
When does a Refactoring Induce Bugs?
An Empirical Study

Gabriele Bavota1, Bernardino De Carluccio1, Andrea De Lucia1

Massimiliano Di Penta2, Rocco Oliveto3, Orazio Strollo1
1University of Salerno, Fisciano (SA), Italy

2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

gbavota@unisa.it, bernardino.decarluccio@gmail.com, adelucia@unisa.it
dipenta@unisannio.it, rocco.oliveto@unimol.it, oraziostrollo@hotmail.com

Abstract—Refactorings are—as defined by Fowler—behavior
preserving source code transformations. Their main purpose is to
improve maintainability or comprehensibility, or also reduce the
code footprint if needed. In principle, refactorings are defined
as simple operations so that are “unlikely to go wrong” and
introduce faults. In practice, refactoring activities could have
their risks, as other changes.

This paper reports an empirical study carried out on three
Java software systems, namely Apache Ant, Xerces, and Ar-
goUML, aimed at investigating to what extent refactoring activi-
ties induce faults. Specifically, we automatically detect (and then
manually validate) 15,008 refactoring operations (of 52 different
kinds) using an existing tool (Ref-Finder). Then, we use the
SZZ algorithm to determine whether it is likely that refactorings
induced a fault.

Results indicate that, while some kinds of refactorings are
unlikely to be harmful, others, such as refactorings involving
hierarchies (e.g., pull up method), tend to induce faults very
frequently. This suggests more accurate code inspection or testing
activities when such specific refactorings are performed.

Index Terms—Refactoring, Fault-inducing changes, Mining
software repositories, Empirical Studies.

I. INTRODUCTION

Software systems are continuously subject to maintenance
tasks to introduce new features or fix bugs [1]. Very often
such activities are performed in an undisciplined manner due
to strict time constraints, to lack of resources/skills, or to
the limited knowledge some developers have of the system
design [2]. As a result, the code underlying structure, and
therefore the related design, tend to deteriorate.

This phenomenon was defined as “software aging” by
Parnas [3], and was also described in the law of increasing
complexity by Lehman [1]. Some researchers measured the
phenomenon in terms of change entropy [4], [5], while others
defined “antipatterns”, i.e., recurring cases of poor design
choices occurring as a consequence of aging, or when the
software is not properly designed from the beginning. Classes
doing too much (God classes or Blobs), poorly structured code
(Spaghetti code), or Long Message Chains used to develop
a certain feature are only few examples of antipatterns that
plague software systems [2].

In order to mitigate the above described issues, software
systems are, time to time, subject to improvement activities,

aimed at enhancing the code and design structure. Such activi-
ties are often referred to as refactoring. Refactoring is defined
by Fowler [2] as “a disciplined technique for restructuring an
existing body of code, altering its internal structure without
changing its external behavior”. The aim of refactoring is to
improve the structure of source code—and consequently of
the system design—whenever its structure may possibly lead
to maintainability or comprehensibility problems. Fowler’s
catalogue [6] comprises a set of 93 refactorings, aimed at
dealing with different antipatterns in source code, such as,
extracting a class from a Blob, pulling up a method from a
subclass onto a superclass, or modifying the navigability of an
association between two classes.

In theory, a refactoring should not change the behavior
of a software system, but only help in improving some of
its non-functional attributes. In practice, a refactoring might
be risky as any other change occurring in a system, causing
possible bug introductions. Indeed, a recent study [10] showed
that even automated refactoring as performed by Integrated
Development Environments could be fault-prone as well.

While there are attempts to investigate the relation between
some refactorings and fault-proneness [8], [9] or change
entropy [7], to the best of our knowledge there is no study
aimed at thoroughly investigating whether a wide set of (even
undocumented) refactorings occurred in a software system dur-
ing its evolution induced bugs, and what kind of refactorings
might induce more bugs than others.

In this paper we report an empirical study aimed at investi-
gating to what extent refactoring induces bug fixes in software
systems. We use an existing tool, namely Ref-Finder [11],
to automatically detect refactoring operations of 52 different
types on 63 releases of three Java software systems, Apache
Ant1, ArgoUML2, and Xerces-J3. Of the 15,008 refactoring
operations detected by the tool, 12,922 operations have been
manually validated as actually refactorings. Then, we use the
SZZ algorithm [12], [13] to determine whether the 12,922

1http://ant.apache.org/
2http://argouml.tigris.org/
3http://xerces.apache.org/xerces-j/



refactoring operations induced4 bug fixes.
Specifically, the paper aims at investigating:

1) to what extent refactorings, in general, induce bugs fixes,
i.e., what is the percentage of refactoring activities that
likely induced a bug fixing;

2) whether specific kinds of refactorings induce more bugs
than others;

3) whether bugs occurred more in the source or target
source code components involved in refactorings at least
for refactorings that—as Move Method for example—
involve more components.

Results show that while, in general, the percentage of bugs
fixes likely induced by refactorings is relatively low (i.e.,
15%), there are some specific kinds of refactorings that are
very likely to induce fixes. In particular, Pull Up Method and
Extract Subclass (two refactoring operations related to changes
applied to the class hierarchy) induce (in percentage) more
fixes than the others. Moreover, bugs generally occur more in
the target source code components involved in refactorings.

Structure of the paper. Section II describes the approach
followed to extract data necessary for this study. The empirical
study is then described in Section III, while results are
presented in Section IV. Section V discusses the threats to
validity of our study. Finally, Section VII concludes the paper,
after a discussion of related work (Section VI).

II. DATA EXTRACTION PROCESS

This section describes the data extraction process we fol-
lowed with the aim of (i) identifying refactoring performed
across system versions and (ii) determine whether refactorings
could have likely induced a fix.

A. Step 1: Identifying Refactorings

We use Ref-Finder [11] to detect refactorings performed
between each subsequent couples of releases of the systems
under analysis. We decided to work at release level for
convenience and because the current implementation of Ref-
Finder identifies refactoring operations between two releases
of a software system. Ref-Finder has been implemented as an
Eclipse plug-in and it is able to detect 63 different kinds of
refactorings.

In a case study conducted on three open source systems
Ref-Finder was able to detect refactoring operations with an
average recall of 95% and an average precision of 79% [11].
Even if the accuracy of such a tool is quite high, we tried to (at
least) mitigate problems related to false positives (precision)
through manual validation of the refactorings proposed by Ref-
Finder. Specifically, each refactoring operation identified by
the tool was manually analyzed through source code inspection
by two Master students from the University of Salerno. The

4In this paper we use the term “inducing” used by the authors of the SZZ
algorithm. By that, it is meant that a change induces a bug fixing if it last
modifies a source code line involved in a bug fixing. This does not necessarily
mean a causation between a change and a bug fixing.

students individually validated each of the proposed refactor-
ing operations. For the study reported in this paper, the manual
validation required about 10 working days of two persons.

