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Abstract In nowadays open interaction systems where autonomous, heterogene-

ous and self-interested agents may interact, it is crucial to be able to declaratively 

specify the norms that regulate the actions of the interacting parties and to be able 

to monitor their behaviour in order to check whether it is compliant or not with the 

norms. In this chapter we propose and discuss the advantages of using semantic 

web languages, tools, and techniques for proposing an application independent 

model that should be used for the declarative specification and monitoring of obli-

gations. Those obligations are characterized by a class of activation and deactiva-

tion events, a class of content actions that may satisfy the obligation and a dead-

line within which an action belonging to the content class has to be performed. 

The main contribution of this chapter is to show how it is possible to use semantic 

web technologies, and in particular OWL 2 DL as formal language for the specifi-

cation and monitoring of complex obligations and to study how much it is feasible 

to use an OWL ontology to represent the state of a dynamic open interaction sys-

tem. 

1 Introduction 

The specification of open systems for the interaction of autonomous agents is 

widely recognized to be a crucial issue in the development of innovative applica-

tions on the Internet, like e-commerce applications, or applications for the man-

agement of virtual enterprises. One possible approach to tackle this problem is to 

model open interaction systems as a set of artificial institutions [2, 1, 20, 11]. 

Those institutions are devised for the specification of the institutional context 

where the interaction among autonomous heterogeneous agents may take place. In 

particular the OCeAN meta-model [12, 9] is mainly composed by: a communica-

tive part with the definition of an Agent Communication Language (ACL) whose 
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semantics is defined in terms of social commitments and institutional power [8], a 

normative part for the specification of obligations, prohibitions and permissions 

[10], and an organizational part mainly devoted to the definition of roles. 

In this chapter we will mainly focus on the normative part and we propose and 

discuss the advantages of using semantic web languages, tools, and techniques for 

defining an application independent model for the declarative formal specification 

and monitoring of obligations. In particular we want to be able to specify obliga-

tions with the following characteristics. They become active when an event be-

longing to a specified start event class or to its subclasses happens, this event can 

be viewed as a condition for obligations activation. A set of possible actions de-

scribed by means of a more or less detailed class may fulfil those obligations if 

one of them happens before a given deadline. This is a crucial progress in the flex-

ibility of the normative specification with respect to the solution proposed in [10] 

where (as better discussed in next section) the content of obligations was a specif-

ic action and the time interval for the performance of the action was delimited by 

fix instant of time. Finally those obligations become cancelled when an event be-

longing to an end event class happens. 

The approach of specifying using a declarative formal language the normative 

part of a system has many crucial and interesting advantages. In particular it 

makes possible to represent the norms as data, instead of coding them in the soft-

ware. This has the advantage of making possible to add, remove, or change the 

norms that regulate the interaction both when the system is off line, and at run-

time, without the need to reprogram the interaction system or the interacting 

agents. Another interesting advantage is that it would be in principle possible to 

realize agents able to automatically reason on the consequences of their actions 

and able to interact within different systems without the need of being repro-

grammed. Moreover it is possible to realize an application independent monitoring 

component able to keep trace of the state of obligations on the basis of the events 

that happens in the system and on the basis of agents' actions and capable of react-

ing to their fulfilment or violation. This is a fundamental component in the archi-

tecture of open interaction systems, and may be crucial also in the service oriented 

architecture [6] and for business process management systems [21]. Another im-

portant aspect is that designing a system by using the notion of norm may be very 

intuitive for human designers and those declarative norms may be more easily un-

derstood by human participants of socio-technical systems. 

The choice of the formal language used for the declarative specification of 

normative systems is difficult, crucial, and many aspects have to be taken into ac-

count. The most important are: the expressivity of the language, its computational 

complexity, the fact that the underline logic is decidable, the diffusion of the lan-

guage among software practitioners and research communities, its feasibility to be 

used for fast prototyping, and its adoption as an international standard. After many 

past experiments with other formal languages, in this chapter we decided to adopt 
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OWL (in its OWL 2 DL version1), the description logic language recommended 

by W3C for Semantic Web applications, and more generally semantic web tech-

nologies. The main advantage of this choice is that Semantic Web technologies 

are increasingly becoming a standard for Internet applications and therefore, given 

that the OWL logic language is decidable, it is supported by many reasoners (like 

Fact++, Pellet, Racer Pro, HermiT), tools for ontology editing (like Protégé2) and 

library for automatic ontology management (like OWL-API). Given that it is a 

standard, it would be easier to achieve a high degree of interoperability of data and 

applications, which is indeed a crucial precondition for the development of open 

systems. Finally given that semantic web technologies are becoming very used in 

innovative applications it will become much easier to teach them to software engi-

neers than convince them to learn and use a logic language adopted by a limited 

group of researchers. 

There are some interesting and challenging problems that may arise from the 

fact that Semantic Web technologies are not devised for modelling dynamic sys-

tems (i.e. systems that changes in time). One is encountered when trying to per-

form full temporal reasoning; in fact OWL has no temporal operators. Another 

one is due to the fact that Semantic Web technologies have not been devised to 

check constrain for example on norm specification, but there are some interesting 

current studies on how to use the Pellet reasoner for “Simple Integrity Con-

straints”3. A third one is the open-world assumption of OWL logic, it may be a 

problem for successfully monitoring obligations, that is, when trying to deduce 

that when the deadline is elapsed an obligation has to be permanently fulfilled or 

violated. 

The added value of this chapter is twofold: the first is to show how it is possi-

ble to use semantic web technologies, and in particular OWL 2 DL, as formal lan-

guage for the specification and monitoring f obligations with activation and deac-

tivation events and deadlines. This model may have many different kinds of 

applications like the specification of electronic commerce market places, or the 

monitoring of semantic web services execution, or the flexible specification and 

monitoring of business process where both software and human agents may inter-

act. The second is to propose to use an OWL ontology not only for the specifica-

tion of a normative systems but also for the dynamic monitoring of the state of the 

interaction among autonomous agents in an open and dynamic environment with 

respect to a specified set of norms. In particular with this work we are giving our 

contribution to the open problem of understanding how far the monitoring prob-

lem can be solved by using an OWL 2 DL ontology and when it is necessary to in-

tegrate it with Java programs. 

