Putting the Developer in-the-loop: an
Interactive GA for Software Re-Modularization

Gabriele Bavota!, Filomena Carnevale!, Andrea De Lucia!
Massimiliano Di Penta?, Rocco Oliveto®

! University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
2 University of Sannio, Palazzo ex Poste, Via Traiano, 82100 Benevento, Italy
3 University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Ttaly
gbavota@unisa.it, flmn.carnevale@gmail.com, adelucia@unisa.it,
dipenta@unisannio.it, rocco.oliveto@unimol.it

Abstract. This paper proposes the use of Interactive Genetic Algo-
rithms (IGAs) to integrate developer’s knowledge in a re-modularization
task. Specifically, the proposed algorithm uses a fitness composed of
automatically-evaluated factors—accounting for the modularization qual-
ity achieved by the solution—and a human-evaluated factor, penalizing
cases where the way re-modularization places components into modules
is considered meaningless by the developer.

The proposed approach has been evaluated to re-modularize two software
systems, SMOS and GESA. The obtained results indicate that IGA is
able to produce solutions that, from a developer’s perspective, are more
meaningful than those generated using the full-automated GA. While
keeping feedback into account, the approach does not sacrifice the mod-
ularization quality, and may work requiring a very limited set of feedback
only, thus allowing its application also for large systems without requir-
ing a substantial human effort.

1 Introduction

Software is naturally subject to change activities aiming at fixing bugs or in-
troducing new features. Very often, such activities are conducted within a very
limited time frame, and with a limited availability of software design documen-
tation. Change activities tend to “erode” the original design of the system. Such
a design erosion mirrors a reduction of the cohesiveness of a module, the incre-
ment of the coupling between various modules and, therefore, makes the system
harder to be maintained or, possibly, more fault-prone [8]. For this reason, vari-
ous automatic approaches, aimed at supporting source code re-modularization,
have been proposed in literature (see e.g., [11,14,20]. The underlying idea of
such approaches is to (i) group together in a module highly cohesive source code
components, where the cohesiveness is measured in terms of intra-module links;
and (ii) reduce the coupling between modules, where the coupling is measured
in terms of inter-module dependencies. Such approaches use various techniques,

2 Bavota et al.

such as clustering [1,11, 20], formal concept analysis [15] or search-based opti-
mization techniques [13, 14] to find (near) optimal solutions for such objectives,
e.g., cohesion and coupling.

While automatic re-modularization approaches proved to be very effective to
increase cohesiveness and reduce coupling of software modules, they do not take
into account developers’ knowledge when deciding to group together (or not)
certain components. For example, a developer may decide to place a function
in a given module even if, in its current implementation, the function does not
communicate a lot with other functions in the same module. This is because the
developer is aware that, in future releases, such a function will strongly interact
with the rest of the module. Similarly, a developer may decide that two func-
tions must be placed in two different modules even if they communicate. This is
because the two functions have different responsibilities and are used to manage
semantically different parts of the system. In the past, some authors proposed ap-
proaches to account for developers’ knowledge in software re-modularization [6].
However, such approaches assume the availability of a whole set of constraints
before the re-modularization starts. This is often difficult to be achieved, espe-
cially for very large systems.

This paper proposes the use of Interactive Genetic Algorithms (IGAs) [17]
to integrate, into a re-modularization approach, a mechanism allowing develop-
ers to feed-back automatically produced re-modularizations. IGAs are a variant
of Genetic Algorithms (GAs) in which the fitness function is partially or en-
tirely evaluated by a human while the GA evolves. Recently, IGAs have been
applied to software engineering problems such as requirement prioritization [18]
or upstream software design [16]. In our approach, part of the fitness (captur-
ing aspects such as intra-module, extra-module dependencies, or modularization
quality) is automatically evaluated, while the human adds penalties for artifacts
that are not where they should be. Summarizing, the specific contributions of
the paper are:

1. Different variants of IGAs, allowing the integration of feedback provided by
developers upon solutions produced during the GA evolution. Specifically,
the paper presents the integration of feedback in both a single-objective GA,
using the Modularization Quality (MQ) measure [13], and a multi-objective
GA proposed by Praditwong et al. [14].

2. The empirical evaluation of the proposed IGAs over two software systems.
Although IGAs are conceived to allow a “live” feedback seeding, in this paper
we simulated such a mechanism using constraints randomly identified from
the actual system design. Results indicate that the IGAs are able to produce
re-modularizations that better reflect the developer intents, without however
sacrificing the modularization quality.

The paper is organized as follows. Section 2 describes the related work, while
Section 3 describes the proposed IGA-based re-modularization. Section 4 reports
the empirical study conducted to evaluate the proposed approach, while Section 5
concludes the paper and outlines directions for future work.

An Interactive GA for Software Re-Modularization 3

2 Background and Related Work

Several approaches have been proposed in the literature to support software
re-modularization. Promising results have been achieved using clustering algo-
rithms [1, 11, 20] and formal concept analysis [15]. In the following we focus only
on search-based approaches.

Mancoridis et al. [10] introduce a search-based approach using hill-climbing
based clustering to identify the modularization of a software system. This tech-
nique is implemented in Bunch [13], a tool supporting automatic system decom-
position. To formulate software re-modularization as a search problem, Man-
coridis et al. define (i) a representation of the problem to be solved (i.e., software
module clustering) and (ii) a way to evaluate the modularizations generated by
the hill-climbing algorithm. Specifically, the system is represented by the Module
Dependency Graph (MDG), a language independent representation of the struc-
ture of the code components and relations [10]. The MDG can be seen as a graph
where nodes represent the system entities to be clustered and edges represent
the relationships among these entities. An MDG can be weighted (i.e., a weight
on an edge measures the strength of the relationship between two entities) or
unweighted (i.e., all the relationships have the same weight).

