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Abstract. The design and implementation of open interaction systems
(OIS) is widely recognized to be a crucial issue in the development of
innovative applications on the Internet. In our past works we have pro-
posed to specify the high-level component of an OIS by means of a set
of artificial institutions. In this paper we describe the lower layers of a
framework of open interaction, to be used as a reference for the devel-
opment of an OIS: the connectivity layer, in charge of enabling an agent
to send messages to other agents, and the message layer, devoted to the
syntactic and semantic processing of the messages. We specify a set of
conventions concerning these layers that are essential in open interac-
tions: we propose conventions on the message structure, on the applica-
tion independent part of the content language, and on the semantics of
messages (limiting our attention, in this paper, to commissive messages).
Such conventions would guarantee agent interoperability if adopted as
interaction standards. Finally we present a software architecture based
on Web Service and Semantic Web Technology, suitable for the actual
implementation of these layers, and a demonstrative implementation.

1 Introduction

The design and implementation of open interaction systems (OIS) is widely
recognized to be a crucial issue in the development of innovative applications
on the Internet, like e-commerce applications, e-marketplaces, and applications
for the management of virtual enterprises. An interaction systems is open when
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different programs (regarded as autonomous agents) may freely enter or leave
the system, and try to achieve their individual goals by interacting with other
agents according to shared rules.

In our past works [7, 6, 4] we have proposed to specify the high-level com-
ponent of an OIS by means of a set of artificial institutions(specified using the
OCeAN meta-model), that is, as a system in which agents play certain roles,
are empowered to perform certain actions, and are subject to a set of norms
regulating the interactions. In the work presented in this paper we start our
analysis from the opposite side, that is, from the lower layers that are necessary
to achieve interoperability among two o more agents that are developed by dif-
ferent designers and are running on different platforms. This choice is justified
by the aim of testing our proposal with a demonstrative implementation that
will be presented in Section 5. As we will discuss in Section 4, an important
component of our proposal is the realization of an OIS Manager, which will be
in charge of managing complex interactions, like for example collective activities,
among different autonomous agents running on different platforms.

We start from a bottom-up analysis of the goals, assumptions, and constrains
for the realization of open interactions. This analysis brought us to identify four
layers for the representation of open interaction, where the concepts of the lower
layers contribute to the definition of the concepts belonging to the higher layers.
The layers we identified are: the connectivity layer, in charge of enabling an
agent to send messages to other agents; the message layer, which presupposes
connectivity and specifies a suitable Agent Communication Language (ACL); the
conversation layer, which presupposes the ability to exchange messages in a given
ACL, and specifies rules for carrying out conversations; and the activities layer,
where complex activities going beyond pure communication are carried out (e.g.,
e-business interactions). As we want to test our proposal with a demonstrative
implementation, and due to space limitations, in this paper limit our analysis
to the two lower layers: the connectivity and the message layers. We plan to
investigate the upper layers in our future works.

In particular in Section 2 we propose to analyze the connectivity and mes-
sage layers starting from the study of the assumptions and requirements that
we have to take into account for the realization of open interaction. This with
the goal of specifying a general framework of open interaction that should be
sufficiently general, that is, independent of specific application domains and en-
abling technologies. We continue our work in Section 3 by defining a minimal
set of conventions concerning the various components of the general framework,
that would guarantee agent interoperability if adopted as interaction standards.
In Section 4 we presents a software architecture, suitable for the actual imple-
mentation of an open interaction system exploiting software technologies that
can be readily adopted or, even better, that have already been adopted by the
industry, like Semantic Web and Web Service technologies. Finally, in Section 5
we describe a demonstrative implementation of the two bottom communication
layers of the architecture.



2 A Framework of Open Interaction

In this section we describe the two lower layers of a framework to be used as a
reference for the development of an OIS. The framework proposed is general, in
the sense that it makes no reference to specific application domains or underlying
conventions and technologies. Our proposal is based on a number of assumptions:
1. An agent engages in interactions with other agents in the attempt to achieve

its individual goals. These agents typically run on different and possibly
heterogenous platforms;

2. Interactions take place in an application-dependent interaction context. In-
tuitively, the interaction context includes all resources that are necessary to
carry out the interactions within a well-defined application domain.

3. All events belonging to the interaction, and all resources belonging to the in-
teraction context, satisfy a set of application-independent conventions (e.g.,
the syntax and semantics of messages, and so on).