This chapter is organized as follows. In Section 2 the proposed approach is 

compared with main alternative approaches. In Section 3 the formal language used 

                                                           
1 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group 
2 See http://www.w3.org/2007/OWL/wiki/Implementations for a complete list of reasoners and tools 
3http://clarkparsia.com/weblog/category/semweb/owl/pellet/integrity-constraints/ 
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in the paper is briefly described. In Section 4 the application independent ontology 

that can be used to represent and monitor obligations is introduced, discussed and 

exemplified. In Section 5 some obligations of a concrete case study are formalized 

using the proposed approach and finally in Section 6 some conclusions are drawn. 

2 Other approaches 

The problem of modelling norms using formal languages is widely recognized 

as a crucial problem by the multiagent community [3, 19]. Moreover the problem 

of run-time monitoring those norms is becoming more and more an interesting 

open question for the multiagent community and for the web service community 

as demonstrated by various papers on this topic [7, 16, 23, 10]. In particular in [7] 

Faci et al. propose a framework for non-intrusive monitoring of the state of con-

tract that, similarly to our proposal, is based on the observation of agents' message 

exchange. Their norms, having a structure quite close to the one proposed in this 

chapter, are specified using the XML language and their content is specified using 

ontologies. The main difference between the two approaches is on the monitoring 

component: in their work it is required to transform the XML representation of 

norms in another formalism: the augmented transition networks. This transfor-

mation presents all the drawbacks that may come from using two different formal 

languages to specify the same concept in term of consistency, performance, and 

required knowledge for the engineers who want to adopt this approach. In [16] 

Lomuscio et al. in order to monitor an agent “all its possible behaviours are repre-

sented as a timed automata with discrete data (TADD) and stored in the checker, 

the monitoring engine checks the snapshots against their TADD specification”. 

One of the main advantages of this approach, as claimed by the authors, is its 

scalability, this is an important goal to be taken into account and that in our ap-

proach can be pursuit by splitting up the state of the interaction in sub-states hold-

ing only the information that in a certain moment is relevant for a given interac-

tion. The reference architecture for contract monitoring in e-market scenarios 

presented in [23] is complementary to the model proposed in this chapter. Finally 

the main difference between the formalization proposed in this chapter and our 

previous work on the specification of norms using semantic web technology [10], 

is that in this chapter the content and the conditions of obligations are specified as 

classes of actions or events instead as specific action or event. 

As discussed in the introduction the choice of using semantic web languages 

has many advantages and it is a crucial aspect when we compare our work with 

other ones on norms specifications and properties verification where other formal 

languages are adopted. Other formal languages are for example the Event Calculus 

[24, 9], the language for rule specification of the rule engine Jess [13, 4], a variant 

of Propositional Dynamic Logic (PDL) used to specify and verify liveness and 
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safety properties of multi-agent system programs with norms [5], the Process 

Compliance Language (PCL) [14]. 

In literature there are few approaches that use semantic web languages for the 

specification of norms, even if their importance for the development of flexible 

security for dynamic and distributed environment is clearly recognized [15]. One 

interesting approach for policy specification and management is the KAoS frame-

work [18]. In MAS community the word norm and policy have a similar meaning; 

a policy could be a positive or negative authorization to perform an action or an 

obligation. In KAoS, like in the model proposed in this chapter, policies are speci-

fied using a set of concepts defined in an OWL DL core ontology that could be ex-

tended with application dependent ontologies. A crucial difference between the 

two approaches is the fact that OWL 2 DL is more expressive that OWL DL. An-

other important difference is in the methods used for monitoring policies: in KAoS 

policies are usually regimented by means of ''guards`` and are monitored by means 

of platform specific mechanisms. 

3 OWL and SWRL 

OWL is a practical realization of a Description Logic system known as 

SROIQ(D). It allows one to define classes, properties, and individuals. An OWL 

ontology consists of: a set of class axioms to describe classes, which constitute the 

Terminological Box (TBox); a set of property axioms to describe properties, which 

constitute a Role Box (RBox); and a collection of assertions to describe individu-

als, which constitute an Assertion Box (ABox). Properties can be either object 

properties or data properties. Classes can be viewed as formal descriptions of sets 

of objects (taken from a nonempty universe), and individuals can be viewed as 

names of objects of the universe. A class is either a basic class (i.e., an atomic 

class name) or a complex class build through a number of available constructors 

that express Boolean operations and different types of restrictions on the members 

of the class. 

Through class axioms one may specify subclass or equivalence relationships 

between classes, that certain classes are disjoint (Discla), and that a class is defined 

by placing restrictions on properties (existential (∃), universal (), cardinality, 

“has-value” (∋), and local reflexivity restrictions. Property axioms allow specify-

ing that a given property is the inverse of another property (

), or that a property is 

functional (Fun), or a transitive property (Tr), or that a property can be obtained by 

composing properties into property chains (∘). Finally, assertions allows to speci-

fy that an individual belongs to a class, that an individual is related to another in-

dividual through an object property, that an individual is related to a data value 

through a data property, or that two individuals are equal or different. 

OWL can be regarded as a decidable fragment of First Order Logic (FOL). The 

price to pay for decidability, which is considered as an essential preconditions for 
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exploiting reasoning in practical applications, is limited expressiveness. Even in 

OWL 2 DL (the more expressive version currently under specification) certain 

useful first-order statements cannot be formalized. Given the limited expressivity 

of OWL the Semantic Web Rule Language (SWRL)4 has been proposed to extend 

the set of OWL axioms to include Horn-like rules of the form of an implication 

between an antecedent (body) and consequent (head). Recently certain OWL rea-

soners, like Pellet, have been extended to deal with SWRL rules. To preserve de-

cidability, however, rules have to be used in the safe mode, which means that be-

fore being exploited in a reasoning process all their variables must be instantiated 

by pre-existing individuals. An important aspect of SWRL is the possibility of in-

cluding built-ins, that is, Boolean functions that perform operations on data values 

and return a truth value. In what follows we use capital initials for classes and 

lower case initials for properties and individuals, we assume that all the individu-

als introduced are different. 

