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Lecture Outline

1. Testing CAPM: historical development

2. Statistical description of the asset pricing tests

3. Stochastic Discount Factor Representation and Tests

4. Conditional Asset Pricing Models

5. Statistical discipline

Relevant readings:

• Cochrane: chapters 6, 7, 8, 12, 14, 15, 16

• Huang and Litzenberger: chapter 10
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1. Testing CAPM: historical development
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Quick Review: The CAPM

• The Sharpe-Lintner-Mossin (SLM) version of the model assumes that the risk-free rate is avail-
able. For any asset i :

E (Ri) = Rf + βi
(
E (Rm)−Rf

)
(1)

where Rm is the total wealth (i.e., market) portfolio and

βi =
Cov (Ri, Rm)

V ar (Rm)
(2)

• The model states that the market return is mean-variance efficient

• That is: the expected return on any asset can be spanned by the expected return on the market
and the risk free rate

• The Black (1972) version of the model is derived without assuming the existence of the risk-free
rate:

E (Ri) = E (R0) + βi (E (Rm)− E (R0)) (3)

where R0 is the return on a mean-variance efficient portfolio with zero covariance with Rm. It
turns out that E (Rm)− E (R0) > 0
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Testable Predictions

• SLM version:

1. Consider the time-series regression

Rit −Rf = αi + βi
(
Rmt −Rf

)
+ εit. (4)

Take expectations of both sides. The model predicts

(a) αi = 0 ∀i = 1 . . . N

2. Consider the cross-sectional regression

ET (Rei ) = a+ βiλ+ diγ + ui i = 1...N (5)

ET
(
Rei

)
: time-series average excess return (it is an estimate of the expected excess return)

di : vector of stock characteristics different from beta (e.g. size, dividend yield, volatility,

etc.):

(a) λ = E (Rm)−Rf > 0

(b) αi ≡ a+ ui = 0 ∀i (zero pricing errors)

(c) γ = 0
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Conceptual Issues in the Tests

1. The model predictions are stated in terms of ex ante expected returns and betas but tested on

sample moments

• The solution is to assume Rational Expectations: the realized returns are drawings from equi-

librium distributions. Because of rational expectations, the ex ante distributions correspond

to the equilibrium distributions. So, the sample moments converge to the ex-ante moments

2. CAPM holds period by period: it is a conditional model.

How to handle non-stationarity in the moments of the ex ante distribution?

• One solution is to assume that CAPM holds unconditionally too.

Implications of this assumption:

The conditional CAPM:

Et
(
Rei,t+1

)
= βitEt

(
Rem,t+1

)
βit =

Covt
(
Ri,t+1, Rm,t+1

)
V art

(
Rm,t+1

)
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Take unconditional expectations of both sides

E
(
Et
(
Rei,t+1

))
= E

(
βitEt

(
Rem,t+1

))
E
(
Rei,t+1

)
= Cov

(
βit, Et

(
Rem,t+1

))
+E (βit)E

(
Rem,t+1

)
For the model to hold unconditionally, one needs to assume that

Cov
(
βit, Et

(
Rem,t+1

))
= 0

E (βit) = βi =
Cov (Ri, Rm)

V ar (Rm)

This is not necessarily true. For example:

— Beta can change along the business cycle

— Beta can change along the firm’s life-cycle

• The other solution is to model the conditional moments. We will discuss this strategy later.

For now, the focus is on unconditional tests
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3. Roll’s (1977) critique: the total wealth portfolio includes non-marketable assets (e.g. human

capital, private businesses, etc.). Instead, the tests typically focus on a proxy of the market that

is traded (e.g. the S&P 500, the CRSP index, etc.)

• Consequence: measurement error in the market return.