4. In interactions, individual agents try to achieve their individual goals by
carrying out certain collective activities; for example, such activities may
consist of complete commercial transactions. Such activities are carried out
through processes of communication: agents engage in conversations, realized
by exchanging messages with shared syntax, terminology, and semantics. In
turn, message exchange presupposes suitable connectivity.

These assumptions introduce a number of concepts that we now organize
bottom-up in a layered way, limiting our analysis to the two lower layers.
Layer 1: Connectivity. Connectivity is defined as the ability of an agent to
send messages to other agents, and to receive messages from them: providing
connectivity implies that, in normal conditions, a message sent by Agent1 (the
sender) to Agent2 (the receiver) will actually be received by Agent2 within ac-
ceptable time. Connectivity presupposes the adoption of suitable transport pro-
tocols. Moreover, we assume that each agent has a well-defined identity, which
is kept constant across different interaction. This justifies the assumption that
every agent has a unique agent identifier. The fact that it is unique implies the
existence of a service for the registration of unique names, similar the the service
for domain name registration in Internet. We do not assume that such an iden-
tifier is initially known to all possible partners: this implies the need of agent
directories. Both transport protocols and the structure and use of agent direc-
tories and agent registration services are specified at the level of the underlying
software architecture (see Section 4).
Layer 2: Messages. We say that a message is exchanged when it is sent by a
sender and actually received by the intended receiver. The ability to exchange
messages presupposes both connectivity (Layer 1) and the adoption of a suitable
Agent Communication Language (ACL), which specifies: (i) the logical structure
of messages (i.e., the abstract syntax of messages, independent of both the ap-
plication domain and the underlying software architecture); (ii) the contribution
of the message structure to the meaning of the message. As usual, the seman-
tics of a specific message will be defined compositionally, that is, by suitably



combining the semantics of application-dependent terminology with the seman-
tics of the application-independent elements together with the structure of the
message. This presupposes that: (i) the syntax and semantics of the application-
independent components of the ACL, together with the syntax (but not the
semantics) of the application-dependent terminology, are defined as suitable con-
ventions; (ii) the semantics of application-dependent terminology is represented
in domain ontologies, which are part of the interaction context.

3 Conventions for the Message Layer

An OIS is a system where agents can interact to achieve their individual goals
by performing complex activities. Contrary to more traditional distributed sys-
tems, the distinctive feature of an OIS is that it allows external agents to enter
the system, participate in the activities, and then leave the system at will. This
brings to the foreground the problem of interoperability, because for the inter-
action to be successful all agents have to comply to a set of shared conventions,
which will have to be taken as standards by the designers of the agents. In this
section we introduce a set of possible conventions, named OCeAN-ACL, covering
the various parts of the message layer: the structure of the messages (i.e. their
abstract syntax ), the application independent part of the content language, and
the semantics.

Regarding the structure of messages and the content language, when possible
we will try to roughly follow FIPA-ACL specifications3. Regarding semantics, as
discussed in [10, 5], we depart more significantly from the semantics of FIPA-
ACL, which presents the problem of not taking into account the normative con-
sequences of message exchanges. More specifically, we adopt commitment-based
semantics for communicative acts and institutional semantics for declarations. In
the past we have expressed the semantics of communicative acts using the Event
Calculus [6]. In this paper, given that we want to exploit industry-level technol-
ogy, we adopt OWL (more precisely, OWL 2 DL4) to express the semantics of
communicative acts. For the moment we only propose a semantics of commissive
communicative acts, using an extension of the OWL ontology of obligations pre-
sented in [4]. We plan to further extend this ontology in the future, to express
the semantics of directive and assertive communicative acts, and the semantics
of declarations.

3.1 Message Structure

In this section we propose the message structure of our ACL. Like in FIPA-
ACL, a message contains an acl-envelope, used to correctly route the message
to the final destination and comprised of a number of attributes, including to,
from, length, encoding, and others. The message also contains an acl-payload,
characterized by the following components:
3 http://www.fipa.org/repository/aclspecs.html
4 http://www.w3.org/2007/OWL/wiki/OWL Working Group



– performative: a symbol denoting the type of the communicative act, that in
our ACL may be: promise, inform, request, agree, refuse, cancel, query-ref,
query-if, and declare; further types may be added and specified according to
need;

– sender: the identifier of the agent that sends the message;
– receiver: the identifier of the recipients of the message;
– content: a complex expression that can represent: a state of affair if the

performative is assertive (like inform), an action with a deadline if the per-
formative is commissive (like promise) or directive (like request), and an
institutional action if the performative is declare;

– reply-by: the time within which it is possible to answer to a request;
– msg-id: the unique identifier of the message, generated by the sender of the

message by using its name as namespace followed by a progressive number,
for example John:001.