4 An Application Independent Ontology for Modelling and 

Monitoring agents' interactions 

In this section we introduce the classes, the properties, and the axioms of the 

application independent part of the ontology (“upper ontology”) that one has to 

use to specify and monitor agents' obligations in those applications where the real-

ization of an open normative interaction system is required. In order to completely 

formalize a real interaction system, as exemplified in Section 4.2, this ontology 

has to be extended with application dependent classes, properties, and axioms that 

are used to model the application dependent actions and events that appear in the 

content or in the condition of obligations. 

In particular we first describe the OWL Time Ontology that we use in this 

chapter, the classes for representing events and fluents and their relationships with 

obligations. Subsequently we define one possible example of a domain dependent 

ontology that will be used in the examples contained in the paper. Then we intro-

duce the part of the ontology that is necessary for representing events and the 

elapsing of time. Later on we present the part of the ontology used to represent the 

content, the condition, the deadline, and the expiration condition of obligations. 

Finally we introduce the part of the ontology and the mechanisms that have to be 

used to monitor the time evolution of obligations on the basis of the actions and 

events that happen in the system. At the end of this section the graphical represen-

tation of the proposed ontology is reported. 

                                                           
4 http://www.w3.org/Submission/SWRL/ 
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4.1 Modelling Time, Events, and Fluents 

The first class that has to be introduced is the Agent class that is used to repre-

sent the agents involved in the interaction mediated by the open system. Secondly 

in order to be able to represent obligations with activation and deactivation events 

correlated to time and with temporal deadlines, we have to find a suitable and effi-

cient way to represent instants and interval of time in the ontology. Given that 

OWL has not temporal operator, the simplest solution, which pursues also the goal 

of being interoperable with other ontologies, is to adopt the OWL Time Ontolo-

gy5. Unfortunately the axiomatization of the OWL Time Ontology is very weak 

and therefore it will be impossible to perform certain type of interesting reasoning 

on the future evolution of the state of the system. Nevertheless, as we will see in 

the following subsections, we will try to partially overcome to this problem, in or-

der to be able, at least, to represent and monitor the time evolution of the system. 

Here we report the list of classes and properties of the OWL Time Ontology that 

are relevant for the comprehension of this chapter (they are graphically represent-

ed in Figure 1 at the end of this section): 

Instant ⊑ TemporalEntity, Interval ⊑ TemporalEntity, 
ProperInterval ⊑Interval, TemporalEntity ≡ Instant ⊔ Interval, 
hasBeginning: TemporalEntity → Instant, 
hasEnd: TemporalEntity → Instant,  
before: TemporalEntity → TemporalEntity, InvPro(after,before), 
inDateTime: Instant → DateTimeDescription, 
Discla(ProperInterval,Instant), Instant ⊑ = 1 inDateTime 

In order to be able to represent events that happen at a certain instant of time, or 

fluents, that is, state of affair that holds for a certain interval of time, we introduce 

the class Eventuality and its two subclasses: Event, whose individuals are related 

to an instant of time, and Fluent whose individuals are related to an interval: 

Event ⊑ Eventuality, Fluent ⊑ Eventuality, Discla(Event,Fluent), 
atTime: Eventuality → TemporalEntity, 
Event ≡ ∃ atTime.Instant, Fluent ≡ ∃ atTime.Interval. 

An event is before another event if the first one happens at an instant of time 

that is before the instant of time of the second one: 

evBefore: Eventuality → Eventuality, 
atTime ∘ before ∘ atTime ⊑ evBefore, Tr(evBefore). 

Two events that happens at the same instant of time are related by the evSa-
meTime property: 

evSameTime: Eventuality → Eventuality, 
atTime ∘ atTime ⊑ evSameTime, Tr(evSameTime). 

                                                           
5 http://www.w3.org/TR/owl-time/ 
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Actions are viewed as a particular type of events that have an actor, a recipient 

and an object: 

Action ⊑ Event, hasActor: Action → Agent, 

hasRecipient: Action → Agent, hasObject: Action → Object, 
Fun(hasActor), Fun(hasRecipient), Fun(hasObject). 

Obligations are represented as particular type of event: Obligation ⊑ Event, and 

they are characterized by the event that brings about their creation. Even if, in the 

common sense perception, obligations are semantically different from events, this 

choice gives us the flexibility to be able to specify class of actions as content of 

the obligations and it makes the axiomatization of the notion of obligation fulfil-

ment and violation simpler. An obligation has a debtor and a creditor as repre-

sented by the following properties: 

hasDebtor: Obligation → Agent, hasCreditor: Obligation → Agent 
Discla(Obligation,Action). 

An obligation has also a content, an activation event, a deactivation event, and 

a deadline, which are specified using classes, as discussed in Subsection 4.4. 

4.2 An Example of a Domain Dependent Ontology 

In order to be able to use in the content and in the condition of obligations con-

crete classes of actions and events, it is necessary to introduce in the ontology do-

main dependent classes and properties. Those classes have to be subclasses of the 

class Action or of the class Event. For example we may need to introduce the class 

of the actions of delivering a certain object to a certain recipient:  

Deliver ⊑ Action ⊓ ∃ hasRecipient ⊓ ∃ hasObject, 

the class of actions of paying a certain amount of money to a certain recipient: 

Pay ⊑ Action ⊓ ∃ hasRecipient ⊓ ∃ hasObject, 

and the class of actions of paying by means of a bank transfer, BankTransfer, 
which is a subclass of the Pay class: BankTransfer ⊑ Pay. Those classes will be 

used in Section 4.6 where different types of obligations for the electronic com-

merce domain will be presented. 