Starting from the MDG (weighted or unweighted), the output of a software
module clustering algorithm is represented by a partition of this graph. A good
partition of an MDG should be composed by clusters of nodes having (i) high de-
pendencies among nodes belonging to the same cluster (i.e., high cohesion), and
(ii) few dependencies among nodes belonging to different clusters (i.e., low cou-
pling). To capture these two desirable properties of the system decompositions
(and thus, to evaluate the modularizations generated by Bunch) Mancoridis et
al. [10] define the Modularization Quality (MQ) metric as:

MQ = (330, A) — (@ Sr i Eig) if k>1
Ay if k=1

where A; is the Intra-Connectivity (i.e., cohesion) of the i*" cluster and E; ; is
the Inter-Connectivity (i.e., coupling) between the i*" and the j** clusters. The
Intra-Connectivity is based on the number of intra-edges, that is the relation-
ships (i.e., edges) existing between entities (i.e., nodes) belonging to the same
cluster, while the Inter-Connectivity is captured by the number of inter-edges,
i.e., relationships existing between entities belonging to different clusters.
Single-objective genetic algorithms have been used to improve the subsystem
decomposition of a software system by Doval et al. [7]. The objective function is
defined using a combination of quality metrics, e.g., coupling, cohesion, and com-
plexity. However, hill-climbing have been demonstrated to ensure higher quality
and more stable solutions than a single objective genetic algorithm [12]. Pra-
ditwong et al. [14] introduce two multi-objective formulations of the software
re-modularization problem, in which several different objectives are represented
separately. The two formulations slightly differ for the objectives embedded in
the multi-objective function. The first formulation-named Maximizing Cluster

4 Bavota et al.

Approach (MCA)—has the following objectives: (i) maximizing the sum of intra-
edges of all clusters, (ii) minimizing the sum of inter-edges of all clusters, (iii)
maximizing MQ, (iv) maximizing the number of clusters, and (v) minimizing
the number of isolated clusters (i.e., clusters composed by only one class). The
second formulation—mamed Equal-Size Cluster Approach (ECA)—attempts at
producing a modularization containing clusters of roughly equal size. Its objec-
tives are exactly the same as MCA, except for the fifth one (i.e., minimizing the
number of isolated clusters) that is replaced with (v) minimizing the difference
between the maximum and minimum number of entities in a cluster. The au-
thors compared their algorithms with Bunch. The conducted experimentation
provides evidence that the multi-objective approach produces significantly bet-
ter solutions than the existing single-objective approach though with a higher
processing cost.

Based on the results achieved by Praditwong et al. [14], this paper defines
an interactive version of the single-objective GA and of the multi-objective GA
(based on the MCA algorithm). This allows to analyze the benefits provided by
developers’ feedback to solve a re-modularization problem.

3 The Proposed Interactive Genetic Algorithms

This section describes the IGA we use to integrate software engineers’ feedback
into the single-objective [10] and multi-objective [14] re-modularization process.

3.1 Solution Representation, Operators, and Fitness Function

The solution representation (chromosome) and GA operators are the same for
both single- and multi-objective GAs. Given a software system composed of n
software components (e.g., classes) the chromosome is represented as a n-sized
integer array, where the value 0 < v < n of the i** element indicates the cluster
which the #*" component is assigned. A solution with the same value (whatever
it is) for all elements means that all software components are placed in the same
cluster, while a solution with all possible values (from 1 to n) means that each
cluster is composed of one component only.

The crossover operator is a one-point crossover, while the mutation operator
randomly identifies a gene (i.e., a position in the array), and modifies it by
assigning to it a random value 0 < v < n. This means moving a component to
cluster v. The selection operator is the roulette-wheel selection.

The single-objective GA uses as fitness function (to be maximized) the MQ
metric, while as said in Section 2 the multi-objective GA—implemented as Non-
Dominating Sorting Genetic Algorithm (NSGA-II) [5]—considers five different
objectives, related to maximizing MQ), intra-cluster connectivity and number of
clusters, and minimizing the inter-cluster connectivity and the number of isolated
clusters.

An Interactive GA for Software Re-Modularization 5

Algorithm 1 R-IGA: IGA for providing feedback about pairs of components.
1: for i =1 ... nInteractions do
2: Evolve GA for nGens generations
Select the solution having the highest MQ
for j =1 ...nFeedback do
Randomly select two components ¢; and ¢;
Ask the developer whether ¢; and ¢; must go together or kept separate
end for
Repair the solution to meet the feedback
9: Create a new GA population using the repaired solution as starting point
10: end for
11: Continue (non-interactive) GA evolution until it converges or it reaches mazGens

3.2 Single-Objective Interactive GAs

The basic idea of the IGA is to periodically add a constraint to the GA such that
some specific components shall be put in a given cluster among those created so
far. Thus, the IGA evolves exactly as the non-interactive GA. Then, every nGens
generations, the best individual is selected and shown to the developer. Then,
the developer analyzes the proposed solutions and provides feedback (which
can be seen as constraints to the re-modularization problem), indicating that
certain components shall be moved from a cluster to another. After enacting
the developer’s indications, a new GA population is created from such a best
solution, and then the GA evolves for further nGens generations, keeping into
account the provided constraints. One crucial point is choosing how to guide the
developer to provide feedback. In principle, one could ask developers any possible
kind of feedback. However, this would make the developer’s task quite difficult.
For this reason, we propose to guide developers in providing feedback, by means
of two different kinds of IGAs. The first one—referred to as R-IGA and described
by Algorithm 1—takes the best solution produced by the GA, randomly selects
two components (from the same cluster or from different clusters), and then asks
the developer whether, in the new solutions to be generated, such components
must be placed in the same cluster (i.e., stay together) or whether they should
be kept separated.

