
Do they Really Smell Bad? A Study on Developers’
Perception of Code Bad Smells

Fabio Palomba1, Gabriele Bavota2, Massimiliano Di Penta2, Rocco Oliveto3, Andrea De Lucia1
1University of Salerno, Italy 2University of Sannio, Italy 3University of Molise, Italy

Abstract—In the last decade several catalogues have been
defined to characterize code bad smells, i.e., symptoms of poor
design and implementation choices. On top of such catalogues,
researchers have defined methods and tools to automatically
detect and/or remove bad smells. Nevertheless, there is an ongoing
debate regarding the extent to which developers perceive bad
smells as serious design problems. Indeed, there seems to be a
gap between theory and practice, i.e., what is believed to be a
problem (theory) and what is actually a problem (practice).

This paper presents a study aimed at providing empirical
evidence on how developers perceive bad smells. In this study, we
showed to developers code entities—belonging to three systems—
affected and not by bad smells, and we asked them to indicate
whether the code contains a potential design problem, and if
any, the nature and severity of the problem. The study involved
both original developers from the three projects and outsiders,
namely industrial developers and Master students. The results
provide insights on characteristics of bad smells not yet explored
sufficiently. Also, our findings could guide future research on
approaches for the detection and removal of bad smells.

I. INTRODUCTION

Code bad smells represent symptoms of poor design and
implementation choices [1]. Bad smells are usually introduced
in software systems because developers poorly conceived the
design of the code component or because they did not care
about properly designing the solution due to strict deadlines.
Complex Class, i.e., a class that contain complex methods and
it is very large in terms of LOC; or God Class, i.e., a class
that does too much/knows too much about other classes, are
only some examples of a paramount of bad smells identified
and characterized in well-known catalogues [2], [1].

Recent empirical studies showed that code smells hinder
comprehensibility [3], and possibly increase change- and fault-
proneness [4]. Also, the interaction between different, co-
existing code smells can negatively affect maintainability [5].
Hence, there is empirical evidence that code smells have a
negative effect on software evolution, and therefore should be
carefully monitored and possibly removed through refactoring
operations. Thus, a lot of effort has been devoted for the
definition of approaches aiming at detecting and removing
code bad smells [6], [7], [8], [9].

Despite the existing evidence about the negative effects of
code smells [3], [4], [5] and the effort devoted to the definition
of approaches for detecting and removing them, it is still
unclear whether developers would actually consider all bad
smells as actual symptoms of wrong design/implementation
choices, or whether some of them are simply a manifestation
of the intrinsic complexity of the designed solution. In other
words, there seem to be a gap between the theory and the

practice. For example, a recent study found that some source
code files of the Linux Kernel intrinsically have high cyclo-
matic complexity. However, this is not considered a design or
implementation problem by developers [10]. Also, empirical
studies indicated that (i) God Classes sporadically changing
are not felt as a problem by developers [11]; and (ii) some
developers, in particular junior programmers, work better on
a version of a system having some classes that centralized the
control, i.e., God classes [12]. These results suggest that the
presence of bad smells in source code is sometimes tolerable,
and part of developers’ design choices.

Recently, Yamashita and Moonen [13] performed an ex-
ploratory survey aimed at investigating developers knowledge
about code smells, by asking questions like “How familiar
are you with code bad smells?”. Results showed that a large
proportion of respondents did not know about code bad
smells. While the study of Yamashita and Moonen aimed
at investigating to what extent developers had a theoretical
knowledge of code smells (i.e., knowing them from their name
and definition), no study so far investigated whether, given a
problem instance—that can be brought back to the presence
of a bad smell in the code—developers actually perceive the
problem as such and whether they associate the problem to
the same symptoms explained in the smell definition.

To bridge this gap, we conducted a study aimed at in-
vestigating the developers’ perception of code smells. First,
we identified and manually validated instances of 12 different
bad smells in three open source projects. Then, we provided
a questionnaire to the participants where we showed code
snippets affected and not affected by bad smells, and asked
whether, in the respondents’ opinion, the code component has
any problem. In case of a positive answer, we asked them
to explain what kind of problem they perceived and how
severe they judged it. We asked different categories of subjects
to participate in the study, namely (i) Master’s students,
representing a population of subjects pretty knowledgeable
about the theoretical concepts of code smells, (ii) industrial
developers, i.e., people with experience on real development
projects, but not knowing the code being shown; and (iii)
developers from the open-source projects in which the bad
smells have been collected. In total, we received responses
from 34 subjects, and specifically 15 Master’s students, 9
industrial developers, and 10 original developers of the studied
projects. The data used in our study are publicly available as
replication package1.

1http://tinyurl.com/o6lk584

TABLE I
BAD SMELLS ANALYZED IN OUR STUDY [2] [1].

Name Description
Class Data Should Be Private (CDSBP) A class exposing its attributes
Complex Class (CC) Classes having high complexity
Feature Envy (FE) A method making too many calls to methods of another class to obtain data and/or functionality
God Class (GC) A class having huge dimension and implementing different responsibilities
Inappropriate Intimacy (II) Two classes exhibiting high coupling between them
Lazy Class (LC) A very small class that does not do too much in the system
Long Method (LM) A method having huge size
Long Parameter List (LPL) A method having a long list of parameters
Middle Man (MM) A class delegating all its work to other classes
Refused Bequest (RB) A class inheriting functionalities that it never uses
Spaghetti Code (SC) A class without structure that declare long methods without parameters
Speculative Generality (SG) An abstract class that is not actually needed, as it is not specialized by any other class

TABLE II
CHARACTERISTICS OF THE OBJECT SYSTEMS.