The following three parameters are used to describe the content of the mes-
sage: (i) language denotes the formal language of the content expression; (ii)
encoding denotes the specific encoding of the content language; (iii) ontology
denotes the ontology used in the content of the message.

FIPA-ACL provides for other components, like reply-to, protocol, conversation-
id, reply-with, in-reply-to; as these are used to control the conversation, they be-
long to the conversation layer and will not be treated in this paper.

3.2 Content language

A content language consists of: (i) a set of fundamental application independent
terms, like for example those used to describe actions and propositions; and (ii)
a set of application dependent terms used in the content of messages related to
specific domains, for example to describe events of payment, delivery, bidding
and so on. Both application-independent and application-dependent terms need
to be connected by a formal language.

We base our formal language on RDF5 and RDFS6 because they have been
recommended by W3C since 2004, are widely adopted for representing knowl-
edge that can be re-used in specific applications, and are expressive enough to
represent resources, classes, and properties that are the main concepts that need
to be communicated in the content of a message. Given that RDF has a for-
mal semantics it is possible to perform reasoning on the content of messages by
simply sharing application dependent ontologies.

In this section we will describe the application independent concepts that
can be used in the specification of the content of a communicative acts. In doing
so we started from FIPA-RDF Content Language fipa-rdf0, but extended it with
other concepts and properties that we think are general enough to be part of
the application-independent component of our language.

5 http://www.w3.org/TR/rdf-syntax/
6 http://www.w3.org/TR/rdf-schema/



Similarly to what is proposed in [2] the content of a message can be a propo-
sition, or the description of an action, or the description of an action together
with a condition event, or an expression containing variables for expressing for
example query-ref communicative acts. In order to be able to represent such a
different contents in our ontology we introduce the ocean:ContentElement class
that has different subclasses used for modeling the different types of allowed
contents on the basis of the types of the communicative act. One subclass is the
class ocean:ConditionalActionDesc used for representing contents with an action
and a condition event, which are necessary for example for request or promise
communicative acts. The content and the condition part are inserted in the
message by introducing the property ocean:hasContentPart, whose range is the
ocean:ActionDesc class, and the property ocean:hasConditionPart, whose range
is the ocean:EventDesc class (those classes will be better described in the fol-
lowing paragraphs). Another subclass of the ocean:ContentElement class is the
rdf:Statement class used for assertive communicative acts. Other subclasses have
to be defined for being able to query for some information or declaring the per-
formance of an institutional action. In our content language the content of a
message is connected to the message by means of the ocean:hasContent prop-
erty. In this paper we will describe the classes for representing the notions of
proposition, action, and conditional event.

Propositions. The content of an inform message is the description of a state of
affairs, that is a proposition. RDF triples (composed by a subject, a predicate,
and an object) are a good candidate for representing states of affairs. However,
an agent may want to communicate information about propositions, for example
“John has said that Mary has paid e 5 to John”; to this purpose it is preferable to
use the class rdf:Statement, introduced in RDF for representing the reification of
a proposition. A resource belonging to the rdf:Statement class has the properties
rdf:subject, rdf:predicate, and rdf:oject. For example the previous proposition can
be expressed in RDF as7:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix app: <http://www.people.lu.unisi.ch/fornaran/schemas/app-rdf0#>.

app:sentence1 rdf:type rdf:statement;

app:author app:John; rdf:subject app:Mary;

rdf:predicate app:Pay; rdf:object app:John.

Actions. The content of a request or promise communicative act includes the
description of an action, or more precisely the description of a class of actions
that ought to happen in the future. The semantics behind the exchange of a
promise (as we will see in the Section 3.3) is that the sender will be in charge of
performing, within a given deadline, a particular action belonging to the class
of actions described in the message.

Therefore, in the application-independent component of the content lan-
guage, it is necessary to represent the description of actions. Similarly to the
7 In this paper we use for our examples the Turtle syntax of RDF,

http://www.w3.org/TeamSubmission/turtle/.



definition presented in fipa-rdf0, we introduce in our application-independent
language ocean-rdf0 (defined by means of an RDF Schema) the ocean:ActionDesc
class. The content of a message requiring an action description must belong to
such a class or to one of its subclasses. Such subclasses have to be defined in
an RDF Schema used to define the application-dependent part of the content
language, that is, the application-specific concepts used in the messages. The
ocean:ActionDesc class is the domain of the following properties that can be
used to characterize the action that has to be performed:

– The property ocean:hasActorDesc, used to represent the agent responsible
for the execution of the action; the range of this property is the application-
independent class ocean:Agent.