Once students validated the refactorings, they performed an
open-discussion with two of the authors of this paper to solve
conflicts and reach a consensus on the refactoring operations
analyzed, classifying them as true positive or false positive.
The output of this stage is a set of triples (relj , refk, C), where
relj indicates the release number, refk the kind of refactoring
occurred, and C is the set of refactored classes. Each release
is also associated to the release date.

B. Step 2: Identifying Post-release Bugs

In order to identify all post release bugs, we first extract
the change log from the system versioning system (two of
the systems used Git5, while for the third one, ArgoUML, we
converted the SVN repository into a Git repository). Then,
we identify bug fixing changes by mining regular expressions
containing issue IDs in the versioning system change log, e.g.,
“fixed issue #ID” or “issue ID”. After that, for each issue ID
identified, we download the corresponding issue report from
the issue tracking system Bugzilla6 or Jira7 (depending on the
system), and extract from it:

• product name;
• issue type, i.e., whether the issue is a bug or a request for

enhancements or other kinds of changes. In some versions
of Bugzilla this classification is (partially) handled by the
field severity;

• issue status, i.e., whether the issue was closed or not;
• issue resolution, i.e., whether the issue was resolved by

fixing it, or whether it was a duplicate issue, or a “works
for me” case;

• issue opening date;
• issue closing date, if any.
Then, we check that the issue report was correctly down-

loaded (e.g., the issue ID identified from the versioning system
commit note could be a false positive), and that the issue,
indeed, is related to the product under analysis (e.g., Apache
uses the same issue tracking system for multiple products).
After that, we use the issue type/severity field to classify
the issue and distinguish bug fixing from other issues (e.g.,
enhancements). Finally, we only consider bugs having the
CLOSED status and the FIXED resolution. Basically, we
restrict our attention to (i) issues that were related to bugs as
we use them as a measure of fault-proneness, and (ii) issues
that were not duplicate nor false alarms.

C. Step 3: Bug-inducing changes

The third step of the approach aims at identifying changes
that likely induced the bug. We use the SZZ algorithm [12],
[13], which relies on the annotation/blame feature of version-
ing systems. In essence, given a bug fix identified by the bug
ID k, the approach works as follows:

5http://git-scm.com/
6http://www.bugzilla.org/
7http://www.atlassian.com/software/jira/overview



foo.java

fie.java

timereli-1 reli

Bug inducing 
change

Refactorings 
identified

Bug
fixed

BUG ID 123

BUG ID 456

BUG ID 123

BUG ID 456

Issue tracking system

Ve
rs

io
ni

ng
 s

ys
te

m
Change

Fig. 1. The approach used to identify whether a refactoring induces a bug.

1) For each file fi, i = 1 . . .mk involved in the bug fix k
(mk is the number of files changed in the bug fix k), and
fixed in its revision rel-fixi,k, we extract the file revision
just before the bug fixing (rel-fixi,k − 1).

2) Starting from the revision rel-fixi,k − 1, for each source
line in fi changed to fix the bug k the blame fea-
ture of Git is used to identify the file revision where
the last change to that line occurred. In doing that,
blank lines and lines that only contain comments are
identified using an island parser. This produces, for
each file fi, a set of ni,k bug-inducing revisions
rel-bugi,j,k, j = 1 . . . ni,k.

D. Step 4: When does a refactoring induce a bug fixing?

Figure 1 summarizes how, based on the information ex-
tracted in the previous steps, we assume that a refactoring
activity can likely induce a bug fixing. Specifically:

• a refactoring refk occurred on class cj on reli;
• a bug-inducing change for class cj was performed be-

tween reli−1 and reli;
• the bug inducing change resulted in a bug report opened

after reli.

III. EMPIRICAL STUDY DESIGN

The goal of the study is to analyze refactoring operations
occurring over the history of a software project, with the
purpose of understanding to what extent they could induce
bug fixes. The quality focus is software maintainability and
comprehensibility, which could be improved by means of
refactoring, but also software fault-proneness, which could
be influenced by refactoring activities. The perspective is of
researchers interested in investigating whether source code
subject to refactoring—and in particular to some specific kinds
of refactoring—deserves particular attention during Verifica-
tion & Validation activities.

A. Context and Research Questions

The context of the study consists of 63 releases of three Java
open source projects, namely Apache Ant, ArgoUML, and
Xerces-J. Apache Ant is a build tool and library specifically
conceived for Java applications (though it can be used for

other purposes). ArgoUML is an open source UML modeler.
Xerces-J is a XML parser for Java. Table I reports character-
istics of the analyzed systems, namely versions analyzed, and
size range (in terms of KLOC and # of classes). The table
also reports the number of refactoring operations (as well as
the number of different kinds of refactorings) identified on the
three systems after the manual validation of the refactorings
identified by Ref-Finder.

In the context of the study, we formulated the following
research questions:

• RQ1: To what extent do refactorings induce bug fixes?
This research question aims at investigating whether
classes subjects to refactoring underwent more bug-fix
inducing changes than others. The rationale is to inves-
tigate whether refactoring induces bug-fixes more than
other kinds of changes, or whether to this extent there
is no difference with respect to other changes. That is,
refactoring could still induce bug fixes, however it must
be checked whether this happens more frequently than for
other changes. Specifically, we test the null hypothesis:

H01 : There is no significant difference in propor-
tions of classes subject to bug-fix inducing changes
between classes subject or not to refactorings.

• RQ2: How do various refactorings differ in terms of
proneness to induce bug fixes? This research question
investigates whether different kinds of refactorings induce
bug fixes in different proportions. The rationale is to
investigate whether some kinds of refactorings may be
more fault-prone than other, so that better Verification
& Validation activities are needed when such specific
refactorings are performed. The null hypothesis being
tested is:

H02 : There is no significant difference among pro-
portions of bug-fix inducing refactorings among dif-
ferent kinds of refactorings.