Project KLOC #Classes #Methods
ArgoUML 0.34 280 1,889 10,450
Eclipse 3.6.1 440 2,181 18,234
jEdit 4.5.1 165 520 5411

II. DESIGN OF THE EMPIRICAL STUDY

The goal of the study is to investigate to what extent bad
smells reflect developers’ perception of poor design and im-
plementation choices and, in this case, what is their perceived
severity of the problem. The quality focus is source code
comprehensibility and maintainability that can be hindered by
the presence of bad smells. The context of the study consists
of: (i) objects, i.e., bad smells identified in three software
projects; and (ii) subjects (hereby referred to as “participants”),
i.e., Master’s students and professional developers providing
their opinions about bad smells.

A. Research Questions

Our study aims at addressing the following two research
questions:

• RQ1: To what extent do bad smells reflect developers’
perception of design problems?

• RQ2: What are the bad smells that developers feel as the
most harmful?

In the context of our study, we considered the twelve code
smells briefly described in Table I. Our choice of these smells
is not random, but guided by the will of considering a mix
of bad smells related to complex/large code components (e.g.,
Complex Class, God Class) as well as smells related to the
non-adoption of good Object-Oriented coding practices (e.g.,
Inappropriate Intimacy, Refused Bequest). However, we did
not consider smells such as Divergent Change or Parallel
Inheritance, because their full understanding would require
a deep knowledge and/or exploration of the system history.

B. Context Selection

The objects considered in the study are bad smells identified
in three open-source projects, namely ArgoUML, Eclipse, and
JEdit. ArgoUMLis an open-source UML modeling tool while
Eclipseis a popular Integrated Development Environment sup-
porting different programming languages. Finally, JEditis a
text editor for programmers.Table II reports the characteristics
of the analyzed projects, namely the size in terms of KLOC,
number (#) of classes and number of methods.

TABLE IV
STUDY PARTICIPANTS: INVITED AND ACTUAL RESPONDENTS.

Category Invited Answered Return rate (%)
Original Developers 45 10 22%
Industrial Developers 28 9 32%
Master’s students 15 15 100%
OVERALL 88 34 39%

To answer our research questions we needed to identify
instances of the twelve considered bad smells in the object
systems. Unfortunately, since there are no annotated sets of
such smells available in literature, we had to manually identify
them. A Master’s student from the University of Salerno
manually identified instances of the considered bad smells in
each of the object systems by relying on the definition of
the smells reported in the literature. In such a process, the
student also relied on metric extractors and on metric-based
definitions of code smells, such as the one of DECOR [7].
For example, God Classes were identified as large classes
implementing several responsibilities and controlling many
other objects in the system, while Long Methods were simply
identified by analyzing the lines of code composing them. The
resulting set of smells has been then validated by a second
Master’s student to verify that all affected code components
identified by the first student were correct. Finally, two of
the authors reviewed the identified instances to double check
the results of the students’ analysis. Note that, while this
does not ensure completeness in the identification of smells,
having multiple manual evaluations ensure enough confidence
about the absence of false positives, that could instead occur
if relying on automatic detection tools. Also, such a multiple
evaluation limited the bias in our dataset. For the aim of our
study this was exactly what we needed: a set of reliable code
bad smells on the object systems. Note that, we did not find
instances of all considered smells in each object system. Table
III reports, for each code smell, the number of its instances
identified in the object systems.

As summarized in Table IV, participants involved in the
study belong to the following three categories:

1) Developers working on the three open-source systems. We
sent invitations to active developers of the three object
systems, identified by analyzing the systems’ commit
history2. In total, we invited 19 developers from Ar-

2We considered developers that performed at least one commit in the last
two years.

2

TABLE III
BAD SMELLS INSTANCES IDENTIFIED IN EACH SYSTEM.

Project CDSBP CC FE GC II LC LM LPL MM RB SC SG
ArgoUML 5 4 1 3 4 0 28 0 2 4 15 28
Eclipse 32 35 6 15 7 15 180 0 2 31 24 12
jEdit 7 21 0 6 4 0 33 9 0 3 18 14

goUML, 11 from Eclipse, and 15 from jEdit. We received
responses from 4, 3, and 3 developers, respectively. In the
following, we will refer to them as original developers.
Note that each of the original developers was asked to
work on tasks related to the code belonging to the system
she had worked on only.

2) Industrial developers. We invited 28 industrial developers
to take part in our study. We obtained an answer from 9
of them; each one performed tasks related to all three
systems.

3) Master’s students. We recruited 15 Master’s students
attending the Advanced Software Engineering course at
the University of Salerno (Italy). Students had good
knowledge of Object Oriented programming and they
attended a seminar of three hours about code bad smells
and design problems. All students performed tasks related
to all three systems.

The reason for having these different categories of partici-
pants is to get the opinion of developers who know the code
very well, as well as of outsiders (industrial developers and
Master’s students) that, while being less knowledgeable about
the code, might provide a less biased indication.

C. Study Procedure

The experimental tasks consisted of questionnaires that
participants had to answer through a Web application tool
named eSurveyPro. In these questionnaires we showed to the
participants source code snippets (that may or may not contain
code smells) and asked questions about whether the code
contained possible design/implementation problems, as well
as the perceived severity of the problem, if any.

Specifically, given the object system Si, the following
process was performed:

1) For each code smell cj having at least one instance in
Si, we randomly selected one instance or took the only
one available. Note that with “instance” we refer to the
code component(s) affected by the smell. For example, it
could be a single method affected by the Long Parameter
List smell as well as a pair of classes affected by the
Inappropriate Intimacy smell. Note that we did not select
code components affected by more than one bad smell,
since we want to isolate each smell involved in our study.