– The property ocean:hasDeadlineDesc, representing the time instant within
which the action has to be performed. It is empty if the deadline for the
performance of the action is not known when the message is sent. In this
case the deadline depends on the time when some other event happens; for
example the promise to pay a given book within one week from its reception.

– The property ocean:hasDurationDesc can be used to specify the interval of
time within which the action has to be performed, starting from the instant
of time when the event described in the condition component of the message
will happen.

– Other properties can be defined and communicated for specific class of ac-
tions. For example, in an application-dependent language app-rdf0 it is pos-
sible to define the class app:PayDesc as subclass of the class oecan:ActionDesc
with the property app:hasRecipientDesc, whose range is the ocean:Agent class,
and the property app:hasAmountDesc for expressing the amount of money
that has to be paid.

Conditional Event. In some cases it may be necessary to communicate also a
condition event that describes a class of events, such that, as we will see in the
section about semantics, if one event belonging to that class or to its subclasses
happens within a certain deadline, the obligation to perform the promised or
requested action becomes active. To communicate the description of events in the
content of messages, we introduce in ocean-rdf0 the application-independent class
ocean:EventDesc. This is a generalization of the class ocean:ActionDesc; in fact an
action is regarded as an event with an actor, therefore the class ocean:ActionDesc
is a subclass of ocean:EventDesc. The class ocean:EventDesc has other subclasses,
in particular the class oceanTimeEventDesc that can be useful to represent as
condition event the elapsing of a given instant of time.

An example: the promise communicative act. To exemplify the proposed
message layer we formalize a type commissive act, promise. We use as example
the following promise: “agent John promises to agent Mary that John will pay 5
euro to Mary within 2 days from the reception of book1”. The message with the
content expressed in RDF that uses the RDF Schemas previously introduced is:



(promise

:sender John :receiver Mary

:language ocean-rdf0 :ontology app-rdf0

:msg-id John:001

:content

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix app: <http://www.people.lu.unisi.ch/fornaran/schemas/app-rdf0#>.

@prefix ocean: <http://www.people.lu.unisi.ch/fornaran/schemas/ocean-rdf0#>.

@prefix ex1: <http://www.people.lu.unisi.ch/fornaran/example/promise#>.

ex1:John:001 ocean:hasContent ex1:content01.

ex1:content01 rdf:type ocean:ConditionalActionDesc;

ocean:hasContentPart ex1:JohnAction1;

ocean:hasConditionPart ex1:MaryAction1.

ex1:JohnAction1 rdf:type app:PayDesc;

ocean:hasActorDesc "John"; ocean:hasDurationDesc "2";

app:hasRecipientDesc "Mary"; app:hasAmountDesc "5".

ex1:MaryAction1 rdf:type app:DeliverDesc;

ocean:hasActorDesc "Mary"; app:hasRecipientDesc "John";

app:hasObjectDesc "book1".

Where the app:DeliverDesc class is a subclass of the ocean:ActionDesc class
with the property app:hasRecipientDesc whose range is the ocean:Agent class,
and the property app:hasObjectDesc for describing the object that has to be
delivered.

3.3 Semantics

The semantics of a message is built compositionally from three types of elements:
(i) content-independent elements (like performative, sender, receiver, reply-by,
and so on); (ii) application-independent components of the content (like propo-
sition or action); and (iii) application-dependent components. The semantics we
adopt in this paper is the commitment-based semantics that we firstly presented
in [5], enriched with the semantics of declarations expressed via institutional
concepts as presented in [6].

Every communicative act is characterized by a set of preconditions that need
to be evaluated for the successful performance of the act and a set of effects
that change the state of the interaction if the act is successfully performed. We
represent the state of the interaction and the events and action that happen in
the system using an OWL 2 DL8 ontology. OWL 2 DL can be regarded as a
decidable fragment of First-Order Logic (FOL), in particular it is a practical
realization of a Description Logic known as SROIQ(D). It allows one to define
classes, properties, and individuals. An OWL ontology consists of: a set of class
axioms that specify logical relationships between classes (the TBox); a set of
property axioms to specify logical relationships between properties (the RBox);
and a collection of assertions that describe individuals (the ABox).