Rejection of CAPM may depend on use of incorrect market portfolio

• Most tests ignore the unobservability and assume proxy is mean-variance efficient

• Also: if the true market portfolio is sufficiently correlated with the proxy (above 70%), a

rejection of the proxy implies a rejection of the true portfolio (Stambaugh (1982), Kandal

and Stambaugh (1987), Shanken (1987))

• Some authors have tried to compute a broader proxy by including the return on human capital

(Jagannathan and Wang (1996))
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Econometric Issues in the Tests

1. The errors in equation (5) are likely to be heteroskedastic and correlated across assets

• OLS coefficients are unbiased but inefficient (OLS is not BLUE, GLS is)

• OLS standard errors are biased

• Possible Solutions:

(a) Use feasible GLS...I have never seen this in practice

(b) Use OLS to estimate the slopes and adjust the standard errors

(c) Fama and MacBeth (1973) procedure
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2. The betas in equation (5) are measured with error because they are estimates of true betas

• Measurement error causes γ̂ to be biased towards zero and CAPM rejected

• Main Solution: Group the data into portfolios

3. The betas in equation (4) are likely to change over time

• Betas change over the life-cycle in a non-stationary way

• Historical solution: form portfolios according to a stationary characteristic

• Does it work? See Franzoni (2002): Where’s beta going?
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4. High volatility of individual stock returns

• For individual stocks, cannot reject hypothesis that average returns are all the same

• St. error of mean is σi
T 1/2. If σi between 40% and 80% and T = 60 months, very large

confidence intervals

• Solution: form portfolios

5. Non-synchronous trading
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• Small stocks react slowly to information

• Solution: Scholes and Williams (1977)

β̂ =
β̂

+
+ β̂ + β̂

−

1 + 2ρ

where β̂
+
, β̂
−
, and β̂ come from the simple regression of stock returns on leads, lags, and

the contemporaneous market return:

Reit = α+
i + β+

i Rm,t+1 + ε+
t

Reit = αi + βiRm,t + εt

Reit = α−i + β−i Rm,t−1 + ε−t

ρ is the 1st order auto-correlation of the market return.

Note that if ρ = 1, it is as if you were running three times the same regression. Then, you

have to divide the sum of the betas by 1 + 2ρ = 3

If ρ = 0, each of the three regressions provides independent information on the reaction of

stock returns to market returns. Then, the sum of the three betas does not need to be

normalized.
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• Another solution is due to Dimson (1979)

β̂ = β̂
+

+ β̂ + β̂
−

where the estimates come from

Reit = αi + β+
i Rm,t+1 + βiRm,t + β−i Rm,t−1 + εt
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Portfolio Grouping Approach

• Consider forming G groups of L stocks

• The measured beta for group g is

β̂g =
1

L

L∑
j=1

β̂j =
1

L

L∑
j=1

(
βj + wj

)
= βg +

1

L

L∑
j=1

wj

• So the variance of the measurement error for the portfolio beta is

V ar

1

L

L∑
j=1

wj

 =
1

L
σ2
w

as long as the measurement errors of the individual securities are uncorrelated (classical mea-

surement error)

• As L→∞ the measurement error goes to zero and the estimates are consistent
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Grouping and Efficiency

• Grouping reduces dispersion in betas relative to ungrouped data:

V ar (βi)︸ ︷︷ ︸
Ungrouped V ariance

= V ar (E (β|G))︸ ︷︷ ︸
Between−Group V ariance

+

EG (V ar (βi|G))︸ ︷︷ ︸
Average Within−Group V ariance

• Hence, it reduces the efficiency of the cross-sectional estimates

— See Gagliardini, Ossola, and Scaillet (2016) for a stock-level approach to estimating risk

premia that maximizes efficiency

• Need grouping procedure that maximizes across-group variation in betas and minimizes correla-

tion with measurement error

• E.g.: group by previous estimates of betas from non-overlapping data

— Measurement error is uncorrelated over time

— Estimated betas are positively correlated with true betas over time
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2. Statistical description of AP tests
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• General focus on multi-factor asset pricing models

E (Rei ) = β′iλ (6)

where βi is a K-dimensional vector of multiple-regression slopes and λ is K-vector of factor risk

premia

• For example: APT, ICAPM

• CAPM is the case with K = 1

• The methodology extends unambiguosly from the CAPM tests to tests of multifactor models

• Questions:

— How to estimate parameters?