2) For each selected smell instance, we created a task
composed of the following questions:
• In your opinion, does this code component3 exhibit any

design and/or implementation problem?
• If YES, please explain what are, in your opinion, the

problems affecting the code component.

3Depending on the code smell object of the question, a code component
could be a method, a class, or a pair of classes.

• If YES, please rate the severity of the design and/or
implementation problem by assigning a score on the
following five-points Likert scale: 1 (very low), 2 (low),
3 (medium), 4 (high), 5 (very high).

3) For each task related to a code component affected by
a bad smell, we also instantiated a task—requiring to
participants the same answers seen above—concerning
randomly selected code components not affected by any
of the code smells considered in our study. This was done
to limit the bias in the study, i.e., avoid that participants
always indicated that the code contained a problem and
the problem was a serious one.

The final questionnaires included 20 tasks for ArgoUML
(of which 10 related to components affected by bad smells),
22 for Eclipse (11 affected by bad smells), and 18 for JEdit (9
affected by bad smells). As explained before, the difference in
the number of tasks for the three systems is because as shown
in Table III, we identified instances of 10 kinds of smells in
ArgoUML , 11 in Eclipse and 9 in JEdit.

All participants invited in our study received an email with
instructions on how to answer the survey and a link to the
website where each participant could log in to visualize and
answer the questions. Participants had up to four weeks to
complete this survey.

D. Data Analysis

To answer RQ1 we compute, for each type of code smell:
1) The percentage of cases the bad smell has been perceived

by the participants. With perceived, we mean cases where
participants answered yes to the question: “In your opin-
ion, does this code component exhibit any design and/or
implementation problem?”

2) The percentage of times the bad smell has been identi-
fied by the participants. With identified, we mean cases
where besides perceiving the smell, participants were also
able to identify the exact smell affecting the analyzed
code components, by describing it when answering to
the question “If yes, please explain what are, in your
opinion, the problems affecting the code component”.
Note that we consider a bad smell as identified only if the
design problems described by the participant are clearly
traceable onto the definition of the bad smell affecting
the code component. For example, given the following
bad smell description for the Feature Envy bad smell:
“a method making too many calls to methods of another
class to obtain data and/or functionality”, examples of
“correct” descriptions of the problem are “the method is
too coupled with the Ci class”, or “the method invokes
too many methods of the Ci class” where, Ci is the class
envied by the method. On the other side, an answer like

3

“the method performs too many calls” is not considered
enough to mark the bad smell as identified.

Performing this analysis for each code bad smell and for
each category of participants in our study we should be able
to verify (i) what are the most perceived and identified code
smells, and (ii) if the participants’ experience and system
knowledge play a role in the ability of perceiving and identi-
fying code smells.

As for RQ2, we exploited the answers to the question
“please rate the severity of the coding problem” provided
by participants. Answers have been mainly analyzed through
descriptive statistics.

III. ANALYSIS OF THE RESULTS

Before answering the two research questions formulated in
Section II-A, we analyze to what extent participants perceived
a design problem in classes not containing any of the bad
smells considered in our study. As previously explained, this
is a sanity check aimed at verifying whether respondents
were negatively biased. In total, we showed to participants 30
code components containing no smell (i.e., 10 on ArgoUML,
11 on Eclipse, and 9 on JEdit). Master’s students, industrial
developers, and original developers marked as affected by
design problems 10%, 5%, and 1%, respectively, of these code
components. The low percentage indicates the absence of a
negative bias in the respondents, and that this is particularly
true for those with more experience (industrial developers)
and with a better knowledge of the code (original developers).
Moreover, when manually analyzing these cases of false
positives, we found that most of the design problems observed
by participants in classes not affected by any smell were
related to problems in comments (e.g., comments are missing)
or method/class naming (e.g., class name does not reflect the
class purpose). In other words, in some sense the respondents
correctly identified some kinds of problems, although these are
not really structural code smells, but more similar to lexical
smells [14], out of scope for this study.

Turning to the core of our study, Figures 1(a) (ArgoUML),
1(b) (Eclipse), and 1(c) (JEdit), report report the percentage
of participants (of the different categories) that (i) perceived a
problem in the analyzed code, and (ii) correctly identified the
bad smell present in the code component. Note that a code
component that is correctly identified is also perceived (the
opposite is not true). Columns labeled with “M”, “I”, and
“O” report results for Master’s students, industrial developers,
and original developers, respectively. Also, Table V reports
the median severity assigned by developers to the identified
design/implementation problems4.

A. Smells Generally not Perceived as Design or Implementa-
tion Problems

When looking at Figures 1(a), 1(b), and 1(c), one can
immediately realize that some smells are, generally, not per-
ceived as actual problems. This is particularly true for Class

4Complete data about the answers provided by participants are available in
our replication package