As the algorithm indicates, every nGens generations the developer is asked to
provide feedback about a number nFeedback of component pairs from the best
solution (in terms of MQ) contained in the current population. The feedback
can either be (i) “c; and ¢; shall stay together” or (ii) “c; and c; shall be kept
separate”. After feedback is provided, the solution is repaired by enforcing the
constraints, e.g., by randomly moving one of ¢; and c; away if the constraint tells
that they shall be kept separate. After all nFeedback have been provided, a new
population is created by randomly mutating such a repaired solution. Then, the
GA starts again. When creating the new population and when evolving it, the
GA shall ensure that the new produced solutions meet the feedback collected so
far. Hence, we add a penalty factor to the fitness function (as proposed by Coello
Coello [3]), aiming at penalizing solutions violating the constraints imposed by

6 Bavota et al.

the developers. Given CS = csy,...cs,, the set of feedback collected by the
users, the fitness F(s) for a solution s is computed as follows:

- MQ(s)
F(s) = L+ k>0 vesi s

where k£ > 0 is an integer constant weighting the importance of the feedback
penalty, and vcs; s is equal to one if solution s violates cs;, zero otherwise. After
niInteractions have been performed, the GA continues its evolution in a non-
interactive way until it reaches stability or the maximum number of generations.
One consideration needs to be made about the selection of the pairs for which
asking feedback. While in our experiments the selection is random (see Section 4),
in a realistic scenario the developer could pick component pairs based on her
knowledge, or else further heuristics could be used for such purposes.

The second IGA we propose—called IC-IGA and described by Algorithm 2—
focuses on specific parts of the re-modularization produced by the GA. Among
others, very small clusters should be subject to manual changes by the devel-
oper. In fact, automatic re-modularization approaches often tend to create a
large number of many small clusters, that seldom reflect the actual or desired
system decomposition. For this reason, the second variant of our IGA asks feed-
back on the nClusters smallest clusters in the best solution (in terms of MQ).
Then, for each of these clusters, if it is an isolated cluster (i.e., composed of one
component only), the developer is asked to specify a different cluster where the
isolated component must be placed while for not isolated clusters the developer
is asked to specify for each pair of components whether they must stay together
or not. It is worth noting that the developer does not specify the cluster, she
rather indicates whether, when moving such components to a different (randomly
selected) cluster, they should be moved together or it must be made sure they
are kept separate. Besides the nature of the collected feedback, it works similarly
to R-IGA (the fitness function does not change).

Clearly, several other kinds of heuristics could be used to ask feedback to the
developer (e.g., a combination of the two approaches presented in this paper,
with feedback required on both random couples of elements and on elements
belonging to small clusters). However, this is out of the scope of this paper.

3.3 Multi-Objective Interactive GAs

The multi-objective variants of our IGA are quite similar to the single-objective
ones. Also in this case, we propose one— referred as R-IMGA—where feedback
is provided on randomly selected pairs of components, and one—referred as IC-
IMGA—where feedback is provided on components belonging to isolated (or
smallest) clusters.

A crucial point in the multi-objective variant is the selection of the best
individual for which the developer shall provide feedback and, after applying
the feedback, to be used for generating the new GA population. The single-
objective GA selects individual having the highest MQ), i.e., the highest fitness

An Interactive GA for Software Re-Modularization 7

Algorithm 2 IC-IGA: IGA for handling small and isolated clusters

1: for i =1 ... nInteractions do

2: Evolve the GA for nGens generations

3 Select the solution having the highest MQ

4: Find the nClusters smallest clusters and store them in C

5: for all ¢; € C do

6 if ¢; is an isolated cluster then

7 Specify the cluster where the component must be placed

8 else

9 Specify for each component pair whether the components must stay to-
gether or not

10: end if

11: Repair the solution to meet the feedback

12: Create a new GA population using the repaired solution as starting point
13: end for

14: end for

15: Continue (non-interactive) GA evolution until it converges or it reaches mazGens

value. As for the multi-objective GA, we again select solutions with the highest
MQ, although they might not be the ones with the highest values for the other
objectives. The motivation is similar to the one of Praditwong et al. [14], which
used MQ to select the best solution in the NSGA-II Pareto fronts. While other
objectives are useful to drive the population evolution, MQ is a measure that
characterize the “overall” quality of a re-modularization solution, thus can be
used to select—among a set of Pareto-optimal solutions—the one that would
likely better pursue the re-modularization objectives. Finally, to ensure that the
new produced solutions meet the feedback provided by the developer, also for
the multi-objective GA we add a penalty factor to each fitness function following
the same approach adopted for the single-objective GA.