• RQ3: Are refactorings more likely to induce bug fixes
in source or target components? Since some specific
refactorings involve a source and a target source code
components (e.g., when moving a method from a class



TABLE I
CHARACTERISTICS OF THE ANALYZED PROJECTS

Project Period Analyzed Releases (Num) Classes KLOC Refactorings Kinds of Refactorings
Apache Ant Jan 2000-Dec 2010 1.2-1.8.2 17 87-1,191 8-255 1,469 31
ArgoUML Oct 2002-Dec 2011 0.12-0.34 13 777-1,519 362-918 3,532 43
Xerces Nov 1999-Nov 2010 1.0.4-2.9.1 33 181-776 56-179 7,921 43

to another), it would be worthwhile to investigate whether
refactorings tend to induce bug fixes more frequently in
the source or in the target. Bugs occurring in the source
could be for example due to the code moved away from
there (e.g., missing behavior after refactoring occurred;
or, in case an overriding method is moved away from
a class, there is risk that other methods might use the
method from the superclass). Bugs occurring in the target
might be due to wrong assumptions the moved method
is doing when using resources of the target component.
The null hypothesis being tested is the following:
H03 : There is no significant difference among pro-
portions of bug-fix inducing refactorings among
source and target code involved in refactorings.

B. Analysis Method
This subsection describes the analyses and statistical proce-

dures used to address the three research questions formulated
in Section III-A. All statistical tests assume a significance level
of 95%.

To address RQ1, for each release we compute:
• NB-NR, the number of classes of a project release i

for which there was no bug-fix inducing change nor any
refactoring between release i− 1 and release i;

• B-NR, the number of classes of a project release i for
which there was at least one bug-fix inducing change,
but no refactoring, between release i− 1 and release i;

• NB-R, the number of classes of a project release i for
which there was no bug-fix inducing change, while there
was at least one refactoring between release i − 1 and
release i; and

• B-R, the number of classes of a project release i for which
there was at least one bug-fix inducing change and at least
one refactoring between release i− 1 and release i.

Then, we use the Fisher’s exact test [14] to test whether the
proportion between (B-NR, NB-NR) and between (B-R, NB-
R) significantly differ.

In addition, we use the Odds Ratio (OR) [14] as effect
size measure. OR is defined as the ratio of the odds of an
event occurring in one group to the odds of it occurring in
another group. For contingency matrices, like our case, the
OR is defined as: OR = (B-NR/NB-NR) / (B-R/NB-R). An
OR of 1 indicates that the condition or event under study is
equally likely in both groups. An OR greater than 1 indicates
that the condition or event is more likely in the first group.
Vice versa, an OR lower than 1 indicates that the condition or
event is more likely in the second group.

As for RQ2, we report and compare, for different kinds of
refactorings, the overall number of classes involved in different

TABLE II
ANT: NUMBER OF CLASSES INVOLVED (OR NOT) IN REFACTORING AND IN

BUG-INDUCING CHANGES, AND RESULTS OF FISHER’S EXACT TEST.

RELEASE NB-NR NB-R B-NR B-R P-VALUE OR
1.2 153 18 0 0 1.00 0.00
1.3 375 10 76 5 0.15 2.46
1.4 398 27 0 0 1.00 0.00
1.4.1 424 1 0 0 1.00 0.00
1.5 659 59 139 16 0.43 1.29
1.5.1 718 4 0 0 1.00 0.00
1.5.2 719 8 81 4 0.03 4.42
1.6.0 852 62 0 0 1.00 0.00
1.6.1 907 3 39 1 0.16 7.71
1.6.2 918 11 0 0 1.00 0.00
1.6.3 937 18 39 5 < 0.01 6.65
1.6.4 954 1 0 0 1.00 0.00
1.7.0 1,053 60 30 6 0.01 3.50
1.7.1 1,077 46 37 7 < 0.01 4.42
1.8.0 1,122 50 24 2 0.31 1.87
1.8.1 1,159 17 0 0 1.00 0.00
1.8.2 1,181 10 0 0 1.00 0.00

kinds of refactorings performed, and the number and percent-
age of these classes for which refactorings likely induced a
bug fix. Then, we statistically compare such proportions using
proportion test (across all kinds of refactorings), and then we
pairwise compare refactorings using Fisher’s exact test. We
also compute the OR effect size, which indicates, in this case,
the chances that a specific kind of refactoring induced a bug
fixing in a class as opposed to another kind of refactoring.
Since we perform several tests on the same data, we adjust
p-values using the Holm’s correction procedure [14]. This
procedure sorts the p-values resulting from n tests in ascending
order, multiplying the smallest by n, the next by n − 1, and
so on.

Finally, to address RQ3, we report and compare the overall
number and percentage of refactorings that (i) induced a bug
fixing in the source class and that (ii) induced a bug in the
target class. We perform a statistical comparison as done for
RQ2.

IV. EMPIRICAL STUDY RESULTS

This section discusses the results achieved in our study
aiming at responding to our research questions. Working data
sets are available for replication purposes8.

A. RQ1: To what extent do refactorings induce bug fixes?

Tables II, III, and IV, report—for Ant, ArgoUML, and
Xerces respectively–the number of classes that, for each
release, belong to the four categories (NB-NR, NB-R, B-NR,

8http://www.distat.unimol.it/reports/refactoring-defect/



TABLE III
ARGOUML: NUMBER OF CLASSES INVOLVED (OR NOT) IN REFACTORING

AND IN BUG-INDUCING CHANGES, AND RESULTS OF FISHER’S EXACT
TEST.

RELEASE NB-NR NB-R B-NR B-R P-VALUE OR
0.12 791 59 165 6 0.12 0.49
0.14 1,036 97 0 0 1.00 0.00
0.18.1 913 252 313 84 0.89 0.97
0.20 1,101 174 119 22 0.52 1.17
0.22 1,126 171 0 0 1.00 0.00
0.24 3,850 112 93 14 < 0.01 5.17
0.26 1,187 317 99 30 0.58 1.13
0.28 1,438 64 0 0 1.00 0.00
0.28.1 1,500 2 52 0 1.00 0.00
0.30 1,461 58 2 0 1.00 0.00
0.30.1 1,515 4 0 0 1.00 0.00
0.32 1,465 32 0 0 1.00 0.00
0.34 1,219 15 0 0 1.00 0.00

TABLE IV
XERCES: NUMBER OF CLASSES INVOLVED (OR NOT) IN REFACTORING
AND IN BUG-INDUCING CHANGES, AND RESULTS OF FISHER’S EXACT

TEST.