Data Should Be Private, Middle Man, Long Parameter List,
Lazy Class, and Inappropriate Intimacy. In the following, we
provide a qualitative analysis for them, based on the collected
feedbacks and on the analysis of the code itself.
Class Data Should Be Private (CDSBP). This smell arises
when a class exposes its attributes. Respondents did not
perceive this as an issue for the analyzed code components.
Only a small percentage of Master’s students perceived a
problem in such components; however, they were never able
to associate the problem to the characteristics of the CDSBP
smell, mainly claiming issues related to poor commenting
and methods complexity. Few (18% on average on the three
systems) industrial developers recognized CDSBP as an issue,
while one original developer for each system recognized the
problem in the code. However, by looking at the severity
values (Table V), it emerges that respondents did not feel
CDSBP as a real problem in the code. For instance, the severity
assigned by original developers is very low (1) on ArgoUML,
medium (3) on Eclipse, and low (2) on JEdit. It is interesting to
report an observation made by the ArgoUML developer who
recognized the CDSBP instance, while assigning it a very low
severity: “this class exposes all its fields, and this could look
like bad coding. However, at the end of the day this is an
utility class with public static fields5 that can be used from
everywhere in the system”.
Middle Man (MM). Middle Man instances arise when a class
is delegating all its work to other classes. Classes affected by
this smell were perceived by developers as classes without
any design problem. The only exceptions are 13% and 6%
of Master’s students perceiving (but not identifying) a design
problem on ArgoUML and Eclipse, respectively (note that
this bad smell is not present in JEdit). Thus, high levels of
delegation between classes do not seem to bother developers.
In our understanding, developers could better perceive such
a smell when doing performance analysis—e.g., because the
Middle Man could introduce overhead.
Long Parameter List (LPL). We found this smell in JEdit
only (see Figure 1(c)). The method affected by this smell
was adjustDockingAreasToFit, taking 11 parameters
as input. While 53% of Master’s students perceived a problem
in the method, just 20% of them indicated the number of
parameters as the issue. In most of the other cases, the problem
felt by Master’s students was the method complexity, the same
perceived by the only original developer reporting a problem
in the method. Finally, among the industrial developers, only
one of them (11%) identified the problem in the method,
however assigning it a severity of 3 (medium). The explanation
provided justifies the low severity score: “the method has
several parameters; however, the feature implemented in it
requires all of them”. For this bad smell, the differences
observed between the perception of students and professional
developers can be explained as follows. Students are not used
to large and complex projects. Consequently, they are more
concerned by a method with several parameters as compared

5Note that the fields were not final.

4

0

25

50

75

100
100 100 100

Perceived Identified

7
11

25

66

100 100 100 100 100

88

33

75

8

33 33

44

25

53

40

66

13

6

11

53

66 67

60

33

44

CDSBP! ! CC ! FE ! ! GC ! II ! LM ! MM ! RB ! SC SG

M I O M I O M I O M I O M I O M I O M I O M I O M I O M I O

(a) ArgoUML

0

25

50

75

100
100100100 100 100

28

22

11

33

60

40

88 87

27

66 66

80

66

26
22 20

6

93

73

88

6

80

40

66 66

53

88

66

53

44

Perceived Identified

CDSBP! CC ! FE ! ! GC ! II ! LC LM ! MM ! RB ! SC SG

M I O M I O M I O M I O M I O M I O M I O M I O M I O M I O M I O

60

44

(b) Eclipse

0

25

50

75

100

73

80

20

33 33

66

88

100 100 100

47

11

53 53

 33

20
 22

40

22

73

 55

66

47

22

33

 100 100

11

M I O M I O M I O M I O M I O M I O M I O M I O M I O

CDSBP! ! CC ! ! GC !! ! II ! ! ! LM ! LPL ! RB ! ! SC ! ! SG

Perceived Identified

13

(c) JEdit

Fig. 1. Percentage of (M)aster’s students, (I)ndustrial developers, and (O)riginal developers that perceived and identified the bad smell examples.

5

TABLE V
MEDIAN OF THE SEVERITY ASSIGNED BY PARTICIPANTS TO THE IDENTIFIED DESIGN PROBLEMS.

System Participants CDSBP CC FE GC II LC LM LPL MM RB SC SG
Master’s students - 4 - 3 2 - 3 - - - 2 3

ArgoUML Industrial 2 5 4 5 3 - 4 - - - 5 3
Original 1 5 4 5 3 - 4 - - - 3 -
Master’s students - 4 4 5 4 1 4 - - 4 3 3

Eclipse Industrial 3 4 5 5 4 - 5 - - - 5 3
Original 3 5 5 5 - - 5 - - 4 5 -
Master’s students - 4 - 3 - - 3 3 - 4 3 3

JEdit Industrial 2 5 4 5 3 - 4 3 - - 5 3
Original 2 5 - 5 - - 5 - - - 4 -

to more experienced developers. Also, original developers are
aware of the reasons why such methods have a high number
of parameters and are therefore not particularly concerned.

Lazy Class (LC). This smell represents a very small class
that does little in the system. It is considered a bad smell since
“each class costs money to maintain and understand” [1]. This
smell affects only one of the investigated projects (Eclipse)
and it has been identified by only one Master’s student (6%),
that however ranked the problem as a very low severity one.
In summary, respondents were not concerned about the class
SelectionOnNameOfMemberValuePair of Eclipse that
just contains two methods, one of which is a simple print
method. On the one hand, it is not surprising to see a lower
severity perception here. On the other hand, in order to
recognize a Lazy Class as possible problem, one should have
clearly in mind whether having such an additional class could,
in perspective, have benefits (e.g., because the class itself is
likely to evolve or to be extended by others), or negative
effects (because it means scattering maintenance activities).
Unfortunately, in this case we did not get opinions from
original developers, the only ones that could have expressed
an informed opinion.

Inappropriate Intimacy (II). This smell describes high levels
of coupling between two classes. Our results show that respon-
dents did not consider high coupling as a problem. Master’s
students perceived a problem in the relationship between the
two highly coupled classes in 48% of the cases, although they
only identified the problem in 11% of the cases. Industrial
developers were able to identify the problem in 18% of the
cases while, among the original developers, only one of them
recognized the existence of a coupling issue in ArgoUML, by
assigning it a medium (3) severity. The two involved classes
(i.e., ShortcutMgr and ActionWrapper) have 27 depen-
dencies among them. Despite that, the ArgoUML developer
explained why this is not a big issue: “ActionWrapper
represents an action in the system that can be associated to a
specific keyboard shortcut, while ShortcutMgr is in charge
of managing all ArgoUML’s shortcuts. Thus high coupling
between these two classes is justified from my point of view”.

