

thereby be interpreted as an IP factor, as already noted on Figure 2. On the other hand, the common

17The regressions in the second and third rows are restricted MIDAS regressions. Those in the fourth, fifth and sixth
rows impose the estimated coefficients of the common and high frequency factors to be the same for each quarter, as they
are estimated as high frequency regressions. The empirical distribution of the R̄2 corresponding to the first and second
lines (resp., fourth and fifth lines) of Table 1 are represented in the histograms available in OA, Figures D.11 (a) and (b)
(resp., (c) and (d)).

18The entire list of non-IP sectors ranked by the three criteria used in Table 2, are available in Tables D.24-D.26 in the
OA, Section D.11.
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Table 2: Regression of yearly sectoral GDP growth on common and LF-specific factors: adjusted R2

Panel A. Regressor: common factor Panel B. Regressors: common Panel C. Increment in
and LF specific factors adj. R2 in Panels A and B

Sector R̄2 Sector R̄2 Sector ∆R̄2

Ten sectors with largest R̄2 Ten sectors with largest R̄2 Ten sectors with largest ∆R̄2

Truck transportation 63.10 Misc. prof., scient., & tech. serv. 66.67 Misc. prof., scient., & tech. serv. 49.69
Accommodation 62.43 Admin. & support services 62.63 Gov. enterprises (state & local) 34.69
Construction 44.05 Truck transportation 62.51 Rental & leasing serv. 29.52
Other transp. & support activ. 43.31 Accommodation 61.48 General gov. (state & local) 24.90
Administrative & support services 42.69 Construction 59.75 Legal services 24.32
Other services, except gov. 42.53 Warehousing & storage 52.53 Motion picture & sound rec. 22.77
Warehousing & storage 40.95 gov. enterprises (state & local) 45.78 Fed. Res. banks, credit interm.. 20.31
Air transportation 31.58 Other services, except gov. 41.75 Administrative & support services 19.95
Retail trade 30.70 Other transportation & support act. 41.71 Social assistance 19.91
Amusem., gambling, & recr. ind. 29.17 gov. enterprises (federal) 37.78 Real estate 18.14

Ten sectors with smallest R̄2 Ten sectors with smallest R̄2 Ten sectors with smallest ∆R̄2

Funds, trusts, & other finan. vehicles -1.23 Ambulatory health care services 7.76 Accommodation -0.96
Motion picture & sound record. ind. -1.68 Management of comp. & enterpr. 7.52 Rail transportation -1.16
Pipeline transportation -1.74 Funds, trusts, & other fin. vehicles 6.15 Other transportation & support act. -1.59
Information & data processing services -1.84 Information & data processing services 1.96 Air transportation -1.77
Transit & ground passenger transp. -2.05 Educational services 1.35 Retail trade -2.15
General gov. (state & local) -2.12 Insurance carriers & related activities 0.36 Amusements, gambling -2.15
Forestry, fishing & related activities -2.33 Water transportation -0.64 Educational services -2.62
Water transportation -2.94 Farms -1.87 Farms -2.80
Securities, commodity contr., & investm. -2.99 Forestry, fishing -5.31 Forestry, fishing -2.98
Insurance carriers -3.03 Securities, commodity contr. -5.99 Securities, commodity contr. -3.00

The adjusted R2, denoted R̄2, are reported for the restricted MIDAS regressions of the growth rates of 42 GDP non-IP sectoral indices on the estimated
factors. Regressions in Panel A involve a LF explained variable and the estimated common factor. Regressions in Panel B involve a LF explained variable
and both the common and LF-specific factors. In Panel C we report the difference in R̄2 (denoted as ∆R̄2) between the regressions in Panel B and
regressions in Panel A.

factor turns out to be completely unrelated to most of the Financial, Insurance and Information services

sectors. Turning to Panel C of Table 2, which reports the difference in R̄2 between the regressions in

Panels A and B, we note that the LF-specific factor explains more than 20% of the variability of output

for very heterogeneous services sectors as well as Government (state and local).19 Interpreting these

results, we conclude that the LF-specific factor is completely unrelated to service sectors which depend

almost exclusively on IP output (e.g. transportation, retail trade), and is a common factor driving the

comovement of other non-IP service sectors, such as Professional scientific and technical services,

Government, legal services.

In Table 2 we highlight further differences in the dynamics of output growth between the two sub-

sectors of the financial services industry which are particularly revealing, the Securities and Credit

intermediation, extensively studied by Greenwood and Scharfstein (2013). We find that the subsectors

19Such services include Miscellaneous professional, scientific, and technical services, Administrative and support ser-
vices, Legal services, Real estate, some important financial services like Federal Reserve banks, Credit intermediation, and
Related activities, Rental and leasing services.
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Funds, trusts, and other financial vehicles as well as Securities, commodity contracts, and investments,

are unrelated to both the common and LF-specific factors, indicating that their output growth is uncor-

related with the common component of real output growth and across the other sectors that correlate

with the U.S. economic activity. In contrast, the Credit intermediation industry comoves with the other

IP and non-IP sectors (see Tables D.24 and D.25 in the OA).

Up to this point, we examined the explanatory power of the factors for sectoral output indices. For

non-IP GDP, these indices correspond to the finest level of disaggregation of output growth by sector.

In Table 3 we report the results of regressions with aggregated indices instead. In particular, we regress

Table 3: Regression results of aggregate IP and selected GDP indices growth rates on estimated factors

Panel A Quarterly observations, 1977.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H) BIC

Industrial Production 89.06 5.02 90.26 1.20 CH

Panel B Yearly observations, 1977-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GDP 60.54 8.59 74.21 13.67 CL
GDP - Manufacturing 81.88 -3.03 81.53 -0.35 C
GDP - Agriculture, forestry, fishing, & hunting 1.43 -2.52 -1.26 -2.69 C
GDP - Construction 44.05 11.22 59.75 15.70 CL
GDP - Wholesale trade 20.35 7.90 30.83 10.48 CL
GDP - Retail trade 30.70 -2.86 28.56 -2.15 C
GDP - Transportation & warehousing 62.14 -2.95 60.97 -1.17 C
GDP - Information 12.14 22.28 37.57 25.43 CL
GDP - Finance, insurance, real estate, rental, & leasing -1.42 21.22 21.11 22.53 L
GDP - Professional and business services 30.02 30.21 65.61 35.59 CL
GDP - Educational serv., health care, and social assistance -1.38 18.38 18.18 19.56 L
GDP - Arts, entertainment, recreation, accommodation, & food serv. 53.51 -2.23 53.70 0.18 C
GDP - Government -2.12 22.37 20.47 22.59 L

The adjusted R2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected aggregated sectoral GDP non-IP output indices
on the common factor (column R̄2(C)), the specific HF and LF factors only (columns R̄2(H) and R̄2(L)), and the common and frequency-specific
factors together (column (3)) are reported. The fourth column displays the difference between the values in the third and first columns. The last column
reports the choice of the BIC across the regression models with the common factor, or the frequency-specific factor, or both factors (C denotes the
common factor, H denotes the high frequency factor and L denotes the low frequency factor and corresponding factor combinations (CL and CH) in the
regression models). The factors are estimated from the panel of 42 GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with
kC = kH = kL = 1.