— Standard errors?

— How to test the model predictions?
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Time-Series Regressions

• You can apply this approach only if factors f1,...,fK are returns

• Then, the model (6) applies to factors as well:

E (fk) = λk k = 1...K (7)

• So, one can re-write the model in (6) as:

E (Rei ) = β′iE (f) (8)

where E (f) is the vector of expected excess returns on the k factors

• Assume K = 1 for simplicity, consider the time-series regression:

Reit = αi + βift + εt (9)

• Take expectation of each side. Then, the implication of (8) is

αi = 0 i = 1...N
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• You can estimate αi by running regression (9) for each asset

• Then, use t-tests to test αi = 0

• In an E(R)-β space, you are pricing the factor correctly by fitting a line through the factor and

allowing pricing errors on the other assets

• You want to test the hypothesis that all alphas are jointly zero

• The εit are correlated across assets with variance-covariance matrix Σ = E
(
εtε
′
t
)
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• The asymptotically valid test for

Ho : α = 0

is

α̂′
[
̂V ar (α̂)

]−1
α̂ ∼ χ2

N

where α is a N -dimensional vector of pricing errors

• Intuition: reject the model if the weighted sum of the squared errors is far from zero

• In the case K = 1, assuming no autocorrelation and stationarity, and noting that α̂i contains

the average εit, the test becomes

T

1 +

(
ET (f)

σ̂ (f)

)2
−1

α̂′Σ̂−1α̂ ∼ χ2
N

where ET (f) is the sample mean of the factor (an estimate of the risk premium) and Σ̂ is the

sample vcov matrix of the residuals from the N regressions
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Proof. (Sketch): ̂V ar (α̂) is N ×N matrix

̂V ar (α̂) =


σ̂2
α̂1

σ̂α̂1α̂2
· · · σ̂α̂1α̂N

σ̂α̂2α̂1
σ̂2
α̂2... . . .

σ̂α̂N α̂1
σ̂2
α̂N


Focus on:

α̂i = R̄ei − β̂iET (f)

= αi + βiET (f) + ε̄i − β̂iET (f)

= αi +
(
βi − β̂i

)
ET (f) + ε̄i

So:
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V ar (α̂i) = V ar
(
β̂i
)
E2
T (f) + V ar (ε̄i)

=
σ2
εi

σ̂2 (f)T
E2
T (f) +

1

T
σ2
εi

=
1

T
σ2
εi

1 +

(
ET (f)

σ̂ (f)

)2


Similarly:

Cov
(
α̂i, α̂j

)
=

1

T
σεiεj

1 +

(
ET (f)

σ̂ (f)

)2


Hence, it follows that:

V ar (α̂) =
1

T

1 +

(
ET (f)

σ̂ (f)

)2
Σ
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So:

̂V ar (α̂) =
1

T

1 +

(
ET (f)

σ̂ (f)

)2
 Σ̂

Then:

α̂′
[
̂V ar (α̂)

]−1
α̂ = T

1 +

(
ET (f)

σ̂ (f)

)2
−1

α̂′Σ̂−1α̂

You only need to prove that the distribution is a chi-squared. For that you can use standard theorems

on the limit distribution of squared residuals.
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• Gibbons, Ross, and Shanken (GRS, 1989) provide a small sample test assuming joint normality

of the εit

T −N − 1

N

1 +

(
ET (f)

σ̂ (f)

)2
−1

α̂′Σ̂−1α̂ ∼ FN, T−N−1

• Using efficient set algebra, one can prove that(
µq

σq

)2

=

(
ET (f)

σ̂ (f)