Summarizing, the bad smells described above are not per-
ceived as problems by respondents that, consequently, are not
able to identify them in source code. This is true for all the
three categories of developers involved in our study, highlight-
ing how developer’s experience and system’s knowledge do
not play any important role in these cases. Also, it is interesting
to observe that all these five smells (i.e., CDSBP, MM, LPL,

LC, and II) are related to the lack of applying good Object-
Oriented (OO) design practices, rather than to something one
can easily perceive by looking at the code, (e.g., as it would be
for God Class). Indeed, by carefully looking at the definition
of such smells, we notice that: CDSBP violates the information
hiding principle; MM is a symptom of something wrong in the
distribution of responsibilities between classes; LPL should be
avoided in OO programming, since a method can ask other
objects for the information it needs without the necessity of
receiving all of them through parameters; LC often represents
a class without a precise responsibility; and II identifies high-
levels of coupling between classes.

B. Smells Generally Perceived and Identified by Respondents

There are some categories of smells that: (i) are highly per-
ceived and identified by developers, (ii) create more concerns
for developers having more experience and system knowledge,
and (iii) are rated with high severity values. These smells are
Complex Class, God Class, Long Method, and Spaghetti Code.
As one can immediately notice, differently from the previous
group, such smells are the ones for which the problem can be
immediately perceived by looking at the code (which may be
long and/or complex). In the following, we provide a detailed
discussion for each of them.
Complex Class (CC). Original developers always identify this
bad smell in the affected code components, assigning to it the
maximum severity (i.e., 5, very high). The provided explana-
tions highlight the problems derived by classes having a high
code complexity: “the class is too complex, intricate, and very
difficult to comprehend”, “several methods in this class are
very complex, negatively affecting its maintainability”. Also,
industrial developers generally identify the problem (92% of
cases, on average) while the less experienced participants
(i.e., Master’s students) were able to describe the problem
in 57% of case, on average. Thus, higher experience seem
to alert developers about problems caused by working on
complex code. Note that the median of severity assigned by
all participants to CC is high or very high (see Table V).
God Class (GC). GC is the smell for which the respondents
assigned the highest severity. Specifically, industrial and orig-
inal developers always identified the problem in the analyzed
code components, explaining how classes affected by GC are
“too large”, “a mixture of different responsibilities”, resulting
in “difficulties in creating a mental model of how the class
works”. Industrial and original developers ranked GC with a
median severity of 5 (very high). An example of GC instance
evaluated in this study is the GeneratorJava class of

6

ArgoUML composed by 66 methods and explicitly defined
by one of the original developers as a “big class in need
of refactoring”. Master’s students were able to identify the
design problem in 84% of cases, on average, by however
assigning lower severity values than industrial and original
developers (see Table V). Thus, also on this bad smell higher
developers experience seems to increase the threats perceived
by GC instances.
Long Method (LM). Also this smell has been always identi-
fied by the original developers. The assigned median severity
was 5 (very high) on Eclipse and JEdit, and 4 high on
ArgoUML. An interesting comment made by one of the
ArgoUML developers was “this method is way too long, it
could be split into three different methods”. This comment
confirms the LM bad smells as indicator of Extract Method
refactoring [1] opportunities. Industrial developers identified
the LM instances in 85% of cases, on average, assigning them
a median severity of 4 (high) on ArgoUML and JEdit, and of
5 (very high) on Eclipse. On average, Master’s students per-
ceived the problem in 67% of the cases, correctly identifying
it in 55% of the cases. Also in this case, the proportion of
respondents with more experience that identified the problem
is greater than the proportion of students.
Spaghetti Code (SC). On average, original developers identi-
fied SC instances in 77% of cases, followed by industrial de-
velopers (70%), and Master’s students (61%). It is interesting
to report the comment left by an ArgoUML developer: “this
class looks like procedural programming”. This is exactly
what the SC smell is: the abuse of procedural programming
in OO code. The severity assigned by original and industrial
developers is generally high or very high, compared to that
perceived by students bounded between low and medium.

C. Smells whose Perception may Vary

Finally, there is a group of smells for which the perception
varies case by case. Such smells are Feature Envy, Refused
Bequest, and Speculative Generality.
Feature Envy (FE). This smell arises when a method is more
interested in a class other than the one it is implemented in
[1]. We found instances of FE in ArgoUML and Eclipse.
Master’s students almost always perceived some problems in
methods affected by FE (100% in ArgoUML and 87% in
Eclipse), however they always failed in correctly identifying
the FE symptom in ArgoUML, and they only identify it in
27% of the cases in Eclipse. Instead, industrial developers
were able to identify the FE instances in 50% of the cases,
while for original developers this percentage goes up to
70%. One of the industrial developers explained that “method
parseMessage is placed in the wrong class. It should be
moved to MyTokenizer since it is likely to change with that
class”. When identifying the FE smell, developers assigned to
it high levels of severity, ranging from a median value of 4
(high) assigned by Master’s students and industrial developers,
to a median value of 5 (very high) assigned by original
developers. As for other smells, it can be noticed that highly
experienced developers are the ones that perceive this bad

smell the most. We conjecture that FE smells are perceived
mainly by original developers, because the “interest” of the FE
method to other classes often grows over time and/or can be
identified by the need for co-changing such a method together
with other classes. Indeed, FE can be effectively identified by
using historical data [8].
Refused Bequest (RB). This smell arises between two classes
when one inherits pieces of functionality from the other and
never uses them. This is the only smell for which we have
strong contradicting results across the three object systems.
In particular, on ArgoUML (see Figure 1(a)) and JEdit (see
Figure 1(c)) all respondents almost never perceived classes
affected by RB as problematic ones. The situation is quite
different on Eclipse, where 40% of Master’s students, 44% of
industrial developers, and 66% of original developers iden-
tified instances of RB in the analyzed pair of classes. We
analyzed the instances of RB evaluated by participants on the
three object systems. What we found was that:

• in ArgoUML, the RB arises due to classes
TabSpawnable and TablePanel. The latter
overrides four out of the five methods inherited by
TabSpawnable.