RELEASE NB-NR NB-R B-NR B-R P-VALUE OR
1.0.4 337 89 3 3 0.11 3.77
1.2.0 388 75 0 0 1.00 0.00
1.2.1 441 20 0 0 1.00 0.00
1.2.2 443 19 0 0 1.00 0.00
1.2.3 460 2 0 0 1.00 0.00
1.3.0 443 34 2 2 0.03 12.86
1.3.1 454 24 0 0 1.00 0.00
1.4.0 485 10 0 0 1.00 0.00
1.4.1 491 4 0 0 1.00 0.00
1.4.2 492 10 0 0 1.00 0.00
1.4.3 497 1 0 0 1.00 0.00
1.4.4 481 18 0 0 1.00 0.00
2.0.1 657 1 0 0 1.00 0.00
2.0.2 564 151 0 0 1.00 0.00
2.1.0 708 3 0 0 1.00 0.00
2.2.0 686 36 0 0 1.00 0.00
2.2.1 700 23 0 0 1.00 0.00
2.3.0 688 88 17 22 < 0.01 10.06
2.4.0 614 41 0 0 1.00 0.00
2.5.0 592 73 0 0 1.00 0.00
2.6.0 555 119 0 0 1.00 0.00
2.6.1 644 32 11 10 < 0.01 18.09
2.6.2 676 19 0 0 1.00 0.00
2.7.0 566 140 4 16 < 0.01 16.09
2.7.1 700 6 0 0 1.00 0.00
2.8.0 664 45 10 6 < 0.01 8.79
2.8.1 688 22 0 0 1.00 0.00
2.9.0 680 32 0 0 1.00 0.00
2.9.1 714 2 2 1 0.01 157.69

and B-R) described in Section III-B. Also, the tables report
results of the Fisher’s exact test (significant p-values are shown
in bold face) and ORs.

For Ant, in most cases there is no significant difference in
proportions, that is, the proportion of bug-fix inducing changes
is similar for classes involved or not in refactorings. There
are four releases (1.5.2, 1.6.3, 1.7.0, and 1.7.1) for which
differences are significant. In all these cases, the OR is high,
i.e., the chances for a class involved in refactorings to undergo
bug-fix inducing changes is from 3.5 to 6.6 times higher than

for other classes. Noticeably, this happened for releases—such
as 1.7.0 or 1.7.1—where the number of performed refactorings
is particularly high (although other releases with a high
number of refactorings such as 1.5 and 1.8.0 did not exhibit
a similar behavior). Note that releases 1.7.0 and 1.7.1 are the
ones were we found the higher number of refactorings in Ant,
i.e., 368 and 225, respectively. Moreover, manual analysis of
the versioning system logs between versions 1.6.4 and 1.7.0
and between 1.7.0 and 1.7.1 confirmed as often developers
talked about the performed refactoring operations.

For ArgoUML, there is only one release (0.24) where
differences are significant. To understand the reason behind
this result, also in this case we analyzed the versioning system
logs between versions 0.22 and 0.24. We found that very
often changes were related to refactoring activities (almost 100
of developers’ comments explicitly described the performed
refactoring operations). Thus, this ArgoUML version was
strongly subject to refactoring activities (as also confirmed by
the 401 refactoring operations we found among these system’s
versions). It can be noticed that the number of classes involved
in bug-fix inducing changes is very low in the last few versions
because these versions are relatively recent and thus possible
introduced bugs have still not been reported.

For Xerces, out of the 22 releases analyzed, the differences
are significant only in 7 cases. In all of them the ORs are very
high, highlighting again that at least for all releases where the
difference is significant, classes involved in refactorings have
a higher chance of being involved in bug-fix inducing changes.

Summary for RQ1: In general, there is no significant
difference in the proportion of classes involved in bug-
fix inducing changes between classes involved or not
in refactorings. Such differences occur in some specific
cases, and in all of them classes involved in refactorings
have a higher chance of being involved in bug-inducing
changes.

B. RQ2: How do various refactorings differ in terms of
proneness to induce bug fixes?

In the analyzed 63 releases of the three object systems
we found 52 kinds of refactoring operations applied. Table
V shows, for each of them, (i) the number of classes involved
by the refactoring (column #Ref. Cl.), (ii) the number of
faulty classes among the refactored ones (column #Faulty Cl.),
and (iii) the proportion of refactored classes for which the
refactoring likely induced a bug fixing (column Prop.). We
report separate results for each system as well as aggregate
results (in the rightmost column). Overall, analyzing all kinds
of refactoring operations on all the object systems, we found
that 1,616 refactored classes out of the 10,969 identified (15%)
have been subject to bug fixing.

We identified—across the analyzed systems’ releases—a
total of 12,922 refactoring operations (manually validated
among the 15,008 retrieved by Ref-Finder). It is worth not-
ing that among these 9,816 are related to only 8 kinds



TABLE V
REFACTORED CLASSES AND FAULT-PRONE CLASSES (AMONG THOSE SUBJECT TO REFACTORING).

Operation Ant ArgoUML Xerces Total
#Ref. Cl. #Faulty Cl. Prop. #Ref. Cl. #Faulty Cl. Prop. #Ref. Cl. #Faulty Cl. Prop. #Ref. Cl. #Faulty Cl. Prop.