8 http://www.w3.org/2007/OWL/wiki/OWL Working Group



The choice of using OWL 2 DL for expressing the state of the interaction
and the semantics of messages may seem in contrast with the proposal to use
RDF for representing the content of messages. We prefer to use RDF as content
language, because it has been already proposed by FIPA as content language, it
is more widely used by programmers, and it is much simpler than OWL. Though,
RDF is too weak to allow for interesting reasoning, and for this reason we prefer
to use OWL as a knowledge representation language. In principle, however, an
agent may use any formal language to represent its own knowledge base.

We now describe the application-independent part of the ontology that we
propose to use for representing the events/actions that happen in the interaction,
for example the communicative acts, and the semantics of communicative acts.
This part defines the classes Agent, Action, Event, Obligation where Action v
Event and Obligation v Event, it includes some classes from the OWL Time
Ontology (like TemporalEntity, Instant, Interval), and has a collection of data and
object properties. For example the atTime property relates an eventuality, like
for example an event or an obligation, to a temporal entity, like for example an
instant of time. The properties evSameTime and evBefore relates an eventuality
to another eventuality on the basis of the time when they happen. This ontology
defines also a set of axioms and SWRL (Semantic Web Rule Language)9 rules
for reasoning on the state of the interaction. Moreover thanks to the use of an
external Java program that is in charge of representing the elapsing of time and
the functionalities necessary to perform close world reasoning on certain classes,
it is possible to monitor the state of obligations and react to their fulfillment or
violation. In particular an obligation may be fulfilled by any individual action
that belongs to a class of possible actions. This framework and the ontology is
presented in [4].

In this paper we extend this ontology, originally devised for the representa-
tion of events and actions and for the representation and monitoring of obliga-
tions, with the components required for representing the exchange of messages
and their semantics. Fist of all we add the class Message for representing the
exchanged messages as individuals named with the msg-id of the message. We
introduce the following properties that are used to connect a message with its
components: hasPerformative: Message → Performative, where Performative is the
class used to represents all the possible illocutionary forces of messages; has-
Sender: Message → Agent; hasReceiver: Message → Agent. The axiom Message
v =1 hasPerformative u =1 hasSender u =1 hasReceiver, is used to express that
a message has exactly one sender, one receiver and one performative. Another
property is hasContent: Message → ContentElement, where ContentElement is the
class introduced for representing the different types of possible contents of a mes-
sage and is defined coherently to the definitions introduced in ocean-rdf0 RDF
schema presented in the previous section. The exchange of a message generates
an event of type ExchMsg v Action that happens at a certain instant of time
and is connected to the message by means of the property hasMessage: ExchMsg
→ Message.

9 http://www.w3.org/Submission/SWRL/



Following the commitment-based semantics for ACL proposed in [6], the
performance of communicative acts has the effect of creating or changing social
commitments. A commitments to the performance of an action is a special case
of social commitment, and coincides with the obligation to perform the action. If
the exchange of a message has the effect of creating an obligation, the obligation
is connected to the event of exchanging the message by means of the following
property: hasSource: Obligation → ExchMsg.

Semantics of the promise communicative act. As we already said every
communicative act is characterized by a set of preconditions that need to be
evaluated for the successful performance of the act and a set of effects that
change the state of the interaction if the act is successfully performed. For a
promise to be a valid communicative act it is necessary that: (i) the content
describes a class of actions, that is, a subclass of the class ActionDesc; (ii) an
instance of the action has to be performed in the future (i.e., if a deadline is
specified it has to be in the future of the message exchange); (iii) the sender of the
message is identical to the actor of the promised action; and (iv) if the promise
is conditional, the condition is specified as a class of events, that is, as a subclass
of the class EventDesc. The effects of a promise are to create an obligation of the
sender of the message, directed to the receiver, to perform a certain action within
a given deadline if a certain condition hold. Going into details, to represent the
promise message introduced as an example in the previous section, we need to
insert in the ontology the following ABox assertions:

Message(John:001), Performative(promise), hasPerformative(John:001,promise),

Agent(John), hasSender(John:001,John),

Agent(Mary), hasReceiver(John:001,Mary),

ConditionalActionDesc(content01), hasContent(John:001,content01);

PayDesc(JohnAction1), hasContentPart(content01,JohnAction1),

hasActorDesc(JohnAction1,John), hasDurationDesc(JohnAction1,2),

hasRecipientDesc(JohnAction1,Mary),

Thing(5euro), hasAmountDesc(JohnAction1,5euro),

DeliverDesc(MaryAction1), hasConditionPart(content01,MaryAction1),

hasActorDesc(MaryAction1, Mary), hasReceipientDesc(MaryAction1, John),

Object(book1), hasObjectDesc(MaryAction1,book1).