the output of each aggregate index either on the estimated (a) common factor, (b) frequency-specific or
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(c) both aforementioned factors, and report the corresponding R̄2 of these regressions in the first three

columns. The last column in Table 3 reports the model favored by the BIC among the three regression

specifications. It is important to note that now we also include the GDP Manufacturing aggregate

index which is not used in the estimation of the factors. Panel A in Table 3 shows that the common

factor explains around 89% of the variability in the aggregate IP growth index, confirming that this

factor can be interpreted as an IP factor during the period 1977-2011. This is further corroborated

in Panel B where we obtain an R̄2 of 82% in the regression of the GDP Manufacturing Index on the

common factor alone. As most of the sectors included in the IP index are Manufacturing sectors, this

result is not surprising. Yet, it is still worth noting because, as remarked earlier, the GDP data on

Manufacturing have not been used in the factor estimation, in order to avoid double-counting these

sectors in our mixed frequency sectoral panel.20

Looking at the aggregate GDP index, we first note that even if the weight of IP sectors in the

aggregate GDP index has always been below 30%, still 61% of its total variability can be explained

exclusively by the common factor which - as shown in Panel B - is primarily an IP factor. This implies

that there must be substantial comovement between IP and some important service sectors. Moreover,

it appears from the first line in Panel B that a relevant part of the variability of the aggregate GDP

index not due to the common factor is explained by the LF-specific factor (since the R̄2 increases by

about 14% from 60.5% to 74.2%). This indicates that significant comovements are present among the

most important sectors of the U.S. economy which are not related to manufacturing. Indeed, Panel B

indicates that some services sectors such as Professional and Business Services and Information, as

well as other sectors such as Wholesale trade and Construction load significantly both on the common

and the LF-specific factor, while some other sectors like Finance and Government load exclusively on

the LF-specific factor.21

The BIC in Table 3, Panel B, favors the regression model with both the common and low frequency

factors, among the three factor regression specifications for the U.S. GDP growth rate, while the low

frequency factor alone yields a low R̄2 of 9%. Similarly, although the HF-specific factor in Panel A

seems to be relatively less important in explaining the aggregate IP index (as the R̄2 increases by only

20A detailed discussion of the difference in the sectoral components of the IP index and the GDP Manufacturing index
is provided in OA, Section D.10.

21The results change when we look at the Finance sector disaggregated in (1) Federal Reserve banks, credit interme-
diation, and related activities, (2) Securities, commodity contracts, and investments, (3) Insurance carriers and related
activities, as evident in Table 2.
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1% when it is added as a regressor to the common factor regression model for the IP growth rate),

the BIC suggests that both the common and HF factors are important.22 Overall the small R̄2 could

suggest that the HF-specific factor is pervasive only for a subgroup of IP sectors which have relatively

low weights in the index, meaning that their aggregate output is a negligible part of the output of the

entire IP sector and, consequently, also the entire U.S. economy. These results corroborate the findings

of Foerster, Sarte, and Watson (2011), who claim that the main results of their paper are qualitatively

the same when considering either one or two common factors extracted from the same 117 IP indices of

our study. It is worth emphasizing that the common factor explains the dominant 89% of the variability

of the total IP growth and 61% of the GDP growth.

Given that our sample period covers the Great Moderation, characterized by a reduction in the

volatility of business cycle fluctuations starting in the mid-1980s, we revisit this analysis for different

subsamples. The details can be found in the OA, Section D.11.4, while we discuss here briefly the

main results. We find a deterioration of the overall fit of approximate factor models during the Great

Moderation period starting in 1984 and ending in 2007 – a finding also reported by Foerster, Sarte, and

Watson (2011) – where our common factor plays a relatively less significant role during that period.

Interestingly, when the financial crisis is added to the Great Moderation (sample 1984-2011), we find

patterns closer to the full sample results presented above. The other findings, i.e. the exposure of the

various subindices, appear to be similar in subsamples and in the full sample.

8 Conclusions

We present a general framework for group factor models and develop a unified asymptotic theory for

the identification of common and group factors, for the determination of the number of common and

specific factors, for the estimation of loadings and factor values via principal component analysis and

canonical correlation analysis in a setting with large dimensional data sets, using asymptotic expan-

sions both in the cross-sections and time series dimensions. Of special interest is the group factor

mixed frequency model for which the data panels of different/mixed frequencies allow not only for a

natural grouping in extracting factors but also a framework which has the advantage of identifying and

22See also Table D.27 in OA, Section D.11, for the R̄2 of the regression of all GDP indices on the HF factor only, and
all the 3 factors together.
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estimating factors which are common across frequencies as well as frequency specific.

Our theoretical contributions, in particular Theorems 1 and 2, are of interest beyond (mixed fre-

quency) group factor models. Inference regarding the rank of an unknown, real-valued matrix is

an important and well-studied problem.23 For indefinite matrix estimators there is a well-developed

framework, see Donald, Fortuna, and Pipiras (2007). The case of semi-definite matrix estimators still

poses many challenges, however, as discussed by Bai and Ng (2007) and more recently in Donald,

Fortuna, and Pipiras (2014) who argue that the tests suggested in the literature are not suitable. In

fact, when the rank of a generic (positive) semi-definite matrix, say V, needs to be estimated using a

semi-definite estimator, say V̂ , the asymptotic variance-covariance matrix of this estimator - denoted

as W0 - is necessarily singular, as shown in Donald, Fortuna, and Pipiras (2007). Therefore standard

rank tests cannot be applied as they assume that the matrix W0 is full rank. In addition, our results in

Section 4 provide the guidance to the construction of the asymptotic distribution of the (sum of the)

eigenvalues of a semi-definite matrix, and develop a sequential testing procedure for determining the

rank of the matrix itself. This test, for example, would enable us to determine the number of latent

dynamic factors in large panels of data, without having to estimate them, a problem tackled by Bai

and Ng (2007). In their paper, first a number - say r - of static factors should be estimated by PCA

from a large panel. Different from their methodology, and also different from the solution proposed by

Amengual and Watson (2007), we can directly test the rank - say q ≤ r - of the residual covariance (or

correlation matrix) of a VAR model estimated on the factors themselves. Furthermore, our methods

can be used to develop a new test for the question posed by Pelger (2015) as to whether the factor

spaces of statistical and economic factors are equal.

There is a plethora of applications to which our theoretical analysis applies. We selected a specific

example based on the work of Foerster, Sarte, and Watson (2011) who analyzed the dynamics of

comovements across 117 IP quarterly sectors using factor models. We revisit part of their analysis and

incorporate the rest - and most dominant part - of the U.S. economy, namely the non-IP sectors whose

growth rate we only observe annually. We find evidence for a single common factor among IP and

non-IP sectors which explains 89% of the aggregate IP index and 61% of the aggregate GDP index.

Despite the generality of our analysis, we can think of many possible extensions, such as models

23See for instance Gill and Lewbel (1992), Cragg and Donald (1996), Robin and Smith (2000) and Kleibergen and Paap
(2006).
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with loadings which change across sub-periods, i.e. periodic loadings, or loadings which vary stochas-

tically or feature structural breaks. Moreover, we could consider the problem of specification and

estimation of a joint dynamic model for the common and frequency-specific factors extracted with

our methodology (see Ghysels (2016) and the references therein for structural Vector Autoregressive

(VAR) models with mixed frequency sampling). Further, in the interest of conciseness we have fo-

cused our analysis on models with two sampling frequencies, leading to group factor models with two

groups. Results could be extended to cover the cases with more than two groups, and therefore more

than two sampling frequencies. All these extensions are left for future research.
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Appendices

We use the following notation. Let ‖A‖ =
√
tr(A′A) denote the Frobenius norm of matrix A. We denote

by ‖Z‖p = (E[‖Z‖p])1/p the Lp-norm of random matrix Z, for p > 0. We denote by d→ convergence in

distribution. For a sigma-fieldF , we denote byZn
d→ Z (F-stably) the stable convergence onF of a sequence of

random vectors, that is, P (Zn ∈ A,U)→ P (Z ∈ A,U) as n→∞, for any Borel set A with P (Z ∈ ∂A) = 0,
where ∂A is the boundary of set A, and any measurable set U ∈ F (see e.g. Renyi (1963), Aldous and Eagleson
(1963), Hall and Heyde (1980), Kuersteiner and Prucha (2013)). In particular, for a symmetric positive definite
random matrix Ω measurable with respect toF , by Zn

d→ N(0,Ω) (F-stably) we mean Zn
d→ Ω1/2ε (F-stably),

where ε ∼ N(0, I) is independent of F .