• in JEdit, the RB is between classes
CompletitionPopup and CompleteWord. The
latter overrides five out of the eight methods inherited
by CompletitionPopup.

• in Eclipse, the RB is quite more extreme. In particular,
class DefaultBindingResolver inherits 53 meth-
ods from class BindingResolver overriding 52 of
them.

Note that in none of the three above cases the overriding
methods invoke the super method of the superclass. The
RB instance present in Eclipse was quite more visible than
those present in ArgoUML and JEdit, concerning developers
about its presence. The median severity assigned to this issue
by original developers was high (4)–see Table V.
Speculative Generality (SG). This smell represents the only
one that was mainly perceived and identified by developers
with low experience than by experienced ones. Master’s stu-
dents identified this smell in 53% of cases, on average, fol-
lowed by industrial developers (33%), and original developers,
never perceiving any design problem in classes affected by
this smell. By looking back at the definition of SG, instances
of this smell arise when a class is declared abstract but
it is not specialized by any other class in the system. From
the perspective of a Master’s student, that mainly learned OO
in courses and textbooks, this looks like a wrong usage of
the OO paradigm. The median severity assigned by them is 3
(medium). The industrial developers identifying the problem
(33% on average) also provided a medium severity to the SG
instances, and one of them left a comment likely explaining
the reason why those classes do not represent a problem for
original developers: “this class is abstract but not inherited
by any class of the system. However, it could be that it is a
partial implementation of something that will be integrated in

7

the system in future system releases”. In other words, without
having a deep knowledge of the system, of the rationale behind
the implementation choices, and of the project schedule, it
could be difficult in some cases to assess design and/or
implementation problems. Results obtained for this smell also
warns against the abuse of too aggressive bad smell detectors
that, in cases like this one, would report potential problems
based on symptoms like the ones describing the SG. Only
by observing the class evolution—i.e., an abstract class
would never be inherited during a long period of observation—
one can say this is, indeed, a problem. Again, this reinforces
the conjecture that historical data are extremely useful when
identifying code bad smells [8].

IV. THREATS TO VALIDITY

Threats to construct validity are mainly related to how the
sample of smells used in the study was identified, and to
how we measured the developers’ perception of code smells.
Concerning the identification of the smell sample, a big threat
can be due to the fact that, despite the presence of multiple
evaluators minimized the possible effect of false positives, the
identified smell instances may depend on the perception of
students and authors who inspected the code to identify such
smells. Hence, it could be the case that participants evaluated
what the two students and ourselves perceived as smells.
However, the identification of smells was performed having
all the possible support available, including smell definitions
[1], [2], tools to compute metrics, and the source code change
history. Certainly, in any case we had to limit to one (randomly
selected) smell of each type per system, and this could have
excluded instances of smells where the “magnitude” of the
problem was more or less evident. However, such a kind of
study involving industrial and original developers had quite
strict constraints, i.e., we could not afford to involve them in
long inspection tasks on a huge number of smells.

Concerning the measure of perception (Section II), we asked
developers to tell us whether they perceived a problem in the
code shown to them. In addition, we asked them to explain
what kind of problem they perceived in order to understand
whether or not they were able to correctly identify the design
and/or implementation problem. Finally, for the severity we
use a Likert scale that allows to compare responses of multiple
respondents. We are aware that questionnaires could only
reflect a subjective perception of the problem, and might not
fully capture the extent to which the bad smell could affect
software development activities. To this aim, studies such as
the one done by Yamashita and Moonen [5] are more suited.

Threats to internal validity may be related to factors that
have influenced our results. One factor is the response rate:
while appearing not very high (39%), it is higher than what it is
normally expected in survey studies—i.e., below 20% [15]—
even for the part of study done with the original developers,
for which we obtained 22% return rate. Note also that we
ensured a participation of at least three original developers for
each system. We have limited a possible bias effect—i.e., the
fact that developers could have told us that they perceived the

presence of smells even in code not containing any smell—by
also showing source code elements without smells.

Threats to external validity concern the generalization of our
findings. Such threats can be related to (i) the set of chosen
objects, (ii) the kinds of smells investigated in the study, and
(iii) the pool of the participants of the study. Concerning
the chosen objects, we are aware that our study is based on
smells detected in three systems only, and that further studies
are needed to confirm our conjecture. In this study we had
to constrain our analysis to a limited set of smell instances,
because the task to be performed by each respondent had to
be reasonably small. In this study we covered a pretty large
variety of smells, i.e., the 12 described in Table I. However,
there are some smells we did not consider. Finally, for what
concerns the participants, they represent different categories
of developers, ranging from Master’s students, representative
of junior developers, to senior industrial programmers, and
original developers of the investigated systems, having a deep
knowledge of the code used in the study.

V. RELATED WORK

This section analyzes the literature related to (i) the identifi-
cation of code bad smells in source code; and (ii) the analysis
of the evolution of code smells in existing software systems.