The event of type ExchMsg that represents the exchange of the message is
represented by the following assertions (where instant1 represents the instant of
time when the message is received):

ExchMsg(eJohnMary1), hasMessage(eJohnMary1,John:001),

Instant(instant1), atTime(eJohnMary1,instant1),

The obligation generated by this message is represented as follows:
Obligation(obl-1), hasSource(obl-1,eJohnMary1), atTime(obl-1,instant1),

hasDebtor(obl-1,John), hasCreditor(obl-1,Mary), ProperInterval(interval1),

hasInterval(obl-1,interval1), hasDurationDescription(interval1,duration1),

days(duration1, 2), where integer 2 represents the duration of the interval com-
municated with the message.



The class of events that may activate the obligation is equivalent to the class
defined as the intersection of the class representing the event in condition part
of the message with other classes defined on the basis of the properties of such
an event.

StartEvent-1 ≡ Deliver u hasActor3Mary u hasRecipient3John u hasObject3book1

The content class of the obligation is defined as the intersection of the class
representing the action of the content part of the message with other classes
defined on the basis of the properties of such an action.

Content-1 ≡ Pay u hasActor3John u hasRecipient3Mary u hasAmount35euro.

The following SWRL rule is introduced to deduce the instant of time when the
interval of obl-1 starts; this is the instant of time when an individual belonging
to the StartEvent-1 class happens:

StartEvent-1(?e) ∧ atTime(?e,?inst) ∧ hasInterval(obl-1,?int)→ hasBeginning(?int,?inst)

Once the beginning instant and the duration of the interval are known, it is
possible to use the following SWRL rule, which uses the swrlb:add built-in, to
deduce the value of the end instant of the interval (we assume that the duration
of the interval is expressed in days):

hasBeginning(?int,?inst1) ∧ inDateTime(?inst1,?dt1) ∧ dayOfYear(?dt1,?day1) ∧
Instant(?int2) ∧ inDateTime(?inst2,?dt2) ∧ dayOfYear(?dt2,?day2) ∧
hasDurationDescription(?int,?d) ∧ days(?d,?value) ∧
swrlb:add(?day2,?day1,?value) → hasEnd(?int,?inst2)

The Deadline-1 class contains only the time event that happens at the instant
of time when the interval of the obligation finishes (that may be known or
unknown when the obligation is created), as stated in the following axiom:

Deadline-1 ≡ ∃ atTime.(∃ hasEnd−.(hasInterval− 3 obl-1))

For those obligations whose deadline event is a fixed time event, it is impor-
tant to check that the start event happens before the end event. By introducing
the following axiom the ontology becomes contradictory if the deadline time
event is before or equal to the start time event:

Deadline-1 u (evBefore.StartEvent-1 t evSameTime.StartEvent-1) v ⊥
When a new obligation is created it is necessary to introduce in the TBox the

following four axioms necessary to deduce the state of a given obligation, that is,
to deduce if the obligation belongs to the Activated, Cancelled, Fulfilled, or Vio-
lated classes. In order to be able to perform some form of closed world reasoning
on the Cancelled and Fulfilled classes, the Java program sets the extension of the
class KCancelled v Cancelled equivalent to the class that contains all obligations
that are known to be in the Cancelled class, and set the class KFulfilled v Fulfilled
equivalent to the class that contains all obligations that are known to be in the
Fulfilled class.

{obl-1} u ¬ KCancelled u (∃evBefore.(StartEvent-1 u ∃atTime.Elapsed) t
∃evSameTime.(StartEvent-1 u ∃atTime.Elapsed) ) v Activated

{obl-1} u ∃evBefore.(EndEvent-1 u ∃atTime.Elapsed) v Cancelled

{obl-1} u Activated u (∃evBefore.(Content-1 u ∃atTime.Elapsed) t



∃evSameTime.(Content-1 u ∃atTime.Elapsed)) u ∃evBefore.(Content-1 u
∃evBefore.Deadline-1) v Fulfilled

{obl-1} u Activated u ¬KFulfilled u ∃evBefore.(Deadline-1 u
∃ atTime.Elapsed) v Violated

4 Software architecture

In this section we propose a software architecture for OISs. We base our proposal
on the principles and standards of Service Oriented Architecture (SOA), because
they address crucial low-level aspects of openness and interoperability[3], are
sufficiently mature and relatively stable, and are already accepted and used by
a large industrial community.