Add Parameter 133 33 25% 511 65 13% 665 73 11% 1,309 171 13%
Change Bidirectional Association to Unidirectional 0 0 - 2 1 50% 3 1 33% 5 2 40%
Change Unidirectional Association to Bidirectional 0 0 - 0 0 - 6 3 50% 6 3 50%
Collapse Hierarchy 0 0 - 1 0 0% 3 1 33% 4 1 25%
Consolidate Conditional Expression 32 5 16% 45 5 11% 171 34 20% 248 44 18%
Consolidate Duplicate Conditional Fragments 73 15 21% 103 21 20% 422 28 7% 598 64 11%
Decompose Conditional 1 0 0% 2 2 100% 0 0 - 3 2 67%
Encapsulate Field 0 0 - 1 0 0% 0 0 - 1 0 0%
Extract Hierarchy 0 0 - 4 2 50% 3 0 0% 7 2 29%
Extract Interface 10 0 0% 40 4 10% 78 1 1% 128 5 4%
Extract Method 73 19 26% 135 40 30% 166 20 12% 374 79 21%
Extract Subclass 0 0 - 4 2 50% 6 2 33% 10 4 40%
Extract Superclass 3 0 0% 13 1 8% 2 0 0% 18 1 6%
Form Template Method 0 0 - 10 0 0% 0 0 - 10 0 0%
Hide Delegate 0 0 - 0 0 - 1 0 0% 1 0 0%
Hide Method 0 0 - 9 5 56% 0 0 - 9 5 56%
Inline Class 1 1 100% 0 0 - 1 0 0% 2 1 50%
Inline Method 25 2 8% 22 5 23% 74 11 15% 121 18 15%
Inline Temp 55 27 49% 98 28 29% 86 8 9% 239 63 26%
Introduce Assertion 23 0 0% 14 1 7% 0 0 - 37 1 3%
Introduce Explaining Variable 115 10 9% 104 30 29% 165 16 10% 384 56 15%
Introduce Local Extension 3 0 0% 18 0 0% 25 0 0% 46 0 0%
Introduce Null Object 2 0 0% 25 10 40% 35 2 6% 62 12 19%
Introduce Parameter Object 0 0 - 0 0 - 16 0 0% 16 0 0%
Move Field 67 10 15% 399 111 28% 920 41 4% 1,386 162 12%
Move Method 96 9 9% 349 76 22% 747 66 9% 1,192 151 13%
Parameterize Method 1 1 100% 1 1 100% 2 0 0% 4 2 50%
Preserve Whole Object 0 0 - 0 0 - 3 0 0% 3 0 0%
Pull Up Constructor Body 1 0 0% 5 0 0% 0 0 - 6 0 0%
Pull Up Field 2 0 0% 4 0% 0% 6 1 17% 12 1 8%
Pull Up Method 4 0 0% 0 0 - 11 6 55% 15 6 40%
Push Down Field 0 0 - 0 0 - 52 2 4% 52 2 4%
Push Down Method 0 0 - 1 0 0% 44 0 0% 45 0 0%
Remove Assignment To Parameters 49 6 12% 40 11 20% 73 9 12% 162 26 16%
Remove Control Flag 26 8 31% 147 34 23% 136 9 7% 309 51 17%
Remove Middle Man 0 0 - 1 0 0% 0 0 - 1 0 0%
Remove Parameter 114 33 29% 442 70 16% 496 61 12% 1,052 164 16%
Rename Method 182 37 20% 262 49 19% 714 82 11% 1,158 168 15%
Replace Conditional With Polymorphism 0 0 - 4 2 50% 6 0 0 10 2 20%
Replace Constructor With Factory Method 1 0 0% 5 2 40% 5 0 0% 11 2 18%
Replace Data With Object 6 1 17% 10 1 10% 32 1 3% 48 3 6%
Replace Delegation With Inheritance 0 0 - 0 0 - 1 0 0% 1 0 0%
Replace Error Code With Exception 0 0 - 0 0 - 1 0 0% 1 0 0%
Replace Exception With Test 18 6 33% 19 2 11% 38 2 5% 75 10 13%
Replace Magic Number With Constant 327 53 16% 158 19 12% 516 85 16% 1,001 157 16%
Replace Method With Method Object 36 0 0% 374 115 31% 170 32 19% 580 147 25%
Replace Nested Conditional with Guard Clauses 13 0 0% 33 9 27% 124 14 11% 170 23 14%
Replace Parameter with Explicit Methods 0 0 - 1 1 100% 3 0 0% 4 1 25%
Replace Parameter with Method 0 0 - 3 3 100% 0 0 - 3 3 0%
Replace Temp with Query 0 0 - 1 0 0% 0 0 - 1 0 0%
Self Encapsulate Field 0 0 - 2 0 0% 7 0 0% 9 0 0%
Separate Query From Modifier 1 1 100% 2 0 0% 17 0 0% 20 1 5%

of refactorings (i.e., Add Parameter, Consolidate Duplicate
Conditional Fragments, Move Field, Move Method, Remove
Parameter, Rename Method, Replace Magic Number With
Constant, Replace Method With Method Object). On the other
side, other operations like Encapsulate Field, Hide Delegate,
Remove Middle Man, Replace Delegation With Inheritance,
Replace Error Code With Exception, and Replace Temp with
Query are less frequent.

Table VI shows the results of Fisher’s test and OR for
cases where the test indicated a significant difference. It is
worth noting that for refactorings for which there were a small
number of instances, it was not possible to observe significant
differences.

For Ant, we found that different kinds of refactorings
exhibit a significantly different proportion of classes (prop test
returned a p-value < 0.001) for which the refactoring likely
induced a bug fixing. Pairwise Fisher’s exact tests revealed
that, for instance, Inline Temp induced a significantly higher
proportion (49%) of fixes than other refactorings, with ORs
indicating that such proportions are 9 times higher than Move
Method, 5 times higher than Move Field, and 4 times higher
than Rename Method.

For ArgoUML, again we found significant differences

among different kinds of refactorings. Specifically, Replace
Method with Method Object has a significantly high proportion
(31%) of classes for which the refactoring likely induced a
fix than other classes of refactorings, 2.4 times higher than
Remove Parameters and 3.3 times higher than Replace Magic
Number with Constant. Also, Move Field has a significantly
higher proportion (28%), for example 2 times higher than
Remove Parameter, 2.6 times higher than Add Parameter, and
3 times higher than Replace Magic Number with Constant.

For Xerces, refactorings with very high proportions—e.g.,
Pull up Method (55%)—were also present in few instances.
Among refactorings for which the number of instances is high
enough, we found that, for example, Consolidate Conditional
Expression has significantly higher proportions than other
refactorings, e.g., 5 times higher than Move Field.

An interesting result is that the two refactoring operations
inducing (in percentage) more bugs (i.e., Pull Up Method and
Extract Subclass) are both related to changes applied to a class
hierarchy. In particular, both these refactorings induce bugs
in 40% of cases. As for the Pull Up Method refactoring, it
is used when the same exact method is implemented in two
subclasses inheriting from the same superclass. To avoid code
duplication, using the Pull Up Method refactoring the method



TABLE VI
RQ2: PAIRWISE COMPARISONS OF KINDS OF REFACTORINGS FOR WHICH

FISHER’S TEST INDICATED A SIGNIFICANT DIFFERENCE.

ANT
ref. kind 1 ref. kind 2 OR p-value
inline temp introduce explaining variable 9.95 <0.01
inline temp move field 5.41 0.03
inline temp move method 9.15 <0.01
inline temp remove assignment to parameters 6.78 0.02
inline temp rename method 3.75 0.03
inline temp replace magic number with constant 4.96 <0.01
remove parameter introduce explaining variable 4.16 0.04

ARGOUML
ref. kind 1 ref. kind 2 OR p-value
extract method add parameter 2.86 0.01
replace method with method object remove parameter 2.38 <0.01
replace method with method object replace magic number with constant 3.22 <0.01
replace method with method object add parameter 3.03 <0.01
move field add parameter 2.63 0.00
move field remove parameter 2.05 0.02
move field replace magic number with constant 2.81 0.05

XERCES
ref. kind 1 ref. kind 2 OR p-value
consolidate cond expression consolidate duplicate cond fragments 3.48 0.01
consolidate cond expression extract interface 18.99 0.02
consolidate cond expression move field 5.31 <0.01
pull up method consolidate duplicate cond fragments 16.67 0.05
pull up method extract interface > 100 <0.01
pull up method move field 25 <0.01
pull up method push down method >100 0.01
replace magic number with constant consolidate duplicate cond fragments 2.78 <0.01
replace magic number with constant extract interface 14.29 0.04
replace magic number with constant move field 4.16 <0.01
replace method with method object consolidate duplicate cond fragments 3.22 0.03
replace method with method object extract interface 16.67 0.03
replace method with method object move field 5 <0.01
remove parameter move field 3.03 <0.01
rename method move field 2.78 <0.01
add parameter move field 2.64 <0.01

is deleted from the subclasses and moved to their parent. As
for the Extract Subclass refactoring, it is applied when a class
C implements features used only for some of its instances. In
this case, a subclass of C is created, moving the interested
features from C to its new subclass.