4 Empirical Evaluation

This section reports the design and the results of the study we conducted to com-
pare the different variants of IGAs with their non-interactive counterparts in the
context of software re-modularization. The experimentation has been carried out
on an industrial project, namely GESA, and on a software system, SMOS, de-
veloped by a team of Master students at the University of Salerno (Italy) during
their industrial traineeship. GESA automates the most important activities in
the management of University courses, like timetable creation and classroom al-
location. It is operational since 2007 at the University of Molise (Italy)*. SMOS
is a software developed for high schools, and offers a set of features aimed at
simplifying the communications between the school and the student’s parents.
Table 1 reports the size, in terms of KLOC, number of classes, and number

4 http://www.distat.unimol.it /gesa/

8 Bavota et al.

Table 1. Characteristics of the software systems used in the case study.
Quality of modularization

System KLOC #Classes #Packages Isolated clusters Intra-edges Inter-edges MQ
GESA 2.0 46 297 22 1 330 4,472 2.78
SMOS 1.0 23 121 12 2 155 1,158 2.18

of packages, and the versions of the object systems. The table also reports the
values of some metrics (e.g., MQ) to measure the modularization quality of the
systems. Such metrics are also used as fitness functions in the implementation
of the different variants of GAs (interactive and not).

4.1 How is Feedback Provided?

Since we are not performing a user study, we simulated the developer by auto-
matically generating feedback extracted from the original design of the object
systems (similarly to [18]). This means that every time the IGA asks whether
two classes must go together or be kept separate (or it asks to specify the clus-
ter where the class must be placed) a tool simulated the developer response by
finding the answer in the original design. We believe this feedback would be
representative of an expert’s behavior, since the two object systems have a good
modularization quality and have been previously used as gold standard to test
other re-modularization approaches [2].

4.2 Study Planning and Analysis Method
Our study aims at answering the following research question:

RQ: How do IGAs perform—compared to non-interactive GAs—in terms
of quality and meaningfulness of the produced re-modularizations?

To answer this research question, we compare the modularizations achieved with
the different variants of IGAs (R-IGA, IC-IGA, R-IMGA, and IC-IMGA) with
those achieved applying canonical GA and MGA. For each algorithm, an initial
population is randomly generated. All the algorithms have been executed 30
times on each object system to account the inherent randomness of GAs. For
all the algorithms we used the same configuration. We calibrated the various
parameters of the GA similarly to what done by Praditwong et al. [14], by
properly adapting some of them to the characteristics of our object systems.
Other calibration—mainly related to the number of times the GA interacts with
the software engineer, the number of feedback provided, and the number of
generations between one interaction and the subsequent one—were calibrated
by trial-and-error for our object systems. Therefore, a proper calibration might
be needed for larger systems. Specifically:

— We use a population size of n individuals for systems having n > 150 software
components, a population of 2 n for smaller systems. Praditwong et al. [14]
used a population size of 10-n instead, because the bigger system used in their
study was considerably smaller than the one used in our study (i.e., GESA

An Interactive GA for Software Re-Modularization 9

with 297 classes). Similarly, we consider a maximum number of generations
maxGen equal to 20 - n for systems having n > 150 components, and equal
to 50 - n for smaller systems. Also for the maximum number of generations,
Praditwong et al. used in their experimentation a higher number (i.e., 200-n).

— The crossover probability is set to 0.8, while the mutation probability to
0.004 - logs (n) (as also done by Praditwong et al. [14]).

— The number of times (nInteractions) the GA stops the evolution and asks
for an interaction is set to 5;

— The number of generations (nGens) between one interaction and the subse-
quent one is set to 10;

— The number of class pairs (nFeedback) for which Algorithm 1 asks the devel-
oper for a feedback every time is set to 3;

— The number of small/isolated clusters (nClusters) for which Algorithm 2
asks the developer for a feedback every time is set to 3;

— The weight k of the penalty factor in the fitness functions is set to 1.

As it can be noticed, the maximum number of feedback provided is equal to
5-3 = 15 class pairs for Algorithm 1 and ¢-3 (where ¢ is the number of analyzed
classes) for Algorithm 2. This might appears as a small amount of feedback,
compared to the total number of classes of the object systems. However, in this
context we are interested to evaluate how the IGA would have worked with a
limited—i.e., cheap and feasible for the developer—interaction.

One parameter used by all the algorithms is the maximum number of clusters
to extract. To the best of our knowledge this parameter has not been described
in previous works. However, it is crucial for the setting of a GA. Defining the
maximum number of clusters a priori is not a trivial task. Such a number highly
depends by the system under analysis. In this paper we experimented two differ-
ent heuristics. Specifically, we set the maximum number of clusters to n and n/2,
respectively, where n is the number of classes in the system to be re-modularized.

When analyzing results, we compare the ability of GAs and IGAs to reach
a fair trade-off between the optimization of some quality metrics (that is the
main objective of GAs applied to software re-modularization) and the closeness
of the proposed partitions to an authoritative one (and thus, their meaningful-
ness). Note that we use the original design of the object systems as authoritative
partition. This choice is justified by the good modularization quality of the ob-
ject systems, that have been previously used as gold standard to assess other
re-modularization approaches [2]. On the one hand, to analyze the impact of
provided feedback from the quality metrics point-of-view, we use four quality
metrics previously adopted by Praditwong et al. [14], namely MQ), intra-edges,
inter-edges, and number of isolated clusters. On the other hand, to measure
the meaningfulness of the modularizations proposed by the experimented algo-
rithms, we compute the MoJo eFfectiveness Measure (MoJoFM) [19] between
the original modularization of the object systems (authoritative partitions) and
that proposed by the algorithms. The MoJoFM is a normalized variant of the

10 Bavota et al.

MoJo distance and it is computed as follows:

mno(A, B)

MoJoFM(A, B) =100 — (- By)

x 100)

where mno(A, B) is the minimum number of Move or Join operations one needs
to perform in order to transform the partition A into B, and maxz(mno(¥ A, B)
is the maximum possible distance of any partition A from the gold standard
partition B. Thus, MoJoF M returns 0 if a clustering algorithm produces the
farthest partition away from the gold standard; it returns 100 if a clustering
algorithm produces exactly the gold standard.