A Assumptions
We make the following assumptions:

Assumption A.1. We have N1, N2, T →∞ such that the conditions in (4.1) hold.

Assumption A.2. The unobservable factor process Ft = [ f c ′t , f s ′1,t , f
s ′
2,t ]′ satisfies the normalization restric-

tions in (2.2), with ΣF = V (Ft) positive-definite.

Assumption A.3. The loadings matrix Λj = [ Λcj
... Λsj ] = [ λj,1, . . . , λj,Nj ]′ is such that lim

Nj→∞
1
Nj

Λ′jΛj =

Σλ,j , where Σλ,j is a positive-definite (kj , kj) matrix with distinct eigenvalues and kj = kc + ksj , for j = 1, 2.

Assumption A.4. The error terms εj,i,t and the factors hj,t = [f c′t , f
s′
j,t]
′ are such that for j = 1, 2 and all

i, t ≥ 1: a) E[εj,i,t|Ft] = 0 and E[ε2
j,i,t|Ft] ≤ M , a.s., where Ft = σ(Fs, s ≤ t), b) E[ε8

j,i,t] ≤ M and
E[‖hj,t‖2r∨8] ≤M , for a constant M <∞, where r > 2 is defined in Assumption A.5 b).

Assumption A.5. Define the variables ξj,t = 1√
Nj

∑Nj

i=1 λj,iεj,i,t and κj,t = 1√
Nj

∑Nj

i=1(ε2
j,i,t − η2

j,t), indexed

by N1, N2, where η2
j,t = plim

Nj→∞

1
Nj

∑Nj

i=1E[ε2
j,i,t|Ft], for j = 1, 2. a) For any t ≥ 1 and h ≥ 0 have:

[ξ′1,t, ξ
′
2,t, ξ

′
1,t−h, ξ

′
2,t−h]′

d→ N(0,Ωt(h)), (Ft-stably),
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as N1, N2 →∞, where the asymptotic variance matrix is:

Ωt(h) =


Ω11,t(0) Ω12,t(0) Ω11,t(h) Ω12,t(h)

Ω22,t(0) Ω21,t(h) Ω22,t(h)
Ω11,t−h(0) Ω12,t−h(0)

Ω22,t−h(0)

 ,
for Ωjk,t(h) = plim

N1,N2→∞

1√
NjNk

∑Nj

i=1

∑Nk
`=1 λj,iλ

′
k,`cov(εj,i,t, εk,`,t−h|Ft), for any j, k, h.

Moreover, for all N1, N2 ≥ 1 and j = 1, 2, we have: b) E(‖ξj,t‖2r|Ft) ≤M , a.s., and c) E
[
|κj,t|4

]
≤M , for

constants M <∞ and r > 2.

Assumption A.6. a) The triangular array processes Vt ≡ VN1,N2,t = [h′j,t, ξ
′
j,t, j = 1, 2]′ and V ∗t ≡ V ∗N1,N2,t

=

[κj,t, η
2
j,t, j = 1, 2]′ are strong mixing of size − r

r−2 , uniformly in N1, N2 ≥ 1. 24 Moreover
b) ‖E(ξj,tξ

′
k,t|Ft)− E(ξj,tξ

′
k,t|Ft, ..., Ft−m)‖2 = O(m−ψ), as m→∞, uniformly in N1, N2 ≥ 1, and

c) ‖η2
j,t − E(η2

j,t|V
t+m
t−m )‖8 = O(m−ψ), as m→∞, uniformly in N1, N2 ≥ 1,

for j, k = 1, 2, where Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m) and ψ > 1.

Assumption A.7. For j = 1, 2: a) 1
T

∑T
t=1

∑t−1
s=1E[η4

j,ts] ≤M ,E

[(
1√
Nj

∑Nj

i=1(εj,i,tεj,i,s − η2
j,ts)

)2
]
≤M ,

for any s < t and a constantM , where η2
j,ts = plim

Nj→∞

1
Nj

∑Nj

i=1E[εj,i,tεj,i,s|Ft]; b) 1√
T

∑T
t=1(1+η2

j,t)hj,tα
′
j,t =

Op(1), 1
T

∑T
t=1 ξj,tα

′
j,t = op(1), E[‖αj,t‖2] = O(1), where αj,t = 1√

NjT

∑Nj

i=1

∑T
s=1,s 6=t εj,i,tεj,i,shj,s;

c)E[‖βj,t‖2] = O(1) andE[‖β̄j,t‖2] = O(1), where βj,t = 1√
NjT

∑Nj

i=1

∑T
s=1,s 6=t εj,i,t(εj,i,sζj,s−E[εj,i,sζj,s])

and β̄j,t = 1
T

∑Nj

i=1

∑T
s=1,s 6=t εj,i,tE[εj,i,sζj,s], where ζj,t = (η2

j,th
′
j,t, κj,th

′
j,t, ξ

′
j,t, α

′
j,t)
′.

Assumption A.8. For j = 1, 2: a) P [‖hj,t‖ ≥ δ] ≤ c1 exp(−c2δ
b), for large δ; b)

∑Nj

`=1:`6=iE[εj,`,tεj,i,t] ≤
M , for all i ≥ 1; c) P [‖ 1

T

∑T
t=1 zj,t‖ ≥ δ] ≤ c1T exp(−c2δ

2T η) + c3Tδ
−1 exp(−c4T

η̄), for all i ≥ 1

and δ > 0, where either zi,t = hj,tεj,i,t, or zi,t = ε2
j,i,t − E[ε2

j,i,t], or zi,t = 1√
Nj

∑Nj

`=1:` 6=i εj,`,tεj,i,t −

E[ 1√
Nj

∑Nj

`=1: 6̀=i εj,`,tεj,i,t]; d) ‖λj,i‖ ≤ M , for all i ≥ 1; where b, c1, c2, c3, c4, η, η̄,M > 0 are constants,

and η ≥ 1/2.

Assumption A.9. The error terms are such that: a) Cov(εj,i,t, εk,`,t−h|Ft) = 0, if either j 6= k, or i 6= `, b)
E[εj,i,t|{εj,i,t−h}h≥1,Ft] = 0, c) E[ε2

j,i,t|{εj,i,t−h}h≥1,Ft] = γj,ii, say, where γj,ii > 0, for all j, i, t, h.