A. Code Bad Smell Detection

In the last decade, several approaches have been proposed
for the automatic detection of code bad smells. All the
proposed approaches are based on top of catalogues and
heuristics to identify code design defects reported in well-
known books [16], [17], [1], [2]. Such approaches detect
smells in different ways. A common practice is the use of
constraints based on source code metric values. For example,
Lanza and Marinescu [18] describe how to exploit quality
metrics to identify “disharmony patterns” in code by defining
a set of thresholds based on the measurement of the exploited
metrics in real software systems. Marinescu [6] formulate
metric-based rules that capture deviations from good design
principles and heuristics. Munro [19] presents a metric-based
detection technique able to identify instances of two smells,
namely Lazy Class and Temporary Field, in source code. A set
of thresholds is applied to the measurement of some structural
metrics to identify those smells.

Khomh et al. [20] use quality metrics to train a Bayesian
belief networks aiming at detecting bad smells. The main
novelty of that approach is that it provides a likelihood
that a code component is affected by a smell, instead of
just providing a Boolean value like the previous techniques.
Our study highlights the importance of such feature, because
participants pointed out that only some smell instances—i.e.,
those where the symptoms are particularly evident—indeed
represent serious problems.

Moha et al. [7] introduce DECOR, a method for speci-
fying and detecting code and design smells. DECOR uses
a Domain-Specific Language (DSL) for specifying smells
using high-level abstractions. Four design smells are identified

8

by DECOR, namely Blob, Swiss Army Knife, Functional
Decomposition, and Spaghetti Code. Code bad smells have
also been identified by means of code structural analysis. For
instance, Tsantalis et al. [9] presents JDeodorant, a tool for
detecting Feature Envy smells with the aim of suggesting move
method refactoring opportunities.

Besides structural information, historical data can be ex-
ploited for the detection of bad smells. Ratiu et al. [11]
propose to use the historical information of the suspected
flawed structure to increase the accuracy of the automatic
problem detection. Palomba et al. [8] provide evidence that
historical data can be successfully exploited to identify not
only smells that are intrinsically characterized by their evolu-
tion across the program history—such as Divergent Change,
Parallel Inheritance, and Shotgun Surgery—but also smells
such as Blob and Feature Envy [8].

Finally, there are other approaches that use visualization
technique to help developers in the detection of bad smells
[21] [22] or design change propagation probability matrix to
detect, in particular, two bad smells, called Divergent Change
and Shotgun Surgery [23].

The study presented in our paper complements all these
approaches. Specifically, our study helps to identify smells
that are more relevant for developers, and hence to be rec-
ommended with higher priority. Also, our study permits the
identification of symptoms that are simply insufficient to char-
acterize problematic smells, as well as other symptoms that
are, instead, necessary to consider. For example, in the context
of our study we observed that in several cases symptoms
derived from the evolution history of the system could help to
properly identify a bad smell.

B. Empirical Studies on Code Bad Smells

Code bad smells have also been the object of empirical
studies aimed at investigating their evolution and their effect
on source code comprehension and maintenance.

Regarding the evolution of bad smells, Chatzigeorgiou and
Manakos [24] observe how the number of bad smells in
software systems increases over time and that the developers
almost never invest effort in removing them from the system.
Similar results are achieved in the study conducted by Peters
and Zaidman [25], who observe that even if often developers
are aware of code smells, they are not very interested in
activities aimed to remove them. This result is also confirmed
by Arcoverde et al. [26], that report the preliminary results of
a survey aimed at understanding the longevity of code smells
and the reasons why developers do not care of removing them
from the code; Arcoverde et al. show that often code smells
remain in source code for a long time and the main reason
to postpone their removal through refactoring activities is to
avoid API modifications [26].

Bad smells are also studied to investigate their impact on
maintenance properties, such us code comprehensibility and
defect-or change-proneness. Abbes et al. [3] investigate the
impact of two types bad smells—Blob and Spaghetti Code—
on program comprehension. The results show that the presence

of an antipattern in the source code does not decrease the
developers’ performance, while a combination of bad smells
makes developers to significantly decrease their performance.
The interaction between code smells has been extensively
studied by Yamashita and Moonen [5]. They show that the
maintenance problems are not deriving from the presence of
a single code smell in a class, but they are strongly related to
the co-occurrence of bad smells in the same file.

As for the defect- or change-proneness, Khomh et al.
[4] provide evidence that code containing code smells or
participating in antipatterns is significantly more change prone
than other code; they also found that code participating in
antipatterns has a higher fault-proneness than the rest of the
system code.

Li and Shatnawi [27] present an empirical study that inves-
tigate the correlation between the presence of bad smells and
class error probability. The study is conducted in the context
of the post-release system evolution process, and the results
show that there are bad smells positively associated with the
class error.

All these studies provide evidence that code bad smells have
negative effects on some maintenance properties. However, it
is still unclear the extent to which bad smells are actually
perceived as serious design problems by developers. Our paper
aims at bridging the gap between the theory and the practice,
providing empirical evidence on the extent to which bad smells
are perceived as actual design and implementation problems
by developers.

VI. CONCLUSION AND FUTURE WORK

In this paper we conducted an empirical study aimed at
analyzing to what extent code bad smells are perceived by
developers as actual design and/or implementation problems.
The study concerned examples of 12 kinds of smells detected
in three Java open source projects—ArgoUML, Eclipse, and
JEdit—and involved 10 original developers from the three
projects and 24 outsiders, of which 9 are industrial developers
and 15 are Master’s students. The study results allowed us to
distill the following lessons learned:
Lesson I. There are some smells that are generally not
perceived by developers as design problems. Those smells are
Class Data Should Be Private, Middle Man, Long Parameter
List, Lazy Class, and Inappropriate Intimacy. As explained,
these smells are all related to object-oriented (OO) good
programming practice more than to complex/long code. Some
of the explanations provided by developers highlighted as
apparent violations of OO design principles, such as high
levels of coupling or the absence of information hiding, do
not necessarily reflect problematic situations. Sometimes they
are simply the result of conscious choices made by devel-
opers. This underlines how approaches to (semi)automatically
improve source code quality (e.g., refactoring recommendation
systems) cannot simply be evaluated through quality metrics,
but should always be assessed with developers, in order to
verify if the refactoring recommendations really reflect design
problems from a developer’s point-of-view.