)2

+ α̂′Σ̂−1α̂ (10)

where
µq
σq

is the Sharpe ratio of the tangency portfolio and
ET (f)
σ̂(f)

is the Sharpe ratio of the factor

• Then, the GRS statistic can be rewritten as

T −N − 1

N

(
µq/σq

)2 − (ET (f) /σ̂ (f))2

1 +
(
ET (f)
σ̂(f)

)2 ∼ FN, T−N−1

• In this form, the interpretation is: Reject the null if the factor is far from the tangency portfolio

on the ex-post efficient frontier
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• In other words: reject CAPM if the market is far from the ex-post efficient frontier

• In case of K > 1 factors, the GRS statistic is

T −N −K
N

(
µq
σq

)2
− ET (f)′ Ω̂−1ET (f)

1 + ET (f)′ Ω̂−1ET (f)
∼ FN,T−N−K

where

Ω̂ =
1

T

T∑
i=1

[ft − ET (f)] [ft − ET (f)]′
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is the sample vcov matrix of the factors and

ET (f)′ Ω̂−1ET (f)

is the multifactor equivalent of the squared Sharpe ratio of the factor
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Proof of Equation (10)

• Let q be a portfolio on the mean variance efficient frontier. Let µ be the vector of expected

excess returns on the N + 1 assets in the market (i.e. N test assets and 1 factor). Hence, q has

minimum variance for given expected return e

Min q′V q

s.t. q′µ = e

• The Lagrangean for this problem is

L = q′V q + 2λ
(
e− q′µ

)
which gives first order conditions with respect to q and λ (the Lagrange multiplier)

2V q − 2λµ = 0

e− q′µ = 0

• Hence, the frontier portfolio q has to satisfy

q = λV −1µ (11)
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• Using Equation (11), the variance of q is therefore

σ2
q = q′V q = λ2µ′V −1µ

• The squared expected excess return of q is

µ2
q =

(
q′µ

)2
= λ2

(
µ′V −1µ

)2

• We can then compute the squared Sharpe ratio of q as
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µ2
q

σ2
q

= µ′V −1µ (12)

• Now, let us remember that this market is composed of N + 1 assets, where the first asset is the

factor f

• The vector of returns of the N assets can be written as

Rt = α+ βft + εt,

where α and β are N-dimensional vectors capturing the alphas and betas of the N assets with

respect to the factor f . Also, ε is the idiosyncratic component of returns, which has variance-

covariance matrix equal to Σ

• Hence, the vector µ can be written as

µ =

[
µf

α+ βµf

]
(13)

• For the same reason, the variance-covariance matrix V can be written as

V =

[
σ2
f β′σ2

f

βσ2
f ββ′σ2

f + Σ

]
(14)
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• Using the formula for the inverse of a partitioned matrix (see, e.g., Greene, Econometric Analysis),

we can obtain the inverse of V as

V −1 =

 1
σ2
f

+ β′Σ−1β −β′Σ−1

−Σ−1β Σ−1

 (15)

• Using Equations (13) and (15), after some tedious algebra, we can re-write Equation (12) as

µ2
q

σ2
q

=
µ2
f

σ2
f

+ α′Σ−1α,

which completes the proof
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Cross-Sectional Regressions

• This is the only approach available when the factors are not returns

• Two-pass methodology:

1. Estimate βi from time-series regressions with multiple factors if K > 1

Reit = ai + β′ift + εit t = 1...T (16)

Note that if the AP model in (6) is correct

ai = β′i (λ− E (f)) (17)

which is not equal to zero in general

2. Regress average returns on estimated βi

ET (Reit) = β′iλ+ αi i = 1...N (18)

where ET denotes a time-series average over the T observations in the sample.