An example of Extract Subclass refactoring inducing a bug
fixing is the one occurred in ArgoUML between the versions
0.14 and 0.18.1 and involving the class StylePanelFig. This
class implements the basic style panel to manage the figures,
allowing the user to see and set the figures’ common attributes,
i.e., the boundaries box, line, and fill color. Until version
0.14, this class also managed the shadow settings for figures.
However, developers felt that the shadow setting does not
belong to the “common attributes” of a figure since it can be
applied only on particular types of figures and, for this reason,
in version 0.18.1 they decided to move the shadow manage-
ment responsibility in a new subclass of StylePanelFig called
StylePanelFigNodeModelElement. However, after the subclass
refactoring, the changes applied to the system introduced a
bug fixing, described in the Issue #2568 [shadow not saved]:
“the shadow correctly work during the drawing of an UML
diagram but, if the diagram is saved, closed, and re-opened,
the shadow is no more present in it”.

Other refactoring operations often inducing bug fixes are
Inline Temp, Replace Method With Method Object, and Extract
Method. Among them, the last is the most diffused, applied
when a long method contains one (or more) code fragments
implementing a precise responsibility. The code fragment is
moved in a new method having a name explaining its purpose.
The goal is clearly to decompose a long method into smaller,
easier to comprehend, methods. This refactoring induces an
error in 79 out of the 374 refactored classes (21%). An

Extract Method refactoring inducing a fix is the one performed
between the versions 0.14 and 0.18.1 of ArgoUML in the class
ActionAddDiagram, parent of all the classes implementing
actions adding diagrams in ArgoUML. In particular, from
the method actionPerformed(ActionEvent e), the new method
findNamespace() has been extracted. A wrong swap of order
between two instructions during the performed Extract Method
has introduced the following bug (Issue #2287): “When you
create a new diagram, the new diagram node is added to the
explorer tree, but it is not selected”.

We summarize the likelihood of refactorings to induce fixes
by analyzing how percentages of likely fault prone refactorings
are distributed: the first quartile is 6%, the median is 13%,
and the third quartile is 18%. Figure 2 classifies the analyzed
refactorings in Not Harmful (Prop. < 6%), Potentially Harmful
(6% ≤ Prop. < 18%), or Harmful (Prop. ≥ 18%)

Summary for RQ2: while, in general, the median
percentage of fault-prone refactored classes is rela-
tively low (i.e., 13%), there are some specific kinds of
refactorings—e.g., Pull-up method or Inline Temp—that
are very likely to induce bug fixes.

C. RQ3: Are refactorings more likely to induce bug fixes in
source or target components?

Table VII reports, for each refactoring operation involving
more than one class, (i) the total number of bugs found in
classes related to the refactoring (column #Total), (ii) the
number of bugs found in the source classes (column #Source),
and (iii) the number of bugs found in the target classes (column
#Target). Note that for some refactoring operations, the sum
of #Source and #Target is not equals to #Total since source
and target classes coincide.

Some of our findings are easy to explain. For example,
Inline Class refactoring never induces bug fixes on the source
class. The reason is that with this type of refactoring, the entire
source class is moved inside the target class, and thus the
source class no longer exists after the refactoring operation.
With Inline Method, i.e., the body of a method m is put inside
another method and m is deleted, the source and target classes
always coincide and, thus, are trivially, equally impacted.

More interesting are, for example, the operations of Move
Field and Move Method. For both these refactorings most of
the bug fixes are induced in the target class (69% for the Move
Field and 60% for the Move Method). We manually analyzed
some of these cases to understand the reasons behind these
results. As for the Move Field, this is generally due to a wrong
initialization of the moved variable in the new class (and thus,
in the target class). As for the Move Method, we observed
some errors due to the overriding of a method inherited by
the target class from its superclass.

Also interesting are the case of Replace Method With
Method Object and Pull Up Method refactoring. As for the
first, it induces a bug fixing in the source class in 80% of
cases. This refactoring moves some fields of a long method
(implemented in the source class) inside a new object (the



Pull Up Method

Extract Subclass

Inline Temp 

Replace Method With 
Method Object 

Extract Method

Replace Conditional 
With Polymorphism

Introduce Null Object

Replace Constructor 
With Factory Method

Consolidate Conditional Expression
Remove Control Flag
Remove Assignment to Parameters
Replace Magic Number With Constant
Remove Parameter
Inline Method
Introduce Explaining Variable
Rename Method
Replace Nested Conditional with Guard 
Clauses
Replace Exception with Test
Add Parameter
Move Method
Move Field
Consolidate Duplicate Conditional 
Fragments 
Pull Up Field
Replace Data With Object

Extract Superclass

Separate Query from Modifier

Extract Interface

Push Down Field

Introduce Assertion

Introduce Local Extension

Push Down Method

Introduce Parameter Object

Form Template Method

Encapsulate Field
Hide Delegate
Remove Middle Man
Replace Delegation with Inheritance
Replace Error Code with Exception
Replace Temp with Query
Inline Class
Replace Parameter with Method
Decompose Conditional
Preserve Whole Object
Parameterize Method
Collapse Hierarchy
Replace Parameter with Explicit Method
Change Bidirectional Association to Unidirectional
Change Unidirectional Association to Bidirectional
Pull Up Constructor Body
Extract Hierarchy
Hide Method
Self Encapsulate Field

Harmful (Prob. > 18%) Potentially Harmful (Prob. > 6%) Not Harmful (Prob. < 6%) Unclassified (Too Few Data Points)

Fig. 2. Summary of fault-proneness for different kinds of refactoring operations

TABLE VII
BUGS FOUND IN SOURCE AND TARGET CLASSES

Operation Ant Apache ArgoUML Xerces Total
#Total #Source #Target #Total #Source #Target #Total #Source #Target #Total #Source #Target