Layer 1: Connectivity. Connectivity is guaranteed by current SOA standards.
In particular the transport protocol is HTTP, and the message structure protocol
is SOAP10(Simple Object Access Protocol). In the most popular implementation
of the Service Oriented Architecture two distinct software applications play the
role of Service Requestor and the role of Service Provider. This architecture can
be adapted to our need of peer to peer (P2P) interactions by merging the two
roles into one software application that plays simultaneously both roles.

Layer 2: Messages.
In order to be exchanged messages presented in Section 3, are structured

according to SOAP standard. In particular both the envelope and the payload
of OCeAN-ACL agent messages are serialized as an XML document and they
constitute the body of a SOAP message. This structure is defined by a contract
expressed in WSDL (Web Service Description Language). The exchange of mes-
sages is made possible by a communication interface consisting of: a send-message
WS client and a receive-message WS service (see Section 5 for a description of a
demonstrative experiment).

Interaction management. The open interaction system is managed by an
intermediary that we call the OIS manager. The OIS manager is in charge of
managing the interactions of the agents participating to the system; it is not an
agent proper (in that it has no autonomy in the choice of goals or strategies), but
rather a system implementing support processes. From the architectural point of
view it is crucial for the openness of the entire system that the OIS is deployed
on an operating environment that is completely separated form the operating
environment where the interacting agents are deployed. The OIS manager inter-
acts with all participating agents through the communication interface; its actual
implementation can be distributed, to avoid performance bottlenecks. The OIS
manager has the following functions:

Agent registration and de-registration. Agents are registered and de-registered
as participant of the OIS, according to suitable norms specified in the system’s
artificial institution.

10 http://www.w3.org/TR/2007/REC-soap12-part0-20070427/



Management of white and yellow pages. The OIS manager maintains an up-
dated register of all current participants. The white pages list all current partici-
pants with their agent identifiers. The yellow pages describe the services provided
by the participants.

Communication. The OIS manager may also offers services in support of the
communication layer. Those services may be activated or not on the basis of the
types of the interaction that the agents registered to the OIS want to realize:
a private interaction or a certified interaction. Given that in open systems it is
impossible to make strong assumption on the internal structure of the interacting
agents, an important service consists in dispatching all the messages through the
OIS manager, and to charge it of checking messages for compliance at the levels
of syntax, terminology, and preconditions. If the message is correct at all these
levels the OIS manager is then in charge of forwarding messages to receivers,
otherwise an error message is sent to the sender. Those checks can be performed
thanks to the formal representation of the messages proposed in the previous
section. Another relevant service that the OIS manager may provide consists in
keeping track of the semantics of messages and in monitoring the evolution of
the state of the system, for example by checking if obligations become fulfilled
or apply sanctions when become violated.

5 Demonstrative Implementation

We now briefly describe a demonstrative implementation11 of the connectivity
and messages layers. The demonstrative implementation shows how OIS partici-
pants can communicate through an intermediary, which implements the low-level
functions of the OIS manager introduced in Section 4. To effectively commu-
nicate, each component of the systems must be able to process OCeAN-ACL
messages. More specifically, both the intermediary and the participants pos-
sess a listening point to receive messages and a talking point to send messages.
The listening point is represented as a web-service service12. As such it is ex-
posed on the Internet via a contract defined in a WDSL file. The talking point
is a web-service client, which communicates in conformance with the previously
mentioned contract. More precisely the contract defines an operation called send-
message, which expects as input an OCeAN-ACL message and the listening point
provides a service that is in charge of delivering its triggering message to its en-
compassing program. The service contract contains a reference to the abstract
syntax of the messages proposed in this paper that is specified using an XML
Schema stored in the file aclmessage.xsd. The message transfer format is SOAP,

11 The RDF Schemas, the WSDL contract, the XML Schema of the envelope and
payload of messages, the ontology, and the Codec described in this paper are available
at http://www.people.lu.unisi.ch/fornaran/OCeAN-ACL.html

12 This name is due to the fact that we consider “web-service” as the name of a tech-
nology that we differentiate from the formal concept of service and service client
as understood in SOC/SOA, which in principle can be provided on the web using
web-service technology or something else.



the message transfer protocol is HTTP, and the actual communication content
part of the message is the serialization into a string of the content of the message
written using RDF/XML triples.