Assumption A.1 defines the asymptotic scheme. Assumption A.2 concerns the first- and second-order moments
of the factor vector. Positive definiteness of the variance-covariance matrix ΣF is necessary for our model to
have exactly kc+ks1+ks2 pervasive factors. It holds if, and only if, the eigenvalues of matrix ΦΦ′ are smaller than
1 in modulus. The zero restrictions on the matrix ΣF in (2.2), corresponding to the orthogonality of the common
and group-specific factors, as well as the identity diagonal blocks, are identification conditions. Assumption
A.3 concerns the empirical cross-sectional second-order moment matrix of the loadings in each group j = 1, 2.
It implies that matrix Λj has full column-rank, for Nj large enough, j = 1, 2. Positive definiteness of matrix
Σλ,j , for j = 1, 2, is also necessary for the existence of exactly kc + ks1 + ks2 pervasive factors. Note that we

24That is, α(h) = O(h−φ) for some φ > r
r−2 , where α(h) = sup

N1,N2≥1
sup
t≥1

sup
A∈Vt

−∞,B∈V∞t+h

|P (A ∩ B) − P (A)P (B)|,

where Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m), and similarly for V ∗t .
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consider non-random loadings to simplify the assumptions and proofs. If the loadings were random, stochastic
convergence could be obtained with a DGP for the loadings which satisfies the conditions of the LLN for weakly
dependent data. Assumptions A.2 and A.3 are similar to conditions used in the large scale factor model literature
(see Assumptions A and B in Bai and Ng (2002), Bai (2003), and Bai and Ng (2006), among others).

Assumption A.4 requires the existence of higher order moments for the factors and the error terms, similarly
as e.g. in Assumptions A and C.1 in Bai and Ng (2002) and Bai (2003).

Assumption A.5 constraints the amount of admissible cross-sectional dependence of the error terms across
different individuals, in the spirit of the framework - introduced by Chamberlain and Rothschild (1983) - of
weak cross-sectional dependence characterizing “approximate factor models”. No distributional assumption
is made on the idiosyncratic terms. Assumption A.5 a) states that the cross-sectional averages of the error
terms scaled by factor loadings satisfy a CLT. It corresponds to Assumption F.3 in Bai (2003). We adopt
stable convergence on the sigma-field Ft to allow for the asymptotic variance-covariance matrix Ωt(h) to
possibly depend on common factors. That would occur e.g. if there are common components in the condi-
tional volatility processes of the idiosyncratic errors. Assumption F.3 in Bai (2003) applies if the trivial fil-
tration is replaced for Ft. Assumption A.5 b) concerns higher-order conditional moments of the scaled cross-
sectional average of error terms. A sufficient condition for Assumption A.5 b) with r = 3 is ‖λj,i‖ ≤ M and
1/N3

j

∑Nj

i1,i2,...,i6=1 |E[εj,i1,tεj,i2,t...εj,i6,t|Ft]| ≤M , a.s., for all Nj ≥ 1 and j = 1, 2. For r = 1 it corresponds
to Assumption C.3 in Bai (2003). Assumption A.5 c) concerns the fourth-order moment of cross-sectional
averages of squared error terms and corresponds to Assumption C.5 in Bai (2003).

Assumption A.6 allows for weak serial dependence in error terms and factor processes. Specifically, As-
sumption A.6 a) is a strong mixing condition, where (minus) the mixing size is inversely related to the moment
order r introduced in Assumptions A.4 and A.5. We rely on this specific concept of time-series dependence
because we use a CLT for data that are Near-Epoch Dependent (NED) on mixing processes (see e.g. Davidson
(1994)), to show the asymptotic Gaussian distribution of the test statistic in Theorem 1. We deploy this specific
version of the CLT for dependent data as it allows us to cope with the rather complex nature of the leading term
in the asymptotic expansion of the test statistic, that involves the time-series average of the square of a cross-
sectional average of scaled errors (instead of an average of averages as in the asymptotic expansion of factor
estimates). We use Assumptions A.3, A.4, A.5 a)-b) and A.6 to check the conditions of the CLT in Section B.1.6
i). Assumptions A.6 b) and c) require that certain quantities are well-approximated by their projection on a finite
number of components of a mixing process to apply the NED property.

Assumption A.7 consists of additional restrictions on the weak cross-sectional and time-series dependence
of the error and factor processes, which are used to prove the asymptotic expansions for the PCA estimates
of the pervasive factors in the two groups in Proposition 3 in Section B.1.1. Specifically, Assumption A.7 a)
concerns cross-sectional averages of cross-products of error terms at different dates. It requires both that these
cross-sectional averages are close to the corresponding population covariances in the large sample limit, and that
the latter covariances decay with the time lag in a summable way. Assumptions A.7 b) and c) provide bounds on
terms involving processes αt, βt and β̄t, that consist of averages of products of error terms at different dates. We
elaborate on the conditions of Assumption A.7 in OA Section D.7 to show that they hold under weak primitive
assumptions.

Assumptions A.5, A.6 and A.7 yield conditions of weak cross-sectional and time-series dependence to
control terms such as those in Assumptions C, D, E and F.1-F.3 in Bai (2003). They could be substituted, at the
expense of more elaborated proofs, by other weak dependence assumptions for factors and idiosyncratic errors.

Assumption A.8 is used to get bounds on the remainder terms in the asymptotic expansions of estimated
factors and loadings in Proposition D.4 uniformly across i and t. These bounds are used to control the estimation
error for the recentering and rescaling terms of the feasible test statistic in Theorem 2. Specifically, Assumption
A.8 a) is a tail condition on the factor stationary distribution, Assumption A.8 b) constraints the amount of cross-
sectional dependence of the error terms, while Assumption A.8 d) is a uniform bound on true factor loadings.
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In Assumption A.8 c) we require that time series averages of certain zero-mean processes involving error terms
and factors satisfy a large deviation bound. Such a large deviation bound is implied by tail conditions plus
restrictions on serial dependence like strong mixing (see e.g. Theorems 3.1 and 3.2 in Bosq (1998)).

Assumption A.9 simplifies the derivation of the feasible asymptotic distribution of the statistic in Theorem
2. This condition excludes correlation of the error terms across individuals and time (conditional on the factors),
as well as conditional heteroschedasticity, and implies a “strict factor model” for each group. In that sense, it is
more restrictive than Assumptions A.5, A.6, A.7 and A.8 b)-c). Moreover, under Assumption A.9, the matrix
Ωjj,t(0) in Assumption A.5 a) simplifies to Ωjj = limNj→∞(1/Nj)

∑Nj

i=1 λj,iλ
′
j,iγj,ii , while Ωjk,t(h) = 0 if

either h 6= 0, or j 6= k. We note that, Assumption A.9 simplifies substantially the proof of Theorem 2, but is not
needed in the proofs of Theorem 1 and Propositions D.4 through D.7.

B Proofs

B.1 Proof of Theorem 1
The proof of Theorem 1 is structured as follows. We start by deriving an asymptotic expansion for the estimates
of the pervasive factors extracted by PCA in each group (Subsection B.1.1). This result yields an asymptotic
expansion for the sample canonical correlation matrix R̂ (Subsection B.1.2), and in turn it is used to obtain the
asymptotic expansions of the eigenvalues and eigenvectors of matrix R̂ by perturbation methods (Subsections
B.1.3 and B.1.4). This yields the asymptotic expansions of the canonical correlations and of the test statistic
ξ̂(kc) (Subsection B.1.5). Finally, the asymptotic Gaussian distribution of the test statistic follows by applying
a suitable CLT for dependent triangular arrays (Subsection B.1.6). The proofs of Proposition 3 and technical
Lemmas B.1-B.9 are provided in the OA Section C.