For example the action of delivering a book book1 from agent Luca to agent 

Marco performed at instant1 is described by the following assertions: 

Agent(Luca), Agent(Marco), Object(book1), Instant(instant1), 
Deliver(deliver1), hasActor(deliver1, Luca), hasRecipient(deliver1,Marco), 
hasObject(deliver1,book1), atTime(deliver1,instant1). 
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4.3 Representing events, actions, and the elapsing of time 

We want to use the specified OWL ontology to represent the evolution in time 

of the state of the interaction between autonomous and heterogeneous agents in a 

norm governed framework. This state has to be represented in every software that 

is in charge of monitoring the behaviour of the interacting agents, a centralized, 

mixed, or distributed one (the discussion of the advantages and problems due to 

the choice of one or other architecture is crucial but due to its complexity it is be-

yond the scope of this specific paper), and may be represented inside the interact-

ing agents in order to let them to reason and plan their future actions on the basis 

of the rules of the system. It is moreover reasonable that the interacting agents 

have a partial knowledge of the state of the interaction, which represents only the 

interaction in which they are involved or that is relevant for the specific agent. 

If the system evolution is simulated, the list of events that happen in the sys-

tem, the list of actions performed by the agents, and the instant of time when they 

happen, are known at design time and may be initially introduced in the ontology. 

Differently, if an actual interaction between agents takes place at run-time, it is 

necessary to tackle two problems. First of all it is required to support agents’ 

communication with an appropriate middle-ware, like for instance the widely used 

JADE framework6, or by using web services standard technologies7. Regarding the 

agent communication language (ACL) we plan to adopt the commitment based 

one presented in [9] for the exchanged messages instead of the FIPA-ACL stand-

ard semantics8 that presents a set of well known drawbacks [22]. Secondly it is 

necessary to write a program in charge of inserting in the ontology a representa-

tion of agents' actions and of the events observed, together with the corresponding 

instant of time when they happened, for example a typical type of action that 

needs to be recorded in the ontology is the exchange of messages between agents. 

Either the interaction is simulated or it is actually happening at run-time, events 

or actions happen at certain instant of time and it is necessary to state what the 

temporal relation between those instants is. This can be simply done by asserting 

which instant comes after another using the after property. Then thanks to the 

transitivity of the after property, it is possible to deduce the temporal relation that 

subsists between all instants of time present in the ontology. Alternatively in order 

to be able to compare two instants of time and assert which one comes after the 

other the designer may decide to use an external Java program, or an SWRL rule 

with built-ins for comparisons, or simply inserting the instant of time in the ontol-

ogy following their temporal order and asserting that the last instant inserted is af-
ter the last but one. 

                                                           
6 http://jade.tilab.com/ 
7 http//www.w3.org/standards/webofservices/description 
8 http://www.fipa.org/specs/fipa00037/SC00037J.pdf 
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Certain subclasses of the class Event are used in the definition of specific obli-

gations as explained in the following sections. In particular it will be certainly 

necessary to represent at least the following different types of events: 

 Time events are used to represent the events related to the elapsing of time and 

belong to the TimeEvent ⊑ Event class. This class is disjoint from the Obliga-
tion and from the Action classes: Discla(Obligation,TimeEvent), Dis-
cla(Action,TimeEvent). A specific time event is related by means of its atTime 

property to the instant of time when it happens. Notice that a time event actual-

ly happens when its instant of time is asserted to belong to the class Elapsed 

that will be introduced later on. 

 Action events are used to represent actions performed by the agents, they are 

represented as individuals of the class Action, for example the action of deliver-

ing a product. The action of exchanging a message is a common and very im-

portant type of action represented with the class ExchMsg ⊑ Action. It has an 

actor, the sender of the message, a recipient, the receiver of the message, an il-

locutionary force (see [9] for more details) connected to the message using the 

hasForce property whose range is the IllocutionaryForce class, and an object 
that is the content of the message. 

 Change events are used to represent the events due to the change of the value of 

a property, they are represented as individuals of the ChangeEvent ⊑ Event 
class. For example the change in the state of an auction from close to open can 

be used as condition of the obligation for the auctioneer to declare the current 

price of the product to be sold. Usually a change event is characterized by the 

entity whose property is changed, the previous value and the subsequent value 

of the property, they are all represented as properties of change events. Obvi-

ously whenever the performance of an action, or the occurrence of an event, 

has the effect to change the value of a property of an entity, and if the change 

event is relevant for one of the obligations represented in the ontology, it is 

necessary to introduce in the ontology an individual belonging to the Chang-
eEvent class with a suitable atTime value. This is a fundamental feature of the 

middle-ware, and it has to be strongly optimized because may be critical in 

terms of time consuming. 

In general when a certain obligation has to be created it may happen that it is 

necessary to create new subclasses of those classes. Moreover if the new obliga-

tion is related to a specific time event (for example the obligation to deliver a book 

within a given deadline), a new individual, belonging to the TimeEvent class, has 

to be inserted in the ontology in order to represent such a time event. 

In order to model the elapsing of time we need to have in the ontology a set of 

individuals used to represent all the relevant instants of time. An instant of time is 

relevant if an action, or an event, happens at that instant of time, or if such an in-

stant of time is used to create a time event related to the specification of an obliga-

tion. The distance between an instant of time and the following one depends on 

the time lag chosen for the system: every type of interaction may have its own rea-
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sonable time lag that mainly depends on the frequency on which actions or events 

happen. During the evolution of the interaction, in order to model the elapsing of 

time, the individual corresponding to the actual instant of time (of the simulation 

or of the actual agents interaction) have to be asserted to belong to the Elapsed ⊑ 
Instant class, a special class introduced specifically for this purpose. Every instant 

of time that is before an elapsed instant of time is itself elapsed as expressed by 

the following axiom: ∃before.Elapsed ⊑ Elapsed. 

In case the evolution of the system is simulated it is enough to repeatedly assert 

that the instant of time, subsequent to the current one, is elapsed, and then run the 

reasoner to deduce all the consequences of the events or actions happened at the 

current instant of time. Differently if the ontology is used to represent the state of 

an actual agents interaction, it is necessary to keep aligned the current instant of 

time represented in the ontology (the last that is asserted to be elapsed) with the 

external clock, that is, the clock of the world where the agents actually interact. 

Therefore an instant of time has to be asserted to be elapsed only when its in-
DateTime property is lower or equal to the time adopted by the interacting agents. 