We also statistically analyze whether the results achieved by different al-
gorithms (interactive and not) significantly differ in terms of quality metrics
or authoritativeness of the modularizations. In particular, the values of all the
employed metrics (e.g., MQ) achieved in the 30 runs by two algorithms are sta-
tistically compared using the Mann-Whitney test [4]. In all our statistical tests
we reject the null hypotheses for p-values < 0.05 (i.e., we accept a 5% chance of
rejecting a null hypothesis when it is true [4]). We also estimate the magnitude
of the difference between the employed metrics. We use the Cliff’s Delta (or d),
a non-parametric effect size measure [9] for ordinal data. The effect size is small
for d < 0.33 (positive as well as negative values), medium for 0.33 < d < 0.474
and large for d > 0.474 [9].

4.3 Analysis of Results

This section discusses the results achieved in our study aiming at responding to
our research question. Working data sets are available for replication purposes®.

Tables 2 and 3 report the descriptive statistics of the measured quality met-
rics. The analysis of Table 2 highlights that on GESA the interactive GAs, in
most cases, achieve better results than their non-interactive counterparts. Note
that this is true (i) for both single- and multi-objective algorithms, (ii) using
both n or n/2 as maximum number of clusters, and (iii) using both the random
(R-IGA and R-IMGA) or the isolated cluster (IC-IGA and IC-IMGA) heuristic
to provide feedback to the interactive algorithm; only R-IGA and R-IMGA for
GESA go slightly worse than their non-interactive counterparts. These better
performances hold for all the exploited quality metrics. Moreover, the number
of clusters generated by the interactive algorithms is much more close to the
effective number of clusters of the original system decomposition (i.e., 22). The
non-interactive GA and MGA always propose modularizations having a very
high number of clusters, mostly composed of few classes. For example, GA[n]
organizes the 297 classes of GESA into (on average) 149 clusters, 72 of which
(on average) are isolated clusters, i.e., clusters containing only one class. The
best configuration is MGA[n/2] that, however, still produces a quite fragmented
system decomposition, clustering the 297 classes into an average of 108 clusters,
32 of which isolated. Even if this kind of systems decomposition could (near)

® http://www.distat.unimol.it /reports/IG A-remodularization/

An Interactive GA for Software Re-Modularization 11

Table 2. GESA: descriptive statistics of the measured quality metrics.

Algorithm #Clusters #Isolated Clusters intra-edges inter-edges MQ

Mean Med. St. Dev. Mean Med. St. Dev. Mean Med. St. Dev. Mean Med. St. Dev. Mean Med. St. Dev.
GAln| 149 159 5 2 72 7 62 63 5 5,009 5,007 10 3.94 3.95 0.22
I1C-IGA[n] 79 72 26 22 12 19 421 439 177 4,290 4,254 353 4.86 4.97 0.36
R-IGA[n] 113 110 11 57 56 6 282 316 100 4,568 4,500 201 4.64 4.60 0.36
MGA([n] 155 156 7 83 84 9 36 34 9 5,060 5,064 17 2.04 2.00 0.34
IC-IMGA[n] 90 69 31 25 9 27 296 346 131 4,539 4,440 262 4.19 4.44 0.55
R-IMGA[n] 155 154 10 91 89 13 58 57 14 5,017 5,018 27 214 2.06 0.31
GA[n/2] 107 107 3 28 28 5 79 80 4 4,975 4,973 8 399 4.04 0.23
IC-IGA[n/2] 63 59 15 1 10 6 298 299 84 4,536 4,534 168 4.81 4.92 0.39
R-IGA[n/2] 88 89 8 29 29 5 359 315 193 4,415 4,502 386 4.65 4.71 0.29
MGA[n/2] 108 108 5 32 32 6 58 57 13 5,016 5,018 26 2.23 2.20 0.32
IC-IMGA[n/2] 59 51 26 10 6 10 324 329 183 4,485 4,475 366 3.97 4.09 0.61
R-IMGA[n/2] 111 112 4 41 40 6 111 104 35 4,911 4,924 71 212 2.08 0.22

Table 3. SMOS: descriptive statistics of the measured quality metrics.

Algorithm #Clusters #Isolated Clusters intra-edges inter-edges MQ

Mean Med. St. Dev. Mean Med. St. Dev. Mean Med. St. Dev. Mean Med. St. Dev. Mean Med. St. Dev.
GAln| 54 54 3 22 21 4 52 52 4 1,364 1,365 7 3.40 345 0.21
IC-IGA[n] 35 32 9 9 7 7 86 94 20 1,297 1,281 39 3.67 3.77 0.62
R-IGA[n] 42 41 4 15 15 4 %77 10 1,316 1,315 19 3.78 3.77 0.22
MGA([n] 63 64 4 32 31 6 30 29 7 1,408 1,411 13 1.91 1.88 0.31
IC-IMGA[n] 37 35 7 10 8 6 82 86 20 1,305 1,296 41 2.66 2.68 0.39
R-IMGA[n] 63 64 4 37 37 5 15 45 10 1,379 1,378 20 197 1.95 0.30
GA[n/2] 42 42 3 11 11 3 62 63 4 1,344 1,342 8 3.68 3.68 0.21
IC-IGA[n/2] 20 18 7 1 1 1 114 118 29 1,240 1,233 58 3.00 2.84 0.36
R-IGA[n/2] 29 29 4 8 7 3 160 154 44 1,148 1,160 87 3.68 3.69 0.21
MGA[n/2] 46 47 4 15 15 3 50 47 14 1,368 1,375 28 2,10 2.04 0.31
IC-IMGA[n/2] 17 15 8 2 2 2 244 257 115 980 954 229 2.64 2.57 0.30
R-IMGA[n/2] 47 46 3 19 18 5 7467 27 1,320 1,335 53 2.07 2.08 0.24

optimize some quality metrics, it represents a poor support for the developer
during a software re-modularization task, requiring a substantial effort to man-
ually refine the proposed modularization.