B.1.1 Asymptotic expansion of the factor estimates ĥj,t
PROPOSITION 3. Under Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7, we have:

ĥj,t = Ĥj(hj,t + ψj,t), ψj,t :=
1√
Nj

uj,t +
1

T
bj,t +

1√
NjT

dj,t + ϑj,t, (B.1)

for j = 1, 2, t = 1, . . . , T , where uj,t =
(

1
Nj

∑Nj

i=1 λj,iλ
′
j,i

)−1
1√
Nj

∑Nj

i=1 λj,iεj,i,t, λj,i = (λc′j,i, λ
s′
j,i)
′,

bj,t =
(

1
Nj

∑Nj

i=1 λj,iλ
′
j,i

)−1 (
1
T

∑T
t=1 hj,th

′
j,t

)−1
η2
j,thj,t,

dj,t =
(

1
Nj

∑Nj

i=1 λj,iλ
′
j,i

)−1 (
1
T

∑T
t=1 hj,th

′
j,t

)−1
(

1√
NjT

∑Nj

i=1

∑T
s=1 εj,i,shj,sλ

′
j,i

)
hj,t, and terms ϑj,t are

such that 1
T

∑T
t=1

(
1√
Nj
uj,t + 1

T bj,t + 1√
NjT

dj,t + ϑj,t

)
ϑ′k,t = op

(
1

N
√
T

)
and 1

T

∑T
t=1 hj,tϑ

′
k,t = Op

(
1
N + 1

T 2

)
as N1, N2, T → ∞, and the matrix Ĥj converges in probability to a nonstochastic orthogonal (kj , kj) matrix,
for j, k = 1, 2.

In each panel Proposition 3 provides a more accurate asymptotic expansion of principal components compared
to known results used to show consistency and asymptotic normality of PCA estimators in large panels (see
e.g. Bai and Ng (2002), Stock and Watson (2002), Bai (2003), Bai and Ng (2006)). We need such refined result
to control higher-order terms in the asymptotic expansion of the test statistic.
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B.1.2 Asymptotic expansion of matrix R̂

The canonical correlations and the canonical directions are invariant to one-to-one transformations of the vectors
ĥ1,t and ĥ2,t (see e.g. Anderson (2003)). Therefore, without loss of generality, for the asymptotic analysis of the
test statistic ξ̂(kc), we can set Ĥj = Ikj , j = 1, 2, in expansion (B.1). We get:

V̂j,k =
1

T

T∑
t=1

ĥj,tĥ
′
k,t =

1

T

T∑
t=1

(hj,t + ψj,t) (hk,t + ψk,t)
′ = Ṽj,k + X̂j,k, (B.2)

where:

Ṽj,k =
1

T

T∑
t=1

hj,th
′
k,t , X̂j,k =

1

T

T∑
t=1

(hj,tψ
′
k,t + ψj,th

′
k,t) +

1

T

T∑
t=1

ψj,tψ
′
k,t, (B.3)

for j, k = 1, 2. From the definition of matrix R̂ in (3.1), and by using (B.2) and V̂ −1
jj =

(
Ikj + Ṽ −1

jj X̂jj

)−1
Ṽ −1
jj ,

we get:

R̂ =
(
Ik1 + Ṽ −1

11 X̂11

)−1
Ṽ −1

11

(
Ṽ12 + X̂12

)(
Ik2 + Ṽ −1

22 X̂22

)−1
Ṽ −1

22

(
Ṽ21 + X̂21

)
. (B.4)

By using the definition of ψj,t in Proposition 3, in the next Lemma we derive an upper bound for terms X̂j,k,
j, k = 1, 2.

LEMMA B.1. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have X̂j,k = Op (δN,T ), for j, k = 1, 2,
where δN,T := (min{N,T})−1.

Let us now expand matrix R̂ at second order in the X̂j,k. The reason for going beyond the first order is the
following. It turns out that the first-order contribution of the X̂j,k to the statistic of interest involves leading

terms of stochastic orders Op
(

1
N
√
T

)
and Op

(
1

T
√
NT

)
(see Lemma B.5 below). The second-order remainder

term is Op(δ2
N,T ), and δ2

N,T is not negligible with respect to max{ 1
N
√
T
, 1
T
√
NT
}, when either T is too small

compared to N , or N is too small compared to T . In order to get validity of our results for more general
conditions on the relative growth rate of N and T such as in Assumption A.1, we consider a second-order
expansion. By using (I − X)−1 = I + X + X2 + Op(δ

3
N,T ) for X = Op(δN,T ), from (B.4) we get the next

Lemma.

LEMMA B.2. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7, the second-order asymptotic expansion
of matrix R̂ is:

R̂ = R̃+ Ψ̂ +Op(δ
3
N,T ), (B.5)

where R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 and Ψ̂ = Ṽ −1

11 Ψ̂∗, with Ψ̂∗ = Ψ̂∗ (I) + Ψ̂∗ (II),

Ψ̂∗ (I) = −X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21, (B.6)

Ψ̂∗ (II) = −X̂11Ṽ
−1

11 Ψ̂∗ (I) +
(
X̂22B̃ − X̂21

)′
Ṽ −1

22

(
X̂22B̃ − X̂21

)
, (B.7)

and B̃ = Ṽ −1
22 Ṽ21.

Equation (B.5) represents matrix R̂ as the sum of the sample canonical correlation matrix R̃ computed with the
true factor values, the estimation error term Ψ̂ that consists of first-order and second-order components Ψ̂∗ (I)

and Ψ̂∗ (II), and the third-order remainder term Op(δ
3
N,T ).
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B.1.3 Matrix R̃ and its eigenvalues and eigenvectors

Let us now characterize matrix R̃ and its eigenvalues, that are ρ̃2
1, ..., ρ̃

2
k1

, i.e. the squared sample canonical
correlations of vectors h1,t and h2,t, under the null hypothesis of kc > 0 common factors among the 2 groups
of observables. Since the vectors h1,t and h2,t have a common component of dimension kc, we know that
ρ̃1 = ... = ρ̃kc = 1 a.s.. Using the notation:

Σ̃cc =
1

T

T∑
t=1

f ct f
c′
t , Σ̃c,j =

1

T

T∑
t=1

f ct f
s′
j,t , Σ̃j,c = Σ̃′c,j , Σ̃j,k =

1

T

T∑
t=1

fsj,tf
s′
k,t , j, k = 1, 2,

we can write matrices Ṽj,k, with j, k = 1, 2, in (B.3) in block form as:

Ṽjj =

(
Σ̃cc Σ̃c,j

Σ̃j,c Σ̃jj

)
, j = 1, 2, Ṽ12 =

(
Σ̃cc Σ̃c,2

Σ̃1,c Σ̃12

)
= Ṽ ′21.

By straightforward matrix algebra we get the next Lemma.

LEMMA B.3. The matrix R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 is such that:

R̃ =

[
Ikc Σ̃−1

cc Σ̃c1(Ik1−kc − R̃ss)
0 R̃ss

]
,

where R̃ss = Σ̃−1
11|cΣ̃12|cΣ̃

−1
22|cΣ̃21|c and Σ̃jk|c := Σ̃jk − Σ̃jcΣ̃

−1
cc Σ̃ck for j, k = 1, 2.

Matrix R̃ss is the sample canonical correlation matrix for the residuals of the sample orthogonal projections of
f s1,t and fs2,t onto f ct . From Lemma B.3, the kc largest eigenvalues of matrix R̃ are ρ̃2

1 = ... = ρ̃2
kc = 1, while the

remaining k1 − kc eigenvalues are the eigenvalues of matrix R̃ss and are such that 1 > ρ̃2
kc+1 ≥ ... ≥ ρ̃2

k1
> 0,

a.s.. Let us define:

Ec
(k1×kc)

=

[
Ikc

0

]
, Es

(k1×(k1−kc))
=

[
0

Ik1−kc

]
. (B.8)

Then, the eigenvectors associated with the first kc unit eigenvalues of R̃ are spanned by the columns of matrix
Ec. The columns of matrices Ec and Es span the space Rk1 .