4.4 Representing specific obligations 

In this chapter we specify how to formalize in the ontology used to represent 

the state of the interaction among agents their obligations and we describe how to 

monitor, using semantic web technologies, those obligations. An obligation exists 

between two specific agents that are the debtor and the creditor of the obligation. 

An obligation is characterized by the instant of time when the obligation is creat-

ed, a class of events that may activate or deactivate it, a content described by 

means of another class, and a deadline. We assume (coherently with what is speci-

fied in the OCeAN meta-model [9]) that new obligations are created as the effect 

of the performance of certain communicative acts (like promises), or as conse-

quence of the activation of a norm. A norm is activated whenever an agent, who is 

interacting with other agents within a certain institutional context, starts to play a 

role whose behaviour is regulated by the norm. Whenever a new obligation, obl-n, 

is created at a certain instant of time, instant-n, whose inDateTime property value 

is equal to the time when the obligation is created (in the following referred as 

now), the ABox of the ontology has to be automatically updated with the follow-

ing assertions: 

Obligation(obl-n), atTime(obl-n,instant-n), inDateTime(instant-n,now), 
hasDebtor(obl-n,agent1), hasCreditor(obl-n,agent2). 

In addition it is necessary to update the TBox in the following way: the first 

change consists in defining the specific activation, deactivation, content, and 

deadline classes of the new obligation; secondly it will be necessary to write the 
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axioms for deducing the state of a given obligation, with the goal of monitoring its 

fulfilment or its violation as described in the following subsection.  

The StartEvent-n ⊑ Event class describes the type of events that may activate 

the obligation obl-n, that is, the conditional event that have to happen in order to 

make the obligation activated. For example in certain electronic commerce scenar-

io an agent may start to be actively obliged to pay a certain amount of money after 

the reception of the ordered product. Certain obligation may be immediately acti-

vated without the need to specify any condition, in this case the StartEvent-n class 

coincides with the event that create the obligation:  

StartEvent-n≡{obl-n}. 

If it is possible to deduce that the StartEvent-n class is equal to the empty set 

⊥, it means that the obligation obl-n will never be activated. This is a fundamental 

information for the agents when they are planning their future actions. 

The EndEvent-n ⊑ Event class describes the type of events that may expire the 

obligation, that is, when an expiration event happens the obligation becomes can-

celled and will not any more become active in the future. The specification of this 

class is crucial for those obligations that may be activated many times, for exam-

ple an employer may have the obligation to pay the salary to his/her employees at 

the end of each month as long as they are employed in the company. Very often 

the EndEvent-n class is equivalent to the class of the actions that may be used to 

dismiss an agent from a specific role, the role indicated in the debtor or in the 

creditor field of the norm that generated the obligation. For example when an 

agent ceases to be an employer or an employee the obligation to pay the salary be-

comes cancelled. In some other cases the EndEvent-n class coincides with a fixed 

deadline, that is, with a certain time event, for example the instant of time when 

the contract of the employee terminates. 

The Content-n ⊑ Action class describe the set of actions whose performance 

may fulfil or violate the obligation. An crucial aspect of the proposed model is the 

possibility that an action, belonging to a subclass of the Content-n class, satisfies 

the obligation. Moreover in the definition of the Content-n class it is also possible 

to use Boolean class constructors. The union of classes can be used for those cases 

when either an action belonging to one class or an action belonging to another 

class may fulfil an obligation. 

When an agent has the obligation to perform an action it is necessary to define 

the deadline (i.e. the instant of time) within which the action has to be performed. 

For coherence with the other classes we introduce the class Deadline-n ⊑ 
Timevent even if it contains only one individual: the time event associated to the 

instant of time that represents the deadline of the obligation. Taking into consider-

ation the existence for every obligation of a start and dead-line event it is natural 

to introduce a property hasInterval: Obligation→TemporalEntity that binds an ob-

ligation to the interval of time within which one action belonging to the Content 

class has to be performed. Such an interval has a beginning instant of time, an end 

instant of time, and a duration that can be obtained by means of the hasBeginning, 
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hasEnd, hasDurationDescription properties. The instant of time when the interval 

of obl-n starts can be deduced on the basis of the instant of time when an individu-

al belonging to the StartEvent-n class happens by introducing the following 

SWRL rule: 

StartEvent-n(?e) ∧ atTime(?e,?inst)  ∧ hasInterval(obl-n,?int) →  
hasBeginning(?int, ?inst) 

The Deadline-n class is equivalent to the class that contains only the time event 

that happens at the instant of time when the interval of the obligation finishes, as 

stated in the following axiom: 

Deadline-n ≡ ∃ atTime.(∃ hasEnd.(hasInterval ∋ obl-n))  

It is important to remark that when the deadline of the obligation depends on 

the instant of time when the obligation is activated, the time event to be used as 

deadline is unknown when the obligation is created. In this case the Deadline-n 

class will become defined when the obligation becomes active. A example of this 

kind of obligations are those obligation where the deadline is equal to the instant 

of time when the obligation is activated plus a fixed amount of time, for instance 

the obligation to pay the product within 2 days from its reception. For these type 

of obligations it is necessary to insert in the ontology also the value of the duration 

of the interval associated with the obligation. Once the beginning instant and the 

duration of the interval are known, it is possible to use the following SWRL rule, 

which uses the swrlb:add built-in, to deduce the value of the end instant of time of 

the interval (we assume that the duration of the interval is expressed in days): 

hasBeginning(?int,?inst1) ∧ inDateTime(?inst1,?dt1) ∧  
dayOfYear(?dt1,?day1) ∧ Instant(?int2) ∧ inDateTime(?inst2,?dt2) ∧  
dayOfYear(?dt2,?day2) ∧ hasDurationDescription(?int,?d) ∧ days(?d,?value)∧ 
swrlb:add(?day2,?day1,?value) → hasEnd(?int,?inst2) 

For those obligations where the deadline event is a fixed time event that does 

not depend on the activation event (see for example in Section 4.6 the first type of 

obligations), it is important to check that the start event happens before the end 

event. This can be done with the following axiom that has to be written only for 

obligations whose StartEvent-n and Deadline-n classes are equivalent to a specific 

time event. In case the deadline time event is before or equal to the start time 

event the ontology becomes contradictory:  

Deadline-n ⊓ (evBefore.StartEvent-n ⊔ evSameTime.StartEvent-n) ⊑ ⊥ 

In Section 4.6 specific examples will be used to illustrate the definition of the 

StartEvent, EndEvent, Content, and Deadline classes for different type of obliga-

tions. 
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4.5 Monitoring the state of obligations 

When a new obligation obl-n is created the second change to the TBox consists 

in introducing the four axioms that are necessary to deduce the state of a given ob-

ligation, that is, to deduce if it belongs to the Activated, Cancelled, Fulfilled, or Vi-
olated classes. Those classes are subclass of the class Obligation and the Fulfilled 

and Violated classes are disjoint: 

Fulfilled ⊑ Obligation, Violated ⊑ Obligation, Activated ⊑ Obligation,  
Cancelled ⊑ Obligation, DisCla(Fulfilled, Violated). 