Results obtained for SMOS (Table 3), confirm what is seen for GESA. In ad-
dition, also on SMOS, the non-interactive GAs provide quite poor performances,
especially in terms of number of clusters produced. Also in this case, the best
configuration is obtained with MGA[n/2], that organizes the 121 classes of SMOS
in 46 clusters (on average). Among them, 15 are isolated. Its interactive version
(IC-IMGA[n/2]) is able to produce a more reasonable partition, composed of 17
clusters, of which only 2 are isolated.

All these considerations are also supported by statistical analyses (see Ta-
bles 4 and 5). Therefore, we can conclude that IGAs achieve better quality
metrics value as compared to the non-interactive counterparts. This result is
quite surprising, since the feedback provided to the IGAs in our experimenta-
tion are not targeted to improve some quality metrics (as the fitness function is),
but only to integrate in the GA the developers’ knowledge. It is worth noting
that the feedback provided by the developers help the GA to sensibly reduce the
number of produced clusters.

Concerning the authoritativeness of the experimented algorithms, the achieved
values of MoJoFM on GESA and SMOS are reported in Table 6. Given the re-
sults obtained, it is not surprising that the modularizations proposed by the
non-interactive GAs (both single- and multi- objective) are very far from the
original design. The best results among the non-interactive GAs are achieved

12 Bavota et al.

Table 4. GESA: Results of the Mann-Whitney tests.

MQ # clusters Isolated clusters MoJoFM

p-value d p-value d p-value d p-value d
GAln] vs. IC-IGA[n] 0.00 0.92 0.00 -Inf 0.00 -0.96 0.00 0.91
GAln] vs. R-IGA[n] 0.00 0.89 0.00 -0.97 0.00 -0.89 0.00 0.96
MGA[n] vs. IC-IMGA|[n] 0.00 0.99 0.00 -0.99 0.00 -0.98 0.00 Inf
MGA[n] vs. R-IMGA|[n] 0.34 0.21 0.88 -0.02 0.04 0.38 0.01 0.44
IC-IGA|n] vs. R-IGA[n] 0.02 -0.38 0.00 0.69 0.00 0.84 0.02 -0.39
IC-IMGA[n] vs. R-IMGA|n] 0.00 -0.99 0.00 0.99 0.00 0.99 0.00 -0.97
GA[n/2] vs. IC-IGA[n/2] 0.00 0.87 0.00 -Inf 0.00 -0.94 0.00 0.99
GA[n/2] vs. R-IGA[n/2] 0.00 0.92 0.00 -0.98 0.24 0.18 0.00 0.96
MGA[n/2] vs. IC-IMGA[n/2] 0.00 0.94 0.00 -0.93 0.00 -0.88 0.00 0.94
MGA[n/2] vs. R-IMGA[n/2] 0.14 -0.27 0.04 0.37 0.00 0.76 0.14 0.24
IC-IGA[n/2] vs. R-IGA[n/2] 0.04 -0.35 0.00 0.84 0.00 0.96 0.04 -0.33

IC-IMGA[n/2] vs. R-IMGA[n/2] 0.00-0.96 0.00 0.97 0.00 098 0.00-0.93
Table 5. SMOS: Results of the Mann-Whitney tests.

MQ # clusters Isolated clusters MoJoFM

p-value d p-value d p-value d p-value d
GA[n] vs. IC-IGA|[n] 0.00 0.43 0.00 -0.85 0.00 -0.83 0.00 0.94
GA[n] vs. R-IGA[n] 0.00 0.80 0.00 -0.96 0.00 -0.81 0.00 Inf
MGA[n] vs. IC-IMGA[n] 0.00 0.84 0.00 -1.00 0.00 -0.99 0.00 0.99
MGA[n] vs. R-IMGA|[n] 1.00 0.10 1.00 -0.01 0.01 0.44 0.00 0.90
IC-IGA[n] vs. R-IGA[n] 0.90 -0.02 0.00 0.55 0.00 0.60 0.00 -0.70
IC-IMGA[n] vs. R-IMGA[n] 0.00 -0.83 0.00 1.00 0.00 1.00 0.00 -0.91
GA[n/2] vs. IC-IGA[n/2] 0.00 -0.84 0.00 -0.97 0.00 -1.00 0.00 0.97
GA[n/2] vs. R-IGA[n/2] 0.99 0.00 0.00 -0.99 0.00 -0.54 0.00 0.94
MGA[n/2] vs. IC-IMGA[n/2] 0.00 0.80 0.00 -0.99 0.00 -Inf 0.00 0.98
MGA([n/2] vs. R-IMGA[n/2] 1.00 0.00 0.69 0.14 0.00 0.61 0.01 0.45
IC-IGA[n/2] vs. R-IGA[n/2] 0.00 0.84 0.00 0.74 0.00 0.99 0.00 -0.72
IC-IMGA([n/2] vs. R-IMGA[n/2] 0.00 -0.87 0.00 1.00 0.00 Inf 0.00 -0.96

by GA[n/2] with MoJoFM equals to 21 on GESA and 37 on SMOS. Instead,
thanks to the few feedback provided, the IGAs achieved much better results (as
expected). The best performances are achieved using IC-MGA[n] with a maxi-
mum MoJoFM of 53 on GESA and 74 on SMOS. Also in this case, statistical
analyses support our findings (see Tables 4 and 5).