Change Bidirectional Association to Unidirectional 0 0 0 5 0 5 1 0 1 6 0 6
Change Unidirectional Association to Bidirectional 0 0 0 0 0 0 9 3 6 9 3 6
Collapse Hierarchy 0 0 0 0 0 0 5 0 5 5 0 5
Extract Hierarchy 0 0 0 6 6 0 0 0 0 6 6 0
Extract Interface 0 0 0 12 0 12 6 0 6 18 0 18
Extract Subclass 0 0 0 11 6 5 3 3 0 14 9 5
Extract Superclass 0 0 0 5 5 0 0 0 0 5 5 0
Form Template Method 0 0 0 0 0 0 0 0 0 0 0 0
Inline Class 14 0 14 0 0 0 0 0 0 14 0 14
Inline Method 16 0 16 57 0 57 125 0 125 198 198 198
Move Field 125 6 119 386 146 240 121 47 74 632 199 433
Move Method 83 6 77 613 251 362 212 108 104 908 365 543
Pull Up Constructor Body 0 0 0 0 0 0 0 0 0 0 0 0
Pull Up Field 0 0 0 0 0 0 4 0 4 4 0 4
Pull Up Method 0 0 0 0 0 0 30 30 0 30 30 0
Push Down Field 0 0 0 0 0 0 3 0 3 3 0 3
Push Down Method 0 0 0 0 0 0 0 0 0 0 0 0
Remove Middle Man 0 0 0 0 0 0 0 0 0 0 0 0
Replace Conditional With Polymorphism 0 0 0 11 6 5 0 0 0 11 6 5
Replace Data With Object 1 1 0 17 0 17 4 2 2 22 3 19
Replace Delegation With Inheritance 0 0 0 0 0 0 0 0 0 0 0 0
Replace Method With Method Object 0 0 0 870 615 255 490 479 11 1,360 1,094 266

target class, generally represented by an entity class). Thus,
the target class involved in this refactoring is generally very
simple and, for this reason, rarely subject to bug-fix inducing
changes.

Finally, concerning the Pull Up Method, Table VII shows
how the bug-fixes induced by this refactoring only affect the
source classes. Manual inspection of particular cases highlights
as often the method pulled-up in the superclass is slightly
modified to meet the needs of all the subclasses, resulting
sometimes in wrong behavior in the subclasses.

As for the statistical analysis, on the Ant system, statistical
tests do not show significant differences. On ArgoUML, they
show that Move Field and Move Method have a significantly
higher chance to induce bug fixes in target classes than in
source classes if compared with Replace Method with Method
Object (OR=8.94 and 6.11 respectively). Similar results, but
with higher ORs (67.65 and 41.59 respectively) were found
for Xerces.

Summary for RQ3: refactorings like Move Field and
Move Method are more prone to inducing errors in
the target classes, while Replace Method With Method
Object and Pull Up Method mostly induce bugs in
the source classes. For other kinds of refactoring, no
particular observations can be done.

V. THREATS TO VALIDITY

This section describes the threats that can affect the validity
our study.

Threats to construct validity concern the relation between
the theory and the observation, and in this work are mainly
due to the measurements we performed. This is probably the
most important kind of threat for this study, and is related to:

• imprecision in the identification of refactorings: this was
mitigated through a manual validation;

• missing or wrong links between bug tracking systems and
versioning systems [15]: although not much can be done
for missing links, we verified that links between commit
notes and issues are correct;



• imprecision in issue classification made by issue-tracking
systems [16]: at least the three systems we consider use an
explicit classification of bugs on issue tracking systems,
distinguishing them from other issues;

• approximations due to identifying bug-inducing changes
using the SZZ algorithm [13]: at least we used heuris-
tics to limit the number of false positives, for example
excluding blank and comment lines from the set of bug-
inducing changes;

• refactorings identified at release level: in order to pre-
cisely link bug-fix introducing changes, ideally one
should perform refactoring detection on each change
occurred in the system. However, in this first study we
performed the analysis at release level for two reasons
(i) practical reason (due to the huge number of system
snapshots to be analyzed), and, above all, (ii) the need
for manually validating the detected refactorings, which
would have been unfeasible if performed at change-
level rather than at release-level. It has to be considered,
however, that all the three systems analyzed tend to issue
releases quite frequently (as evident from the number of
analyzed releases), therefore the analysis at release level
is not excessively coarse-grained.

Threats to internal validity concern external factors we did
not consider that could affect the variables being investigated.
Such threats are related to lack of causation between refac-
torings and bug fixes. At least, we integrated the quantitative
with qualitative ones, plus examples we found by browsing
source code and data from versioning/issue tracking systems.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Although this is mainly an
observational study, wherever possible we used an appropriate
support of statistical procedures, integrated with effect size
measures that, besides the significance of the differences
found, highlight the magnitude of such differences.

Threats to external validity concern the generalization of
results. We analyzed three different systems, two belonging to
the same family (Apache). However, further systems should
be analyzed to confirm or contradict our conclusions. Also,
as mentioned above we rely on refactorings identified by
RefFinder, hence the study excludes refactoring that such a
tool does not identify. For example, extract class refactoring
is not handled, but it is identified as multiple move method.

VI. RELATED WORK

In the refactoring field, most of the effort has been devoted
to the definition of automatic and semi-automatic approaches
supporting refactoring operations (see [17], [18] for a complete
survey on the more recent approaches). However, our paper
is mostly related to work (i) analyzing the relation between
refactorings and software defects and (ii) methods and tools
to detect refactoring operations occurring between subsequent
versions of a software system. In the following, we discuss
the related literature.

A. Refactoring and Software Defects

To the best of our knowledge, only two works have dealt
with analysis related to refactorings and software defects.
The first is the one by Weissgerber and Diehl [9] where the
authors analyze if refactoring operations are less error-prone
than other changes. They browsed the history of three open
source systems and, for each day, stored (i) the changes applied
in the repository, (ii) the number of refactorings applied, and
(iii) the number of bugs opened. Then, the authors analyzed
if days in the projects with a high number of refactorings
performed are followed by days with a high number of bugs
opened. Their results showed that in general there is no clear
correlation between the number of refactoring operations and
the number of bugs opened in the following days. However,
there are phases where there was a strong increase of the
number of bugs opened in consequence of a high refactoring
activity on the system.

Our work has several differences with the work by Weiss-
gerber and Diehl [9]. First of all, Weissgerber and Diehl [9]
automatically identify only 8 kinds of refactoring operations
in the releases of the analyzed software projects. In addition,
the identified refactorings are not manually validated. In this
paper, we automatically identify (using Ref-Finder) 52 dif-
ferent kinds of refactoring operations and manually validate
each of them. Another important difference is related to the
granularity level of the performed analysis. In particular, while
Weissgerber and Diehl [9] perform a coarse-grained analysis
by relating the number of refactoring operations performed
with the number of bugs opened in the following days, we
analyzed to what extent each of the 52 kinds of detected
refactoring operations induces a fault-fixing in the system
using the SZZ algorithm.