Based on equations (16) and (17), under the null, the pricing errors αi’s probability limit is
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(assume that β̂ → β and λ̂→ λ):

Plim αi = Plim (ET (Reit)− β′iλ) (19)

= Plim (ai + β′iET (ft) + ET (εit)− β′iλ)
H0= Plim (β′i (λ− E (f)) + β′iET (ft) + ET (εit)− β′iλ)

= Plim (ET (εit) + β′i (ET (ft)− E (ft))) = 0

So, based on the expression in the last step of Equation (19), the vcov matrix of α, which is

the N × 1 vector of residuals from regression (18), is

E
(
αα′

)
=

1

T

(
Σ + βΩβ′

)
where β is a N ×K matrix of factor loadings for the N assets on the K factors, and Ω is

the vcov of the K factors

• α̂ is the vector of fitted residuals, which under the null, have zero expectation

• In this case, you are fitting a line through the expected returns, trying to minimize pricing errors,

estimating a risk premium for the factor, and allowing a non-zero pricing error for the factor
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• One can test the AP model with

α̂′ [V ar (α̂)]−1 α̂ ∼ χ2
N−K

• Using standard OLS results (V ar (û) = MV ar (u)M , where û are the fitted residuals and

M = I −X(X ′X)−1X ′ is the residual making matrix. In our case u = α and X = β), we can

compute the vcov of α̂ as

V ar (α̂) =
1

T

(
I − β

(
β′β

)−1
β′
)

Σ
(
I − β

(
β′β

)−1
β′
)

where βΩβ′ cancels out from the vcov matrix
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• Notice that these formulas assume that β are known. See next for corrections that take into

account that β is estimated
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Shanken Correction

• In fact, βi are estimates, not the true parameters

• Hence, need to account for sampling error in βi, when computing standard errors

• Shanken’s (1992) correction :

σ2
(
λ̂ols

)
=

1

T

[(
β′β

)−1
β′Σβ

(
β′β

)−1 (
1 + λ′Ω−1λ

)]
+

1

T
Ω (20)

where Ω is the vcov of the factors

• You have a multiplicative
(

1 + λ′Ω−1λ
)

correction and an additive correction 1
TΩ

• Is the multiplicative correction important?

• Consider CAPM. In annual data: (λm/σm)2 = (0.08/0.16)2 = 0.25

The correction is important.

In monthly data (λm/σm)2 = 0.25/12 ≈ 0.02.

The multiplicative correction is not important
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• The additive correction is likely to be important

• 1
TΩ is the variance of the mean of the factor, which is non-negligible in case f is Rm
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Time-Series vs. Cross-Section

• How are two approaches different?

1. TS can be applied only if factors are returns

• In CAPM, it fits a line through the pricing errors by forcing a zero pricing error on Rm

• Test: αi = 0 for all i

2. CS only alternative when factors are not returns

• In CAPM, it minimizes all pricing errors, by allowing some error on Rm

• Historically CS has been used to test for characteristics in the cross-section of returns (espe-

cially using Fama-MacBeth approach)
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Fama-MacBeth (1973) Methodology

• It is a three-pass procedure:

1. Obtain βit from time-series regressions, using data up to t− 1

2. At each date t, run a cross sectional regression

Reit = β′itλt + αit i = 1...N

and obtain a time series of λ̂t and α̂it t = 1...T

3. Finally, obtain full-sample estimates as time series means

λ̂ =
1

T

T∑
ι=1

λ̂t

α̂i =
1

T

T∑
ι=1

α̂it
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and use the standard error of the mean

σ
(
λ̂
)

=
1

T 1/2


∑T
t=1

(
λ̂t − λ̂

)2

T − 1︸ ︷︷ ︸
̂V ar(λ̂t)



1/2

σ (α̂i) =
1

T 1/2


∑T
t=1 (α̂it − α̂i)2

T − 1︸ ︷︷ ︸
̂V ar(α̂it)


1/2

• One can test for zero pricing errors using the quadratic form

α̂′cov (α̂) α̂ ∼ χ2
N−1

where α̂ is the vector of stacked α̂i and

cov (α̂) =
1

T 2

T∑
t=1

(α̂t − α̂) (α̂t − α̂)′
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• There are two main advantages to this approach:

1. It allows for time-varying betas

2. It computes standard errors by getting around the problem of heteroskedastic and correlated

errors: it exploits sample variation in λ̂t and α̂it
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3. SDF Representation and Tests
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Equivalence of Representations

• In general one can always go from a Stochastic Discount Factor (SDF) representation

E (Ritmt) = 1 (21)

mt = a− bft
where mt is the SDF and ft is a K-vector, to an expected return-beta representation

E (Rit) = λ0 + λ′β

β = Cov (Rit, ft)E (ftft)
−1

and vice versa

• Here, we show the direction SDF−→E(R)-β, see Cochrane ch. 6 for the proof of the other

direction
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• Start from Equation (21) and replace mt into the first equation

E (Rit (a− bft)) = 1

aE (Rit)− bE
(
Ritff

)
= 1

aE (Rit) = 1 + bE (Ritft)

aE (Rit) = 1 + bE (Rit)E (ft) + bCov (Rit, ft)

E (Rit) (a− bE (f)) = 1 + bCov (Rit, ft) (22)

Note that by pricing the risk-free rate you get

RfE (m) = 1

Rf =
1

a− bE (ft)

So, by replacing Rf into equation (22), you get

E (Rit) = Rf + bRfCov (Rit, ft)
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which can be expressed in E(R)-β form

E (Rit) = λ0 + βifλ1 (23)

βif =
Cov

(
Rit,ft

)
V ar (ft)

λ1 = bRfV ar (ft)

λ0 = Rf
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Testing the SDF Representation

• The SDF representation can be tested using GMM on the moment conditions given by the pricing

errors

E [Ritmt (δ)] = 1

where

mt (δ) = a− bft

• Given that we have N assets, define the pricing errors

wt (δ) = Rtmt (δ)− 1N

where Rt is an N -vector of asset returns and 1N is an N -vector of ones

• The N moment conditions for the vector of pricing errors wt (δ) are

E [wt (δ)] = 0
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• The GMM estimates the parameters in δ so as to minimize a quadratic form in the N moment

conditions

E [wt (δ)]′AE [wt (δ)] (24)

where A is a weighting matrix

• Assume that wt (δ) is i.i.d. over time

• In this case, the optimal weighting matrix by Hansen and Singleton (1982) reduces to

A = [V ar (wt (δ))]−1

which is also called second-stage weighting matrix, because you estimate it by computing pricing

errors from a first stage in which the weighting matrix is typically the identity

• However, the optimal quadratic form in (24) cannot be used as a metric to make comparisons

across different asset pricing models

— If a model contains more noise, V ar (wt (δ)) is larger
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— Then the quadratic form is smaller just because of the noise, and not because of smaller

pricing errors (This argument echos Fama and French’s (1993) defense against the rejection

of their model by the GRS test)

• The solution proposed by Hansen and Jagannathan (1994) is to use

A = [E (RtRt)]−1

which is the matrix of second moments of returns

• The advantage is that this matrix remains the same across different specifications of the AP

model and allows comparisons of different models

• Also, the authors show that the square root of the resulting quadratic form, called the Hansen-

Jagannathan (H-J) distance, is the pricing error of the most mispriced portfolio among the N

assets by a given AP model

• They derive the distribution of this statistic, which is in general non-standard

• This approach is used in the Conditional CAPM application of Jagannathan and Wang (1996)
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4. Conditional Asset Pricing
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Conditional Asset Pricing (Cochrane ch. 8)

• In the case of the expected return-beta representation, we have seen above that a conditional

model does not imply an unconditional model with the same factor in general

• The same conclusion holds for the SDF representation

• The coefficients in the SDF are time-varying

• Consider, for example, the SDF for CAPM

mt+1 = at + btR
m
t+1

• The pricing statement is also conditional on time t information

1 = Et

(at + btR
m
t+1︸ ︷︷ ︸

)
mt+1

Rit+1
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• In general, this statement does not imply an unconditional pricing statement. Let’s try. Take

unconditional expectations of each side:

1 = E
[
atRit+1 + btR

m
t+1Rit+1

]
= E [at]E [Rit+1] + Cov (at, Rit+1)

+E [bt]E
[
Rmt+1Rit+1

]
+ Cov

(
bt, R

m
t+1Rit+1

)
• Thus, you can get an unconditional model only if the covariance terms are zero:

1 = E


E [at]︸ ︷︷ ︸

a

+ E [bt]︸ ︷︷ ︸
b

Rmt+1

Rit+1


which is not in general the case
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Hansen and Richard Critique

• Testing conditonal models may not be enough to do things correctly

• To be sure to test the correct model, one needs to account for all the relevant conditioning

information that investors use

• One needs to know investors’ information set

• This is arguably impossible

• Hence, according to Hansen and Richard conditional factor models are not testable!

• It resonates with the Roll Critique
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A partial solution: scaled factors

• Because investors’ information changes over time, the parameters at and bt in the SDF change

• One can try to model this time-variation by using a set of L instruments zt, which are variables

that plausibly enter investors’ information set

at = a′zt
bt = b′zt

• Suppose, for example, 1 factor and 1 instrument

mt+1 = at + btft+1

= a0 + a1zt + (b0 + b1zt)ft+1

= a0 + a1zt + b0ft+1 + b1ztft+1

• In place of a conditional 1-factor model, one obtains an unconditional 3-factor model, with factors

(zt, ft+1, ztft+1) and fixed coefficients
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• ztft+1 are scaled factors

• In general, from K factors and L instruments one gets (K + 1)× (L+ 1) unconditional factors

(including a constant)

• This is a partial solution, because one could be omitting some relevant variable from zt that is

instead in investors’ information set (Hansen and Richard Critique)
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A brief history of Conditional Asset Pricing

• For a period of time, conditional factor models seemed to provide a solution to explain the failure

of CAPM

— Jagannathan and Wang (1996, JF) used a conditional CAPM with human capital to explain

the size anomaly

— Lettau and Ludvigson (2001, JF) used a conditional CAPM to explain the book-to-market

anomaly (see later for the anomalies)

• However, Lewellen and Nagel (2006) put an end to this literature by showing that the empirical

success of conditional asset pricing models was based on false premises
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Lewellen and Nagel, 2006

• In E(R)-β representation, the conditional CAPM says

Et
(
Reit+1

)
= βitγt

βit =
Covt

(
Rit+1, R

m
t+1

)
V art

(
Rmt+1

)
γt = Et

(
Rmt+1

)
−Rf,t

• Take unconditional expectations

E
(
Reit+1

)
= E (βitγt)

= E (βit)E (γt) + Cov (βit, γt)

= β̄iγ + Cov (βit, γt) (25)

• By definition, the unconditional alpha in a time-series regression has the following Plim

Plim αui = E
(
Reit+1

)
− βuγ (26)
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where βu =
Cov(Rit+1,R

m
t+1)

V ar
(
Rmt+1

) is the unconditional beta and γ = E (γt)

• Replacing (25) into (26) gets a clear expression for the unconditional alpha

αu = γ(β̄ − βu) + Cov(βt, γt)

• Under mild assumptions, you have that β̄ = βu. So, that

αu = Cov(βt, γt)

• Lettau and Ludvigson’s (2001) point is that βt varies along the business cycle with the equity

premium γt and this variation is enough to explain unconditional alphas

— So, firms that have higher betas during recessions (when the equity premium is high)—i.e.,

value stocks—have higher unconditional alphas: the so-called value premium

• Lewellen and Nagel (2006) argue that this covariation is just not large enough

• They compute conditional alphas directly using higher frequency data and show that they are

not zero
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What were previous papers missing?

• L&N argue that these papers only test the qualitative implications of the conditional models.