To better understand what this difference between the performances of in-
teractive and non-interactive GAs means from a practical point of view, Fig. 1
shows an example extracted from the re-modularization of the SMOS software
system. The figure is organized in three parts. The first part (left side) shows
how the subsystem RegisterManagement appears in the original package de-
composition (i.e., which classes it contains) made by the SMOS’s developers.
This subsystem groups together all the classes in charge to manage information
related to the scholar register (e.g., the students’ delay, justifications for their
absences and so on). The second part (middle) reports the decomposition of the
classes contained in RegisterManagement proposed by the MGA. Note that some
classes not belonging to the RegisterManagement were mixed to the original set

An Interactive GA for Software Re-Modularization 13

Table 6. Descriptive statistics of the MoJoFM achieved by the different algorithms.

Algorithm MoJokF M Algorithm MoJok M

Mean Med. St. Dev. Max Min Mean Med. St. Dev. Max Min
GA[n] 14 14 2 19 11 GA[n] 26 27 2.8 30 21
IC-IGA[n] 29 33 8 38 13 IC-IGA[n] 53 54 6.4 62 36
R-IGAn] 26 27 5 34 14 R-IGA[n] 39 39 47 48 31
MGA|n] 10 11 2 13 7 MGA|[n] 17 16 3.1 23 12
IC-IMGA[n] 38 39 11 53 13 IC-IMGA|n] 59 62 12 74 22
R-IMGA[n] 12 12 3 22 8 R-IMGA[n] 26 27 4.6 38 15
GA[n/2] 18 17 1 21 15 GAn/2] 31 31 2.6 37 25
IC-IGA[n/2] 29 29 6 38 20 IC-IGA[n/2] 52 53 8.2 62 30
R-IGA[n/2] 25 25 4 32 18 R-IGA[n/2] 42 41 6.2 57 32
MGA[n/2] 14 14 2 18 10 MGA[n/2] 24 23 3.5 32 20
IC-IMGA[n/2] 38 39 11 53 13 IC-IMGA[n/2] 43 43 78 62 22
R-IMGA[n/2] 15 15 2 20 11 R-IMGA[n/2] 28 28 4.5 36 20

(a) GESA (b) SMOS

of classes. These classes are reported in light gray. Finally, the third part (right
side) shows the decomposition of the classes contained in RegisterManagement
proposed by the IC-IMGA. Also in this case, classes not belonging to the origi-
nal RegisterManagement package are reported in light gray. As we can see, the
original package decomposition groups 31 classes in the RegisterManagement
package. When applying MGA, these 31 classes are spread into 27 packages,
13 of which are singleton packages. As for the remaining 14 they usually con-
tain some classes of the RegisterManagement package mixed with other classes
coming from different packages (light gray in Fig. 1). The solution provided by
IC-IMGA is very different. In fact, IC-IMGA spreads the 31 classes in only 5
packages. Moreover, it groups together in one package 26 out of the 31 classes
originally belonging to the RegisterManagement package. It is striking how much
the partition proposed by IC-IMGA is closer to the original one resulting in a
higher MoJoFM achieved by IC-IMGA with respect to MGA and thus, a more
meaningful partitioning from a developer’s point of view.

On summary, results of our study showed as the non-interactive GAs, in both
their single- and multi- objective formulations, might produce modularizations
that, albeit being good in terms of cohesion and coupling, strongly deviate from
the developers’ intent. This highlights the need for augmenting the GA with
developers’s knowledge trough IGAs. That is, IGAs would allow to obtain more
meaningful solutions—that for our case studies are even better in terms of mod-
ularization quality—representing an acceptable starting point for a developer
when performing a software re-modularization.

4.4 Threats to Validity

Threats to construct validity may essentially depend on the way we simulated
the feedback. As said, we believe that simulating feedback from the original sys-
tem design would be representative of a developer’s behavior (similarly to [18]).
Nevertheless, controlled experiments are needed to understand to what extent
real developers are able to introduce their knowledge in the genetic algorithm
through the feedback mechanism. Threats to internal validity can be related to
the GAs parameter settings. For some of them we used parameters similar to
previous studies [14], while for others we used a trial-and-error calibration pro-
cedure. Threats to external validity concerns the generalization of our results.