The first axiom is the one to deduce that an obligation with a certain StartEvent 
class is activated. If an event es that belongs to the StartEvent-n class of an obliga-

tion obl-n happens after or at the same instant of time when the obligation is creat-

ed, the time at which es happens is elapsed, and the obligation has not yet been 

cancelled, then the obligation becomes activated. 

The main problem in writing this axiom is due to the negation that appears in 

the third condition. OWL reasoners operate under the open world assumption and 

therefore we cannot simply write in the axiom the condition “not cancelled”. In 

fact the conclusion that an obligation is not cancelled can only be reached if the 

obligation can be definitely proved not to be member of the Cancelled class. To 

solve this problem we assume that our ABox contains complete information on the 

events happened or actions performed before the current time of the system. More 

specifically, we assume to use an external Java program that will always update 

the ABox whenever an event happens. Moreover we assume that such a program 

can only insert in the ABox the information that an event is happened at current 

time t, and that it is not possible to insert the information that an event is happened 

in the past. Starting from these assumptions we can adopt a closed-world perspec-

tive on the Cancelled class: an obligation “is not yet been cancelled” if it is not in 

the Cancelled class. Consequently in order to be able to perform some form of 

closed world reasoning on the Cancelled class (similarly to the solution proposed 

in [10]) we introduce in our ontology the explicit closure of such a class. More 

precisely, we introduce a new class, the KCancelled  ⊑  Cancelled, which is meant 

to contain all obligations that, at a given time, are known to be in the Cancelled 

class. To maintain the KCancelled class as the closure of the Cancelled class, we 

define it periodically as equivalent to the enumeration of all individuals that can 

be proved to be members of the Cancelled class. This can be done by the external 

Java program that is also used to update the ABox to keep track of the elapsing of 

time and of the events that happen in the system. The axiom to deduce if an obli-

gation obl-n is activated is therefore: 

Axiom Activated Obl-n: 

{obl-n} ⊓  KCancelled  ⊓ (∃evBefore.(StartEvent-n  ⊓ ∃atTime.Elapsed) ⊔  
∃evSameTime.(StartEvent-n  ⊓ ∃atTime.Elapsed) ) ⊑ Activated 
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An obligation, when is not yet cancelled, may be activated more than once by 

different start events belonging the StartEvent class. It is important to be able to 

monitor the time evolution of the obligation for each one of its possible activation 

event. Therefore we assume that whenever an obligation is activated at instant i, 

an external program has to create a copy of that obligation and associate it to a 

creation time that is one instant of time later than the instant of time of the current 

activation i. This fact is crucial  to avoid that the new copy of the obligation be-

comes active due to the current activation event. 

If an event ee that belongs to the EndEvent-n class of an obligation obl-n hap-

pens after the time when the obligation is created and the time at which ee happens 

is elapsed, then the obligation becomes cancelled. It is important to underline that 

an obligation that is activated may be also cancelled (the Activated and Cancelled 

classes are not disjoint). This means that it can become fulfilled or violated but al-

so that cannot be any more activated in the future by another start event. For ex-

ample the obligation to pay the salary to an employee at the end of each month for 

an entire year becomes cancelled at the end of the year and is activated for twelve 

times, the last time that the obligation is activated it is also cancelled because the 

entire year is elapsed. If an end event happens before a start event the obligation is 

never activated. For example the obligation for a company to keep the streets of a 

city clear from the snow for a given winter will never be activated if the winter is 

particularly warm. 

Axiom Cancelled Obl-n: 

{obl-n} ⊓ ∃evBefore.(EndEvent-n ⊓ ∃atTime.Elapsed) ⊑ Cancelled 

As mentioned before the Deadline-n class contains only one time event, the 

time event within which an action belonging to the Content-n class has to be per-

formed.  

If an event ec that belongs to the Content-n class of an active obligation obl-n 

(created at in) happens at instant ic, ic is after or equal to in, ic is before the deadline 

of obl-n, and i is elapsed, then the obligation becomes fulfilled as expressed by the 

following axiom. 

Axiom Fulfilled Obl-n: 

{obl-n} ⊓ Activated ⊓ (∃evBefore.(Content-n ⊓ ∃atTime.Elapsed) ⊔ 
∃evSameTime.(Content-n  ⊓ ∃atTime.Elapsed)) ⊓  
∃evBefore.(Content-n ⊓ ∃evBefore.Deadline-n) ⊑ Fulfilled 

If the time event that represents the deadline of an active obligation obl-n 

elapses and the obligation is not yet fulfilled, the obligation has to become violat-

ed. Similarly to what we did for writing the axiom for the activation of obliga-

tions, in order to write the axiom to deduce that an obligation is cancelled we need 

to introduce the explicit closure of the Fulfilled class: the class KFulfilled ⊑ Ful-
filled. The KFulfilled class is meant to contain all obligations that, at a given time, 

are known to be in the Fulfilled class. To maintain the KFulfilled class updated we 

define it periodically, by means of the external program, as equivalent to the enu-
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meration of all individuals that can be proved to be members of the Fulfilled class. 