To run the experiment, we have implemented the intermediary in Java and
two dummy participant agents in the JADE (Java Agent DEvelopment Frame-
work) framework. A crucial advantage of this approach is the provision of a
human-readable communication contract that can be easily handled with the
support of runtime frameworks coming along with web-service technology such
as Apache CXF. Hence anyone can easily generate the infrastructure to han-
dle the transmission of a message abiding to the exposed messaging protocol
and adapt it to his need, in order to participate in the OIS. Effort will only be
required for the handling of ACL communication content.

We will now briefly describe how the sender agent, the receiver agent and
the intermediary service handle the communication content and semantics in
our prototype. Regarding the sender agent, it is a software that starting from
a representation of the content that has to be sent is able to serialize it in
RDF/XML and send it as the content of a SOAP message. Given that in our
implementation the sender is a JADE agent (but in principle it can be any
software able to comply with the conventions and with the web service contract)
the internal representation of the content of the message is realized according
to the JADE Content Reference Model [2]. As required by the JADE Content
Language Architecture this internal representation is serialized in RDF/XML by
using the OCeAN RDF Codec that we have adapted to the ocean-rdf0 language. In
the OCeAN RDF Codec we use the JENA Semantic Web Framework for reading
and writing RDF triples.

In our demonstrative implementation the intermediary has to analyze the
content of the message to check whether its content is written using the termi-
nology specified in the language and ontology components of the message and
the preconditions for the performance of a message of that type are satisfied; the
intermediary also keeps track of the semantics of the message. Our intermediary
does all these operations in the following way: it receives a message and, before
forwarding it, it checks the content of the message by creating an internal repre-
sentation of it by using again the OCeAN RDF Codec; then by using OWL-API13

it changes the ontology’s ABox and TBox.

6 Comparisons with other approaches

The contribution of this paper regards mainly: (i) the proposal of using RDF
(augmented with application-independent terms) as content language of a commit-
ment-based ACL, whose semantics is represented using an OWL 2 DL ontology;
and (ii) the proposal of using service oriented technologies for realizing open
systems whose components can interact using the proposed message layer.

The idea of using RDF as content language has been proposed for the first
time by FIPA in 2001. The main differences between the FIPA’s proposal and the
13 http://owlapi.sourceforge.net/



one presented in this paper are: (i) in FIPA’s application-independent content
language, fipa-rdf0, it is impossible to represent events, which are useful to specify
conditions for the performance of actions and the relationship with time; (ii)
FIPA’s ACL semantics is based on the agents’ beliefs and intentions, and does
not take into account the deontic consequences of the exchange of messages; (iii)
the adoption of semantic web languages that are international standards makes
it possible to realize systems able to reuse existing ontologies sometime already
considered a standard (like the FOAF ontology), moreover when programming
the participants and the OIS it is possible to use the numerous existing tools for
programming, editing, validating, and reasoning on ontologies. In [12] a proposal
of using the Darpa Agent Markup Language (DAML) language for expressing
the content of message is presented, the main concepts of the content language
are similar to the one presented in this paper, except for the use of variables that
in RDF are not supported, but nowadays a possible solution is using SPARQL
(the query language for RDF) expressions that contains variables. The main
problem of the proposal of using DAML is that it is not the current standard for
representing knowledge in the Semantic Web. In [9] a proposal of using OWL
DL as content language of FIPA-ACL is presented and the limits of FIPA SL as
content language are discussed. Differently from this paper we do not propose
to use OWL DL for expressing the content of messages, this because we want
to avoid to propose to use a language with an expressivity that is far from the
expressivity of other languages in use in agent systems like SL or KIF. The two
approaches have in common the idea to propose to use OWL for expressing the
semantics of messages, even if in this paper we propose a commitment-based
semantics instead of FIPA-ACL semantics.

Even if the framework and the architecture of open interaction that we have
presented covers only the lower layers of an interaction, we can briefly compare
our approach with other multiagent frameworks like JADE [1] and RETSINA
[11]. In JADE agents have to run on the same platform and therefore must be
homogenous or may run on different interconnected FIPA platforms and in this
case cannot rely on a dedicated third party authority, that would be responsible
of managing name conflicts, searching for agents with certain characteristics, and
enforcing the conventions on the semantics of messages. The architecture of the
RETSINA framework is very close to the one proposed in this paper; the point
on which they differ is the choice that we made to use standard technologies for
the specification of the software architecture. In particular our proposal of using
Web Service technologies like WSDL, SOAP, and HTTP for message transfer
is similar to the one proposed in [8], where messages are sent between JADE
platforms using SOAP over HTTP, but in our proposal the content of SOAP
messages is described with an XML Schema instead of using jade custom binary
data format, a solution that better supports openness.
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