14 Bavota et al.

B

RegisterManagement
P2 | Absence
Absence Delay
Absence Justify
Delay ManagerRegister
Justify Note
ManagerRegister i Regist RegisterLine
Note s anlaggrh eg: er ServletCompt
RegisterLine ervietShowRegister [PS5 ServletDeleteNote
ServletComputeStatistics _| Note ServletinsertAbsenceAta
ServietDeleteJustify P6 ServletDeleteNote ServletinsertDelayAta
ServletDeleteNote ServletinsertAbsenceAta ServletinsertJustify
ServletinsertAbsenceAta Ve Class ServletinsertNewNote
ServletinsertDelayAta ServletShowdustifyDetails
ServletinsertJustify ServletShowdustifyList
ServietinsertNewNote

ServletShowJustifyListForTeacher

ServletinsertJustify
ServletShowNoteListStudent

ServletLoadClassForTeacher
ServletShowClassroomManagement
ServletShowdJustifyDetails

ServletShowdustifyListParent
ServletShowNoteDetails
ServletShowNoteList

ServletShowdJustifyList
ServletShowdJustifyListForTeacher
ServletShowdJustifyListParent
ServietShowdustifyListStudent
ServletShowNoteDetails
ServietShowNoteList
ServietShowNotelistForTeacher

o]

ServletinsertNewNote
enietShowTeachingDetai

ServletShowNoteDetails

P11

ServietShowNoteList

ServletShowNoteListParent
ServletShowNoteListStudent
ServletShowRegister
ServletShowRegisterForTeacher
ServletShowRegisterParent
ServletShowRegisterStudent
ServletUpdateJustify

P12 |

ServietShowNoteListParent = —_—
ServletShowNoteDetails

ServietShowNotelistStudent
ServletShowRegister
ServletShowRegisterForTeacher
ServletShowRegisterParent
ServletShowRegisterStudent
ServletUpdateJustify
ServletUpdateRegister

ServletUpdateRegister

[F2]
ServletDeleteJustify
ServletLoadClassForTeacher

3 Showls P13
| ServletShowRegisterParent
P14
ServletLoadClassForTeacher
ServletShowRegisterStudent
SenvietloadTe L

[| S

ServletShowClassroomManagement

Plus 13 more packages with one
class of RegisterManagement
each. (Total 27)

MGA partition

Plus 2 more packages with one
class of RegisterManagement
each. (Total 5)

IC-IMGA partition

Original Package

Fig.1. MGA wvs IC-IMGA in reconstructing the RegisterManagement package of
SMOS.

Although we applied the approach on two realistic systems (one industrial sys-
tem and one developed by students but actually used), further experimentation is
needed, also for example on procedural (e.g., C) systems. Also, we evaluated the
advantages of interactive feedback on GAs only, while it would be worthwhile to
investigate it also for other heuristics such as hill-climbing. However, it is impor-
tant to point out that in this paper we were interested to assess the improvement
in the quality and meaningfulness of the produced solutions when using inter-
actions (with respect to a similar algorithm without interaction), rather than in
the absolute quality of the solutions.

5 Conclusion and Future Work

In this paper we proposed the use of IGAs to integrate developers’ knowledge
during software re-modularization activities. We implemented and experimented
both single- and multi-objective IGAs comparing their performances with those
achieved by their non-interactive counterparts. The achieved results show that
the IGAs are able to propose re-modularizations (i) more meaningful from a
developer’s point-of-view, and (ii) not worse, and often even better in terms of
modularization quality, with respect to those proposed by the non-interactive
GAs. Also, IGAs is applicable with a limited number of feedback, and thus,
require a relatively limited effort to the developer.

An Interactive GA for Software Re-Modularization 15

Future work will be devoted to replicate the empirical evaluation on further

software systems and different heuristics such as hill-climbing. Also, we plan to
evaluate the usefulness of IGAs during software re-modularization activities.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Anquetil, N., Lethbridge, T.: Experiments with clustering as a software remodu-
larization method. In: WCRE. pp. 235-255 (1999)

. Bavota, G., Lucia, A.D., Marcus, A., Oliveto, R.: Software re-modularization based

on structural and semantic metrics. In: WCRE. pp. 195-204. (2010)

Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering 191(11-12) (2002)

Conover, W.J.: Practical Nonparametric Statistics. Wiley, 3rd edition. (1998)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley
(2001)

Di Penta, M., Neteler, M., Antoniol, G., Merlo, E.: A language-independent soft-
ware renovation framework. JSS 77(3), pp. 225-240 (2005)

Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems
using a genetic algorithm. In: STEP. pp. 73-82. (1999)

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional (1999)

Grissom, R.J., Kim, J.J.: Effect sizes for research: A broad practical approach.
Lawrence Earlbaum Associates, 2nd edition. (2005)

Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.F., Gansner, E.R.: Using au-
tomatic clustering to produce high-level system organizations of source code. In:
IWPC. pp. 45— (1998)

Magbool, O., Babri, H.A.: Hierarchical clustering for software architecture recov-
ery. IEEE TSE 33(11), 759-780 (2007)

Mitchell, B.S.: A Heuristic Search Approach to Solving the Software Clustering
Problem. Ph.D. thesis, Drexel University, Philadelphia (2002)

Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software sys-
tems using the bunch tool. IEEE TSE 32(3), 193-208 (2006)

Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE TSE 37(2), 264-282 (2011)

Siff, M., Reps, T.W.: Identifying modules via concept analysis. IEEE TSE 25(6),
749-768 (1999)

Simons, C.L., Parmee, 1.C., Gwynllyw, R.: Interactive, Evolutionary Search in
Upstream Object-Oriented Class Design. IEEE TSE 36(6), 798-816 (2010)
Takagi, H.: Interactive evolutionary computation: Fusion of the capacities of EC
optimization and human evaluation. Proceedings of the IEEE 89(9), 1275-1296
(2001)

Tonella, P., Susi, A., Palma, F.: Using interactive GA for requirements prioritiza-
tion. In: SSBSE. pp. 57-66 (2010)

Wen, Z., Tzerpos, V.: An effectiveness measure for software clustering algorithms.
In: IWPC. pp. 194-203. (2004)

Wiggerts, T.A.: Using clustering algorithms in legacy systems re-modularization.
In: WCRE. p. 33. IEEE Computer Society (1997)