The axiom to deduce that an obligation obl-n is violated is: 

Axiom Violated Obl-n: 

{obl-n} ⊓ Activated ⊓  KFulfilled ⊓  
∃evBefore.(Deadline-n ⊓ ∃ atTime.Elapsed) ⊑ Violated 

Initially KCancelled ≡ KActivated ≡ KFulfilled ≡ KViolated ≡ Nothing then a 

Java external program has to update their extension on the basis of the deductions 

of the reasoner. In Figure 1 the graphical representation of the classes and proper-

ties introduced in the previous sections is depicted. 
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Fig. 1 Graphical representation of the ontology. Properties are represented with dotted lines, solid lines are 

used for subclasses. 

4.6 Possible Type of Obligations 

A first type of obligations are those obligations whose StartEvent and Deadline 

classes are equivalent to a specific time event. It means that the obliged action de-

scribed with the Content class has to be performed between two specific instants 

of time. An example of an obligation of this type is the obligation obl-1 created at 

instant1 from agent Marco to agent Luca to pay 5 euro between instant of time in-
stant2 and instant4 having certain specific dates as inDateTime properties. To 

model the obligation obl-1 it is necessary to add to the ABox the following asser-

tions: 

Obligation(obl-1), Agent(Marco), Agent(Luca), Thing(5euro),Instant(instant1), 
atTime(obl-1,instant1),hasDebtor(obl-1,Marco), hasCreditor(obl-1,Luca), 
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ProperInterval(interval1), hasInterval(obl-1,interval1), 
hasEnd(interval1,instant4),TimeEvent(tevent4), Instant(instant4),  
atTime(tevent4,instant4), 

For this kind of obligations the StartEvent-1 classes consist of only one ele-

ment: the time event that happens at instant2: 

TimeEvent(tevent2), Instant(instant2), atTime(tevent2,instant2), 
after(instant2,instant1), after(instant4,instant2), 
StartEvent-1 ≡ {tevent2},  
Content-1≡Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro. 

The four axioms for deducing the state of obligations contextualized to this 

specific obligation have to be inserted in the ontology. Given that this obligation 

can become active only one time, it is not interesting to define the EndEvent class. 

A crucial aspect of the proposed approach is that it is more flexible than other 

ones, in fact, given that the content of the obligations is expressed using a class of 

possible actions, the interacting agents have the flexibility to choose which one to 

perform. Moreover, if an event that belongs to one of the subclasses of the Con-
tent class happens, the obligation may equally become fulfilled. For example, if 

the bank transfer event (represented with the individual bankTr1∈BankTransfer 
where BankTransfer ⊑ Pay) from Marco to Luca of an amount of 5 euro happens 

after the activation event and before the deadline event, the obligation obl-1 be-

comes fulfilled. 

The content of an obligation could also be the performance of either one class 

or another class of actions. This type of Content class can be represented using the 

union of two or more classes of actions. For example the obligation from Marco to 

Luca to either pay 5 euro to Luca or donate 6 euro to Unicef between instant2 and 

instant4 is identical to the previous obligation except for the Content-1 class that 

becomes: 

Content-1 ≡  
(Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro) ⊔  
(Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Unicef ⊓ hasObject∋6euro) 

A second type of obligations has the StartEvent class that can be interpreted as 

a condition for the activation of the obligation (a conditional obligation) and 

whose Deadline class depends on the time of its activation. An example of an ob-

ligation of this type is the obligation obl-2 created at instant1 from agent Marco to 

agent Luca to pay 5 euro within 2 days from the reception of the book (book1) on 

condition that the book was delivered from Luca to Marco. Besides the assertions 

previously introduce we have to add in the ABox those ones: 

Obligation(obl-2), atTime(obl-2,instant1), 
hasDebtor(obl-2,Marco), hasCreditor(obl-2,Luca), Object(book1), 
ProperInterval(interval2), hasInterval(obl-2, interval2), 
hasDurationDescription(interval2,duration2), days(duration2, 2), 
StartEvent-2 ≡ Deliver ⊓ hasActor∋Luca ⊓ hasRecipient∋Marco ⊓ 
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hasObject∋book1, 
Content-2 ≡Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro, 
EndEvent-2 ≡ {teventk}. 

Reasonably the EndEvent-2 class is equivalent to the time event teventk whose 

instant property can be calculated as the time of creation of the obligation plus 3 

months. This means that if the book is not delivered within 3 months Marco is not 

any more conditional obligated to pay for the book after its reception. As usual the 

four axioms presented in the previous section for deducing the state of an obliga-

tion, contextualized to this specific obligation, have to be inserted in the ontology. 

A third type of obligations has not condition, that is, their StartEvent class is 

equivalent to the time of the creation of the obligation. Due to this fact the dead-

line of this type of obligations can be set when the obligation is created on the ba-

sis of the duration of the interval. An example of an obligation of this type is the 

obligation obl-3 created at instant1 from Marco to Luca to pay 5 euro before to-

morrow, where tomorrow is computed at the creation of the obligation to be repre-

sented by the instant of time instant4. This obligation can be represented with the 

following assertions and axioms: 

Obligation(obl-3), atTime(obl-3,instant1), hasDebtor(obl-3,Marco),  
hasCreditor(obl-3,Luca) TimeEvent(tevent1), atTime(tevent1,instant1) 
ProperInterval(interval3), hasInterval(obl-3,interval3), 
hasEnd(interval3,instant4), 
StartEvent-3 ≡ {tevent1} 
Content-3 ≡ Pay ⊓ hasActor∋Marco ⊓ hasRecipient∋Luca ⊓ hasObject∋5euro 

As already explained the four axioms for deducing the state of this obligation 

have to be inserted in the ontology. 

5 A case study: obligations in vehicle repair contracts 

In this Section we formalize and monitor the vehicle repair contract described 

in [16] using the model presented in this chapter. The scenario is as follows: a re-

pair contract regulates the interactions between a client agent called cl and a vehi-

cle repair company, called rc. A repair contract specifies details concerning a par-

ticular repair. The interaction between cl and rc is described as follows: when rc 

receives a request from cl to undertake a repair job, it has to send a repair contract 

within x days. In response, cl sends an acceptance or rejection message within y 

days. If accepted, cl has to send the vehicle within k1 day from the acceptance. rc 

then waits for the vehicle to arrive, failing which it sends two reminders to cl. If 
the vehicle fails to arrive, it takes an offline action. As per the contract, if the ve-

hicle arrives rc is obliged to assess the damage, repair the vehicle, and send a re-

port to cl within k2 days from the reception of the vehicle. On receiving the report, 

cl is obliged to send payment to rc within k3 days from the reception of the report. 
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If the payment is not sent, rc sends two reminders to cl and then takes an offline 

action. If the payment is sent cl has to pick-up the vehicle within k4 days from the 

reception of the report. 