A second study related to refactorings and software defects
is the one presented by Ratzinger et al. [8]. The authors of this
paper analyze if (i) refactoring history information is useful to
support defect prediction and (ii) refactoring activities reduce
the probability of software defects. They show that refactorings
and defects have an inverse correlation: the number of software
defects decreases, if the number of refactorings increased
in the preceding time period. Differently from our work,
Ratzinger et al. do not distinguish among different kinds of
refactoring operations. Moreover, their detection process is not
performed by source code analysis of subsequent system’s
version, but through the analysis of the text contained in
change logs.

B. Detecting Refactoring Operations

Different approaches have been defined to detect refactoring
operations between different versions of a software system. In
this section we only discuss some of them while a complete
discussion has been presented by Prete et al. [11].

Demeyer et al. [19] present an approach based on changes
in size metrics (e.g., lines of code, number of methods) to
identify performed refactoring operations (e.g., the reduction
of the number of methods in a class might be a consequence
of a move method refactoring). Only 7 types of refactoring



operations are detected in this work. Godfrey and Zou [20]
present an approach to detect merge, split, and rename refac-
torings, while Van Rysselberghe and Demeyer [21] use clone
detection to identify move method refactoring operations.

Dig et al. [22] present RefactoringCrawler, an Eclipse plug-
in using a two-step process to detect refactoring operations. In
the first step, a fast syntactic analysis is applied to detect refac-
toring candidates, while a more expensive semantic analysis is
applied to refine the results. RefactoringCrawler supports the
detection of 16 different refactoring operations.

Weissgerber and Diehl [23] show a technique to detect ten
different kinds of refactorings, while Xing and Stroulia [24]
present an approach to identify up to 32 different kinds of
refactorings. Untill now, no one has provided a broader support
to the detection of refactoring operation than that offered by
Ref-Finder [11]. Such a tool is able to detect 63 kinds of
refactorings. This is the reason why we decided to use Ref-
Finder to automatically detect refactorings in our study.

VII. CONCLUSION AND WORK-IN-PROGRESS

In this paper we reported an empirical analysis aimed
at at investigating the extent to which refactoring activities
induce bug fixes in software systems. Indeed, while refactoring
activities would potentially produce benefits, as well as any
other change occurring in a software system they might also
be harmful and introduce bugs.

We used Ref-Finder to automatically detect 15,008 refac-
toring operations (of 52 different types) on 63 releases of
three Java software systems. Then, we manually validated
all the identified refactoring operations in order to eliminate
false positives. Among the operations identified by Ref-Finder,
12,922 were actual refactoring operations. Then, we used the
SZZ algorithm [12], [13] to determine whether refactorings
induced bug fixes.

The achieved results showed that the percentage of faults
likely induced by refactorings is relatively low (i.e., 15%).
However, there are some specific kinds of refactorings that are
very likely to induce bug fixes, such as Pull Up Method and
Extract Subclass, where the percentage of fixes likely induced
by such refactorings is around 40%. Such a result suggests
more accurate code inspection or testing activities when such
specific refactorings are performed.

Future work will be devoted to replicate the study with other
software systems. As it always happens with empirical studies,
this is the only way to corroborate our findings.

REFERENCES

[1] M. M. Lehman and L. A. Belady, Software Evolution - Processes of
Software Change. Academic Press, London, 1985.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley Publishing
Company, 1999.

[3] D. L. Parnas, “Software aging,” in Proceedings of the International
Conference on Software Engineering. Sorrento, Italy, IEEE CS Press,
1994, pp. 279–287.

[4] W. Harrison, “An entropy-based measure of software complexity,” IEEE
Transactions on Software Engineering, vol. 18, no. 11, pp. 1025–1029,
1992.

[5] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering. Vancouver, Canada, ACM Press, 2009, pp. 78–88.

[6] M. Fowler, “Refactoring catalog.” [Online]. Available:
http://refactoring.com

[7] G. Canfora, L. Cerulo, M. Di Penta, and F. Pacilio, “An exploratory
study of factors influencing change entropy,” in Proceedings of the 18th
International Conference on Program Comprehension. Braga, Portugal,
IEEE Computer Society, 2010, pp. 134–143.

[8] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of refactorings
and software defect prediction,” in Proceedings of the 2008 International
Working Conference on Mining Software Repositories. Leipzig, Ger-
many, ACM Press, 2008, pp. 35–38.

[9] P. Weissgerber and S. Diehl, “Are refactorings less error-prone than
other changes?” in Proceedings of the 2006 International Workshop on
Mining Software Repositories. Shanghai, China, ACM Press, 2006, pp.
112–118.

[10] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
Dubrovnik, Croatia, ACM Press, 2007, pp. 185–194.

[11] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in Proceedings of the 26th
IEEE International Conference on Software Maintenance. Timisoara,
Romania, IEEE CS Press, 2010, pp. 1–10.

[12] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2005 International Workshop on Mining
Software Repositories. Saint Louis, Missouri, USA, ACM Press, 2005.

[13] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
no. 2, pp. 181–196, 2008.

[14] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[15] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. T. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
Proceedings of the 7th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Amsterdam, The Netherlands,
ACM Press, 2009, pp. 121–130.

[16] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is
it a bug or an enhancement?: a text-based approach to classify change
requests,” in Proceedings of the 2008 Conference of the Centre for
Advanced Studies on Collaborative Research. Richmond Hill, Ontario,
Canada, IBM Press, 2008, p. 23.

[17] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, 2004.

[18] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract class refac-
toring opportunities using structural and semantic cohesion measures,”
Journal of Systems and Software, vol. 84, pp. 397–414, March 2011.

[19] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via
change metrics,” SIGPLAN Notes, vol. 35, no. 10, pp. 166–177, Oct.
2000.

[20] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp. 166–181, Feb. 2005.

[21] F. Van Rysselberghe and S. Demeyer, “Reconstruction of successful soft-
ware evolution using clone detection,” Proceedings of the International
Workshop on Principles of Software Evolution. Helsinki, Finland, IEEE
Press, pp. 126–130, 2003.

[22] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated
detection of refactorings in evolving components,” in Proceedings of the
20th European Conference on Object-Oriented Programming Nantes,
France, Springer-Verlag, 2006, pp. 404–428.

[23] P. Weissgerber and S. Diehl, “Identifying refactorings from source-
code changes,” in Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering. Tokyo, Japan, IEEE
Computer Society, 2006, pp. 231–240.

[24] Z. Xing and E. Stroulia, “Refactoring detection based on umldiff change-
facts queries,” in Proceedings of the 13th Working Conference on
Reverse Engineering. Benevento, Italy, IEEE CS Press, 2006, pp. 263–
274.