B.1.4 Eigenvalues and eigenvectors of matrix R̂ obtained by perturbation methods

The estimators of the first kc canonical correlations are such that ρ̂2
` , with ` = 1, ..., kc are the kc largest

eigenvalues of matrix R̂. We now derive their asymptotic expansion under the null hypothesis H(kc) using
perturbations arguments applied to equation (B.5). Let Ŵ ∗1 be a (k1, k

c) matrix whose columns are eigenvectors
of matrix R̂ associated with the eigenvalues ρ̂2

` , with ` = 1, ..., kc. We have:

R̂Ŵ ∗1 = Ŵ ∗1 Λ̂, (B.9)

where Λ̂ = diag(ρ̂2
` , ` = 1, ..., kc) is the (kc, kc) diagonal matrix containing the kc largest eigenvalues of R̂.

We know from the previous subsection that the eigenspace associated with the largest eigenvalue of R̃ (equal to
1) has dimension kc and is spanned by the columns of matrix Ec. Since the columns of Ec and Es span Rk1 , we
can write the following expansions:

Ŵ ∗1 = Ec Û + Esα̂, Λ̂ = Ikc + M̂, (B.10)
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where Ec and Es are defined in equation (B.8), the stochastic (kc, kc) matrix Û is nonsingular with probability
approaching (w.p.a.) 1, stochastic matrix M̂ is diagonal, and α̂ is a (k1 − kc, kc) stochastic matrix. By the
continuity of the matrix eigenvalue and eigenfunction mappings, and Lemma B.1, we have that α̂ and M̂ con-
verge in probability to null matrices as N1, N2, T → ∞ at rate Op(δN,T ). By substituting the expansions (B.5)
and (B.10) into the eigenvalue-eigenvector equation (B.9), using the characterization of matrix R̃ obtained in
Lemma B.3, and keeping terms up to order Op(δ3

N,T ), we get expressions for matrices α̂ and M̂ . These yield
the asymptotic expansions of the eigenvalues and eigenvectors of matrix R̂ provided in the next Lemma.

LEMMA B.4. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7, we have:

Λ̂ = Ikc + Û−1Σ̃−1
cc

{
Ψ̂∗cc + Ψ̂∗cs(Ik1−kc − R̃ss)−1Ψ̂sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂scΣ̃

−1
cc Ψ̂∗cc

}
Û

+Op(δ
3
N,T ), (B.11)

Ŵ ∗1 =
(
Ec + Es(Ik1−kc − R̃ss)−1

[
Ψ̂sc + Ψ̂ss(Ik1−kc − R̃ss)−1Ψ̂sc

−(Ik1−kc − R̃ss)−1Ψ̂sc

(
Σ̃−1
cc Ψ̂∗cc

)])
Û +Op(δ

3
N,T ), (B.12)

where Ψ̂cc, Ψ̂cs = Ψ̂′sc, Ψ̂ss denote the upper-left (kc, kc) block, the upper-right (kc, ks1) block and the lower-
right (ks1, k

s
1) block of matrix Ψ̂, and similarly for the blocks of Ψ̂∗.

In equations (B.11) and (B.12), in the terms that are of second-order with respect to Ψ̂, we can replace Ψ̂ by
Ψ̂(I) without changing the order Op(δ3

N,T ) of the remainder term. Note that the approximation in (B.11) holds
for the terms in the main diagonal, as matrix Λ̂ has been defined to be diagonal.

B.1.5 Asymptotic expansion of
∑kc

`=1 ρ̂`

Let us now derive an asymptotic expansion for the sum of the kc largest canonical correlations
∑kc

`=1 ρ̂`. By
using the expansion of the matrix square root function in a neighbourhood of the identity, i.e. (I + X)1/2 =
I + 1

2X −
1
8X

2 +Op(δ
3
N,T ) for X = Op(δN,T ), from equation (B.11) we have:

Λ̂1/2 = Ikc +
1

2
Û−1Σ̃−1

cc

{
Ψ̂∗cc −

1

4
Ψ̂∗ccΣ̃

−1
cc Ψ̂∗cc + Ψ̂∗cs(Ik1−kc − R̃ss)−1Ψ̂sc

−Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂scΣ̃
−1
cc Ψ̂∗cc

}
Û +Op(δ

3
N,T ).

Using
∑kc

`=1 ρ̂` = tr
{

Λ̂1/2
}

, this implies:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{
Σ̃−1
cc

[
Ψ̂∗cc −

1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc

−Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)
sc Σ̃−1

cc Ψ̂∗(I)cc

]}
+Op(δ

3
N,T ), (B.13)

by the commutative property of the trace and including third-order terms inOp(δ3
N,T ). We derive the asymptotic

expansions of the terms within the the trace operator in the r.h.s. of (B.13) by plugging the expressions of Ψ̂∗

and its components from Lemma B.2. After tedious algebra we get the next lemma.
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LEMMA B.5. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

kc∑
`=1

ρ̂` = kc − 1

2N
tr

{
Σ̃−1cc

1

T

T∑
t=1

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

}
− 1

2T 2
tr

{
Σ̃−1cc

1

T

T∑
t=1

∆̃b
(c)

t ∆̃b
(c)′
t

}

− 1

2N
√
T
tr

{
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

]}

− 1

2T
√
NT

tr

{
1√
T

T∑
t=1

[
∆b

(c)
t (µNu

(c)
1,t − u

(c)
2,t)
′ + (µNu

(c)
1,t − u

(c)
2,t)∆b

(c)′
t

]}
+Op

(
δ3N,T

)
+ op (εN,T ) ,

where εN,T := 1
N
√
T

. The terms in the curly brackets are Op(1).

We have δ3
N,T = o(εN,T ) from the definitions of δN,T in Lemma B.1 and of εN,T in Lemma B.5, and the

condition
√
T � N � T 5/2 in Assumption A.1. Therefore, the leading stochastic terms in the difference∑kc

`=1 ρ̂` − kc are of order Op
(

1
N

)
, Op

(
1
T 2

)
, Op

(
1

N
√
T

)
and Op

(
1

T
√
NT

)
.

From the definition of matrices Σ̃U and Σ̃B , we have 1
T

∑T
t=1E[(µNu

(c)
1t −u

(c)
2t )(µNu

(c)
1t −u

(c)
2t )′|Ft] = Σ̃U and

1
T

∑T
t=1 ∆̃b

(c)

t ∆̃b
(c)′
t = Σ̃B . Moreover, let us define the process

Ut := µNu
(c)
1t − u

(c)
2t . (B.14)

Process Ut depends on N1, N2, but we do not make this dependence explicit for expository purpose. By using
these definitions, together with the commutativity and linearity properties of the trace operator, from Lemma
B.5 we get:

kc∑
`=1

ρ̂` − kc +
1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+

1

2T 2
tr
{

Σ̃−1
cc Σ̃B

}
= − 1

2N
√
T

(
1√
T

T∑
t=1

[
U ′tUt − E(U ′tUt|Ft)

])
− 1

T
√
NT

(
1√
T

T∑
t=1

∆b
(c)′
t Ut

)
+ op (εN,T ) . (B.15)

Under our set of assumptions, terms 1√
T

∑T
t=1 [U ′tUt − E(U ′tUt|Ft)] and 1√

T

∑T
t=1 ∆b

(c)′
t Ut are Op(1). In fact,

in the next subsection we show that these terms are jointly asymptotically Gaussian distributed. The remainder
term op (εN,T ) in the r.h.s. of (B.15) is negligible with respect to the first term in the r.h.s.25

B.1.6 Asymptotic distribution of the test statistic under the null hypothesis H(kc)

From the asymptotic expansion (B.15) we obtain the asymptotic distribution of ξ̂(kc) =
∑kc

`=1 ρ̂` under the
null hypothesis H(kc) of kc common factors. First, we apply a CLT for weakly dependent triangular array data

to prove the asymptotic normality of 1√
T

∑T
t=1ZN,t as N,T → ∞, where ZN,t :=

[
U ′tUt − E(U ′tUt|Ft)

∆b
(c) ′
t Ut

]
depends on N1, N2 via process Ut defined in (B.14).

i) CLT for Near-Epoch Dependent (NED) processes

25If N ' T 5/2 then δ3N,T is not negligible with respect to 1
N
√
T

. Similarly, if N / T 1/4 then δ3N,T is not negligible with
respect to 1

N
√
T

. In those cases, we need a more accurate asymptotic expansion.
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Let process VN1,N2,t ≡ Vt be as defined in Assumption A.6, and let Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m) for any
positive integer m, with Vt ≡ Vt−∞.