Every action has to be performed within a certain number of days, and the ac-

tual deadline is computed on the basis of the time when a certain event happens, 

the maximum duration of each activity is defined in the contract and may vary 

from one contract to another. Almost all these obligations are conditional obliga-

tions with deadline computed on the basis of the time of their activation; therefore 

they are similar to the second type of obligations presented in Section 4.6. Initially 

the interaction between rc and cl is devoted to the definition of the properties of a 

specific repair contract that is characterized by the type of the repair, the price, 

four duration of time used to compute the deadlines of the obligations for agent cl, 
and two duration of time used to compute the deadlines of the obligations for 

agent rc. We represent such a contract as an individual of the class VehicleRe-
pairContract having the properties hasRepairType, hasPrice, hasDuration1,..., 
hasDuration6. This is another example of a domain dependent ontology. If the 

contract is accepted by both parties six conditional obligations start to hold, four 

for agent cl and two for agent rc. Subsequently the interaction is devoted to the ex-

ecution of the contract. Given that the interacting agents belong to different own-

ers having different interests, their behaviour has to be monitored to verify its 

compliance with the obligations. 

In order to define the contract and reach an agreement on the value of the prop-

erties used to characterize the contract the two agents need to interact at least two 

times, but can interact also more times. A contract is complete if all its properties 

are set and therefore it belongs to the CompleteContract ⊑ VehicleRepairContract 
class as stated by the following axiom: 

CompleteContract ≡ ∃ hasRepairType.TypeRepair ⊓ ∃ hasPrice ⊓ 
∃ hasDuration1 ⊓ ... ⊓ ∃ hasDuration6 

The contract definition phase is regulated by two obligations: once is the obli-

gation for rc to send a complete contract to agent cl within x days from the recep-

tion of the request from cl; the second is the obligation for agent cl to accept or re-

ject a complete contract offer within y days. In case cl rejects the proposed 

contract the negotiation can continue with new requests and counter offers on the 

basis of the pro-activity of the two involved agents. If agent cl accepts the pro-

posed contract then six new conditional obligations are created having as interval 

the duration specified in the contract. The first obligation for rc can be represented 

as: 

Obligation(obl-4), atTime(obl-4,instant1), Instant(instant1), 
ProperInterval(interval4), hasInterval(obl-4, interval4), 
hasDurationDescription(interval4,duration4), days(duration4, x), 
StartEvent-4 ≡ ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓  
hasForce∋request ⊓  ∃ hasObject.VehicleRepairContract. 
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The Content-4 class contains the actions of sending a request message from 

agent rc to agent cl with as content an individual belonging to the CompleteCon-
tract class: 

Content-4 ≡ ExchMsg ⊓ hasActor∋rc ⊓ hasRecipient∋cl ⊓  
hasForce∋request ⊓ hasObject.CompleteContract. 

The obligation for agent cl to accept or reject a complete contract offer within y 

days can be represented as: 

Obligation(obl-5), atTime(obl-5,instant1), Instant(instant1), 
ProperInterval(interval5), hasInterval(obl-5, interval5), 
hasDurationDescription(interval5,duration5), days(duration5, y), 
StartEvent-5 ≡ Content-4. 

The Content-5 class contains the actions of accepting or rejecting the contract 

whose proposal activated the obligation obl-5: 

Content-5 ≡ (ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓ 
hasForce∋accept ⊓ ∃ hasObject.(∃ hasObject StartEvent-5)) ⊔ 
(ExchMsg ⊓ hasActor∋cl ⊓ hasRecipient∋rc ⊓ hasForce∋reject ⊓  
∃ hasObject.(∃ hasObject StartEvent-5)) 

Due to space limitation we will not describe in detail the formalization of all 

the other conditional obligations that will be created once the contract is accepted, 

they are similar to the second type obligations introduced in section 4.6. The ap-

plication independent ontology described in this chapter with an ABox that con-

tains the obligations described in the previous sections can be downloaded from 

the author's web page9. 

6 Conclusions and Future Works 

In this chapter we presented a formal model for the specification and monitor-

ing, using semantic web technology, of obligations whose content is a class of 

possible action, with activation and deactivation event and with deadline. The 

main goal of having this type of formal specification of obligations is to be able to 

have more flexible interactions among autonomous agents. This is possible be-

cause agents can decide at run-time which is the best action, among the ones be-

longing to the Content class, to perform in order to fulfil their obligations. This 

work is a first step in the broader project of formalizing, using semantic web tech-

nology, also prohibitions and permissions that present some crucial differences 

with respect to obligations. Another very important aspect of the formalization of 

normative concepts in open system is, besides their monitoring as explained in this 

chapter, their enforcement by the definition of sanctions and recovery actions. 

                                                           
9 http://www.people.lu.unisi.ch/fornaran/ontology/ObligationsOntology.html 
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Another interesting problem would be the definition of constrains for the vali-

dation of a normative specification and the introduction of mechanism for early 

detection of problematic situations. For example being able to point out that an 

agent is at the same time obliged to perform an action and obliged to perform an-

other action that is inconsistent with the first one, like being in two different plac-

es at the same time. Another very interesting open problem is being able to 

demonstrate that a given set of obligations has some soundness properties [17]. 

Finally regarding the decision to adopt semantic web technology as formal lan-

guage, there is still the open problem of better understanding what part of the 

model it is better and possible to represent in the ontology in order to be able to 

reason on it and what part of the model it is better to represent in the external ap-

plication because current semantic web standards do not support its representation. 

Acknowledgments. We would like to thank Marco Colombetti for the interesting discussions 
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