They do not test the constraints imposed by the theory

• In other words, they treat some coefficients as free parameters, which allows them to get more

explanatory power in the cross-sectional regressions

• Concretely, take Equation (25)

E
(
Reit+1

)
= β̄iγ + Cov (βit, γt) (27)

• The scaled-factor approach in the E(R)-β representation boils down to expressing the time-varying

beta as a linear function of some conditioning variable

βit = βi + δizt (28)

where δi and βi are estimated in time-series regressions of Ri,t+1 on Rm,t+1 and zt ×Rm,t+1
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• Replace (28) into (27)

E
(
Reit+1

)
= β̄iγ + δiCov (zt, γt) (29)

• Lettau and Ludvigson test the asset pricing model in (29) by a cross-sectional regression of

returns on β̄i and δi

Reit+1 = c0β̄i + c1δi

treating c1 as a free parameter, whereas the theoretical restriction is c1 = Cov (zt, γt)

• They achieve a high R-squared and small pricing errors because they use an additional degree of

freedom that they should not have used

• Lewellen and Nagel show that, when it is imposed, the restriction is actually rejected in the data

and the R-squared drops substantially
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5. Statistical Discipline
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Statistical Discipline According to Cochrane

• From efficient set mathematics: Mean variance efficiency of a factor implies a E(R) = β′E (Rq)

representation, where β are betas on the factor and E (Rq) is the mean return on the factor q,

where q is a portfolio on the mean-variance frontier constructed from the (sample or population)

moments of the N assets

Proof. Take a portfolio x of the N assets. You have that

βx,q =
Cov (Rx, Rq)

V ar (Rq)
=
Cov

(
x′R, q′R

)
V ar (q′R)

=
x′V ar(R)q

q′V ar (R) q
=
x′V q
q′V q

(30)

where x is the vector of weights for the portfolio, q is the vector of weight for a mean-variance

efficient portfolio, and V is the variance-covariance matrix of the N assets

To obtain a mean-variance efficient portfolio, it has to be the case that q solves the problem

Min q′V q

s.t. : q′µ = e
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where e is a fixed level of expected excess return and µ is the vector of expected excess returns for

the N assets. The Lagrangean for the problem is

L = q′V q + 2λ
(
e− q′µ

)
and the first order conditions are

V q − λµ = 0

q′µ = e

from the first order conditions we obtain

V q = λµ

which we can use in equation (30):

βx,q =
x′V q
q′V q

=
λx′µ
λq′µ

Rearranging and simplifying λ:

x′µ = βx,qq
′µ
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or:

E (Rx) = βx,qE (Rq)

• This theorem holds whatever distribution one uses to compute moments: objective, subjective,

or ex-post (sample) distribution

• Hence: in the sample, there exists an E(R) = β′E (Rq) representation based on sample moments

• That is: there is an ex-post mean-variance efficient portfolio that prices all assets

• Danger of ”Fishing for Factors”! Finding the portfolio that in-sample works

• Limit to possibility of out-of-sample tests: international data dirty; need to wait for 30 years

• Discipline: a factor needs to be economically motivated

• Cochrane’s view of AP
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• The Stochastic Discount Factor derives from the first order conditions for intertemporal con-

sumption

Et
(
mt+1R

e
i,t+1

)
= 0

where

mt+1 =
u′ (ct+1)

u′ (ct)
= 1− b′ft+1

• Different AP models can be derived from different specifications of SDF

• In any case, sensible factors must be somehow related to consumption growth. E.g.: return on

wealth portfolio (CAPM), state variables of hedging concern (ICAPM)

• It does not mean, however, that covariance of factors with consumption growth implies fully

rational investors (see Kozak, Nagel, and Santosh, 2018)
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Data Snooping

• Related problem

• If you search the data for significant relationships over and over again, you will find something

(with 5% chance)

• In principle, you should test model on different data set

• Objectively difficult

• Need to go to the data with economically founded models
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