LEMMA B.6. Under Assumptions A.3, A.4 a), b), A.5 b) and A.6 a)-c) we have:

(i) ZN,t is measurable w.r.t. Vt, and E[ZN,t] = 0 for all t ≥ 1 and N1, N2 ≥ 1,

(ii) sup
t≥1,N1,N2≥1

E [‖ZN,t‖r] <∞, for a constant r > 2,

(iii) Process (ZN,t) is L2 Near Epoch Dependent (L2-NED) of size −1 on process (Vt), and (Vt) is strong
mixing of size −r/(r − 2), uniformly in N1, N2 ≥ 1, 26

(iv) Matrix ΩU := limT,N→∞ V
(

1√
T

∑T
t=1ZN,t

)
is positive definite and such that

ΩU =
∞∑

h=−∞
Γ(h), Γ(h) := lim

N→∞
Cov (ZN,t,ZN,t−h) . (B.16)

Then, by an application of the univariate CLT in Corollary 24.7 in Davidson (1994) and the Cramér-Wold device,
we have that:

1√
T

T∑
t=1

ZN,t
d−→ N (0,ΩU ) , (B.17)

as T,N → ∞. Let us now compute the limit autocovariance matrix Γ(h) explicitly. By the Law of Iterated
Expectation and E[ZN,t|Ft] = 0, we have:

Γ(h) = lim
N→∞

E [Cov (ZN,t,ZN,t−h|Ft)] . (B.18)

Moreover, from Assumptions A.3 and A.5 a), vector (U ′t , U
′
t−h)′ is asymptotically Gaussian for any h, t as

N →∞: (
Ut
Ut−h

)
d→
(

U∞t
U∞t−h

)
∼ N

(
0,

[
ΣU,t(0) ΣU,t(h)
ΣU,t(h)′ ΣU,t(0)

])
, (Ft-stably). (B.19)

We use the Lebesgue Lemma to interchange the limes for N → ∞ and the outer expectation in the r.h.s. of
(B.18), and the fact that convergence in distribution plus uniform integrability imply convergence of the expec-
tation for a sequence of random variables (see Theorem 25.12 in Billingsley (1995)) to show the next lemma.

LEMMA B.7. Under Assumptions A.3 and A.5 b), we have:

Γ(h) = E

[(
Cov(U∞ ′t U∞t , U

∞ ′
t−hU

∞
t−h|Ft) Cov(U∞ ′t U∞t ,∆b

(c)′
t−hU

∞
t−h|Ft)

Cov(∆b
(c)′
t U∞t , U

∞ ′
t−hU

∞
t−h|Ft) Cov(∆b

(c)′
t U∞t ,∆b

(c)′
t−hU

∞
t−h|Ft)

)]
.

Lemma B.7 allows to deploy the joint asymptotic Gaussian distribution of (U∞ ′t , U∞ ′t−h)′ to compute the limit

autocovariance Γ(h). By using that ∆bt is measurable w.r.t. Ft, we have Cov(U∞ ′t U∞t ,∆b
(c)′
t−hU

∞
t−h|Ft) = 0

and Cov(∆b
(c)′
t U∞t ,∆b

(c)′
t−hU

∞
t−h|Ft) = ∆b

(c)′
t ΣU,t(h)∆b

(c)
t−h = tr

{
ΣU,t(h)(∆b

(c)
t ∆b

(c)′
t−h)′

}
. To compute the

upper-left block of matrix Γ(h), we use Theorem 12 p. 284 in Magnus and Neudecker (2007) and Theorem

26That is,
∥∥ZN,t − E[ZN,t|Vt+mt−m ]

∥∥
2
≤ ξ(m), uniformly in t ≥ 1 and N1, N2 ≥ 1, where ξ(m) = O(m−ψ) for some

ψ > 1.
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10.21 in Schott (2005) which provide the covariance between two quadratic forms of Gaussian vectors. We get
Cov(U∞ ′t U∞t , U

∞ ′
t−hU

∞
t−h|Ft) = 2tr {ΣU,t(h)ΣU,t(h)′}. Therefore from (B.16) and Lemma B.7 we get:

ΩU =
∞∑

h=−∞

[
2tr {E [ΣU,t(h)ΣU,t(h)′]} 0

0 tr
{
E
[
ΣU,t(h)(∆b

(c)
t ∆b

(c)′
t−h)′

]} ] =

[
4ΩU,1 0

0 ΩU,2

]
.

(B.20)

ii) Asymptotic Gaussian distribution of the test statistic

Let us define vector DN,T =
[

1
2N
√
T
, 1
T
√
NT

]′
. From equations (B.15) and (B.20), and by using:

(D′N,TΩUDN,T )1/2 =

(
1

(N
√
T )2

ΩU,1 +
1

(T
√
NT )2

ΩU,2

)1/2

=
1

N
√
T

(
ΩU,1 +

N

T 2
ΩU,2

)1/2

,

and N
√
T
(
ΩU,1 + N

T 2 ΩU,2

)−1/2
= O

(
min{N

√
T , T
√
NT}

)
= O(ε−1

N,T ), under the hypothesis of kc com-

mon factors in each group the statistics ξ̂(kc) =
∑kc

`=1 ρ̂` is such that:

N
√
T

(
ΩU,1 +

N

T 2
ΩU,2

)−1/2 [
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+

1

2T 2
tr
{

Σ̃−1
cc Σ̃B

}]
= −(D′N,TΩUDN,T )−1/2D′N,T

1√
T

T∑
t=1

ZN,T + op(1).

From equation (B.17), the r.h.s. converges in distribution to a standard normal distribution, which yields Theorem
1. Note that this asymptotic distribution holds for any value of λ ≡ limN/T 2 ∈ [0,∞], and independently
on whether ΩU,2 > 0 or ΩU,2 = 0, because the diverging factors in the numerator and the denominator of
(D′N,TΩUDN,T )−1/2D′N,T

1√
T

∑T
t=1ZN,T cancel.

B.2 Proof of Theorem 2
To establish the asymptotic distribution of the feasible statistic in Theorem 2 we need to control the effect of
replacing the re-centering and scaling terms by means of their estimates. The latter involve factors and loadings
estimates. Hence, in the OA Section D.4 we derive uniform asymptotic expansions of factors and loadings
estimators. These results are instrumental for the proof of Theorem 2, as well as for the proofs of other results
in this paper. In Subsection B.2.1 and B.2.2 we show the statements in Part i) and in Part ii) of Theorem 2,
respectively.

B.2.1 Proof of Part (i)

Let us first consider the asymptotic distribution of ξ̃(kc) under the null hypothesis of kc common factors. Under
the assumptions of Theorem 2, the unfeasible asymptotic distribution in Theorem 1 becomes:

N
√
TΩ
−1/2
U,1

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}]
d→ N(0, 1), (B.21)
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where ΩU,1 = 1
2 tr
{

ΣU (0)2
}

and we use (4.5) and Σ̃B = 0. Theorem 2 i) follows, if we prove:

tr
{

Σ̂U

}
= tr

{
Σ̃−1
cc Σ̃U

}
+ op

(
1√
T

)
, (B.22)

tr
{

Σ̂2
U

}
= tr

{
ΣU (0)2

}
+ op(1). (B.23)

Indeed, the statistic ξ̃(kc) can be rewritten as:

ξ̃(kc) =

[
1

2
tr
{

Σ̂2
U

}/
ΩU,1

]−1/2{
N
√
TΩ
−1/2
U,1

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}]
+Op

(√
T
[
tr
{

Σ̂U

}
− tr

{
Σ̃−1
cc Σ̃U

}])}
,

where the ratio 1
2 tr
{

Σ̂2
U

}/
ΩU,1 converges in probability to 1 from (B.23), the term within the curly brackets

in the first line in the r.h.s. converges in distribution to a standard normal distribution from (B.21), and the term
on the second line on the r.h.s. is op(1) from (B.22).
Le us now prove equations (B.22) and (B.23) by deriving the asymptotic expansions of Σ̂U and Σ̃−1

cc . To derive
the asymptotic expansion of Σ̂U , we use its definition Σ̂U = µ2

N Σ̂
(cc)
u,11 + Σ̂

(cc)
u,22, where the matrices Σ̂u,jj =(

1
Nj

Λ̂′jΛ̂j

)−1 (
1
Nj

Λ̂′jΓ̂jΛ̂j

)(
1
Nj

Λ̂′jΛ̂j

)−1
, j = 1, 2, involve the estimated loadings and residuals. We plug in

the uniform asymptotic expansions from Proposition D.4 ii) in OA Section D.4 to show the next result.

LEMMA B.8. Under Assumptions A.1 - A.9, i) The asymptotic expansion of estimator Λ̂′jΛ̂j/Nj is:

Λ̂′jΛ̂j

Nj
= Û ′j

[
Σ̃Λ,j +

1√
T

(
LΛ,j + L′Λ,j

)]
Ûj + op

(
1√
T

)
, (B.24)

for j = 1, 2, where Σ̃Λ,j = 1
Nj

Λ′jΛj with Λj = [Λcj
... Λsj ], and LΛ,j = Σ̃Λ,jQj and:

Ûj =

[
Ĥc 0

0 Ĥs,j

]
, Qj =

[
0 0√

T Σ̃j,cΣ̃
−1
cc 0

]
, (B.25)

and Ĥc, Ĥs,j are non-singular matrices w.p.a. 1. ii) The asymptotic expansion of Λ̂′jΓ̂jΛ̂j/Nj is:

1

Nj
Λ̂′jΓ̂jΛ̂j = Û ′j

[
Ω̃jj +

1√
T

(
LΩ,j + L′Ω,j

)]
Ûj + op

(
1√
T

)
, (B.26)

for j = 1, 2, where Ω̃jj = 1
Nj

Λ′jΓjΛj , with Γj = diag(γj,ii, i = 1, ..., Nj), and LΩ,j = Ω̃jjQj .

Equation (B.24) allows to compute the asymptotic approximation of
(

1
Nj

Λ̂′jΛ̂j

)−1
by matrix inversion:

(
1

Nj
Λ̂′jΛ̂j

)−1

= Û−1
j

[
Σ̃−1

Λ,j −
1√
T

Σ̃−1
Λ,j

(
LΛ,j + L′Λ,j

)
Σ̃−1

Λ,j

](
Û ′j
)−1

+ op

(
1√
T

)
. (B.27)

43



Substituting equations (B.27) and (B.26) into the expression of Σ̂u,jj and rearranging terms, we get:

Σ̂u,jj = Û−1
j Σ̃−1

Λ,j

[
Ω̃jj +

1√
T

(
LΩ,j + L′Ω,j

)
− 1√

T
Ω̃jjΣ̃

−1
Λ,j

(
LΛ,j + L′Λ,j

)
− 1√

T

(
LΛ,j + L′Λ,j

)
Σ̃−1

Λ,jΩ̃jj

]
Σ̃−1

Λ,j

(
Û ′j
)−1

+ op

(
1√
T

)
.

Therefore, from the definitions of matrices LΩ,j and LΛ,j in Lemma B.8, we have:

Σ̂u,jj = Û−1
j

(
Σ̃u,jj +

1√
T

(LU,j + L′U,j)

)(
Û ′j
)−1

+ op

(
1√
T

)
, (B.28)

where Σ̃u,jj = Σ̃−1
Λ,jΩ̃jjΣ̃

−1
Λ,j and LU,j = −QjΣ̃u,jj , for j = 1, 2. In particular, the upper-left (kc, kc) block of

LU,j vanishes, i.e. (LU,j)
(cc) = 0 for j = 1, 2.

From equation (B.28) we get the asymptotic expansion for Σ̂U = µ2
N Σ̂

(cc)
u,11 + Σ̂

(cc)
u,22:

Σ̂U = Ĥ−1
c

([
µ2
N Σ̃u,11 + Σ̃u,22

](cc)
+

1√
T

[
µ2
N (LU,1 + L′U,1) + LU,2 + L′U,2

](cc))(Ĥ′c)−1
+ op

(
1√
T

)
= Ĥ−1

c Σ̃U

(
Ĥ′c
)−1

+ op

(
1√
T

)
. (B.29)

Moreover, Proposition D.4 ii) implies Σ̃−1
cc =

(
Ĥ−1
c

)′
Ĥ−1
c + op

(
1√
T

)
. This equation, together with the

asymptotic expansion (B.29) and the commutative property of the trace operator, imply equation (B.22). Simi-
larly, the asymptotic expansion (B.29) and the convergence Σ̃U → ΣU (0) imply equation (B.23).

B.2.2 Proof of Part (ii)

In order to prove Theorem 2 (ii), we consider the behavior of statistic ξ̃(kc) under the alternative hypothesis H1

of less than kc common factors. Specifically, let r < kc be the true number of common factors in the DGP. The

statistic is given by: ξ̃(kc) =N
√
T
(

1
2 tr{Σ̂

2
U}
)−1/2 [∑kc

`=1 ρ̂` − kc + 1
2N tr

{
Σ̂U

}]
.We rely on the following

Lemma. For its proof we assume that f̂ ct is used to estimate the common factor in panel j = 1, while estimator
f̂ c∗t is used in panel j = 2.

LEMMA B.9. Under the alternative hypothesisH(r), with r < kc, we have ‖Σ̂U‖ ≤ C, w.p.a. 1, for a constant
C > 0.

From Lemma B.9 and using
∑kc

`=1 ρ̂` =
∑kc

`=1 ρ` + op(1), where the op(1) term follows from the continuity of

the eigenvalues mapping, we get ξ̃(kc) = N
√
T
(

1
2 tr{Σ̂

2
U}
)−1/2 [∑kc

`=1 ρ` − kc + op(1)
]
. Under H(r), we

have r < kc canonical correlations that are equal to 1, while the other ones are strictly smaller than 1. Therefore,∑kc

`=1 ρ` − kc < 0. Then, from Lemma B.9 we get ξ̃(kc) ≤ −N
√
Tc1, w.p.a. 1, for a constant c1 > 0. The

conclusion follows.
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