9

Lesson II. Instances of a bad smell may or may not represent
a problem based on the “intensity” of the problem. This,
for example, happens for Refused Bequest, for which only
the instance detected in Eclipse was recognized as a serious
problem. This is pretty much consistent with results of the
previous study made by Ratiu et al. for God classes [11]. This
result highlights the usefulness of smell detectors providing
a measure of severity for each identified smell, as in the
approach by Khomh et al. [20]. In this way, developers can
focus their attention on smells that are more likely to represent
a threat from their point of view.
Lesson III. Smells related to complex/long source code are
generally perceived as an important threat by developers.
This happens for Complex Class, God Class, Long Method,
and Spaghetti Code. Not only these smells were consistently
identified by a very high proportion of respondents, but also
they were rated with the highest level of severity. Intuitively,
it could simply be the case that such smells are the easiest to
be identified by developers, but it can also be that these are
the problems for which developers require the most effective
solutions, i.e., precise recommenders that identify the smells
and propose working solutions aimed at factoring them out.
Lesson IV. Developer’s experience and system’s knowledge
play an important role in the identification of some smells.
This is particularly true not only for the smells related to
complex/long code, but also for smells related to possible mis-
uses of OO principles, e.g., the Feature Envy. This confirms
that code quality assessment is a crucial task and team man-
agers should allocate senior developers on them rather than
junior programmers; despite a good academic background,
the latter might not be able to properly identify and judge
the problems in the code. In addition to that, as discussed
above, an appropriate judgement of the severity of smells often
require a good knowledge of the overall system design, of
the rationale of decisions taken in the past, and of possible
evolution trajectories the system would have in the future.
Only experienced developers would know all these details.

As always happens with empirical studies, extending the
study using a larger set of smells, other software, and different
participants is the only way to corroborate our findings. Such
replications are part of the agenda of our future work.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. John Wiley and Sons, March 1998.

[3] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in 15th European Conference on Software
Maintenance and Reengineering, CSMR 2011. IEEE Computer Society,
2011, pp. 181–190.

[4] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[5] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell rela-
tions on software maintainability: An empirical study,” in International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 682–691.

[6] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th International Conference on Software Mainte-
nance (ICSM 2004), 11-17 September 2004, Chicago, IL, USA. IEEE
Computer Society, 2004, pp. 350–359.

[7] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, pp. 20–36, 2010.

[8] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in 11th ACM/IEEE International Conference on
Automated Software Engineering (ASE 2013). ACM, pp. 268–278.

[9] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[10] A. Jbara, A. Matan, and D. G. Feitelson, “High-MCC functions in
the linux kernel,” in IEEE 20th International Conference on Program
Comprehension, ICPC 2012, Passau, Germany, June 11-13, 2012, 2012,
pp. 83–92.

[11] D. Ratiu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history
information to improve design flaws detection,” in 8th European Confer-
ence on Software Maintenance and Reengineering (CSMR 2004), 24-26
March 2004, Tampere, Finland, Proceeding. IEEE Computer Society,
2004, pp. 223–232.

[12] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg, “Are all code smells
harmful? a study of God Classes and Brain Classes in the evolution
of three open source systems,” in Proceedings of the International
Conference on Software Maintenance (ICSM). IEEE, 2010, pp. 1–10.

[13] A. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in 20th Working Conference on Reverse Engi-
neering (WCRE 2013), October 14-17 2013, Koblenz, Germany. IEEE,
2013 (to appear).

[14] S. Lemma Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect of
lexicon bad smells on concept location in source code,” in 11th IEEE
Working Conference on Source Code Analysis and Manipulation, SCAM
2011. IEEE, 2011, pp. 125–134.

[15] Y. Baruch, “Response rate in academic studies a comparative analysis,”
Human Relations, pp. 52(4):421–438, 1999.

[16] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed. M &
T Books, February 1995.

[17] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[18] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using

Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[19] M. J. Munro, “Product metrics for automatic identification of “bad
smell" design problems in java source-code,” in Proceedings of the 11th

International Software Metrics Symposium, 2005.
[20] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian

approach for the detection of code and design smells,” in Proceedings
of the 9th International Conference on Quality Software. Hong Kong,
China: IEEE CS Press, 2009, pp. 305–314.

[21] F. Simon, F. Steinbr, and C. Lewerentz, “Metrics based refactoring,” in
Proceedings of 5th European Conference on Software Maintenance and
Reengineering. Lisbon, Portugal: IEEE CS Press, 2001, pp. 30–38.

[22] E. van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Proceedings of the 9th Working Conference on Reverse
Engineering (WCRE’02). IEEE CS Press, Oct. 2002.

[23] A. A. Rao and K. N. Reddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in Proceed-
ings of the International MultiConference of Engineers and Computer
Scientist, Hong Kong, China, 2008.

[24] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of
bad smells in object-oriented code,” in International Conference on
the Quality of Information and Communications Technology (QUATIC).
IEEE, 2010, pp. 106–115.

[25] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells
using software repository mining,” in European Conference on Software
Maintenance and ReEngineering. IEEE, 2012, pp. 411–416.

[26] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells: preliminary results of an explanatory survey,”
in Proceedings of the International Workshop on Refactoring Tools.
ACM, 2011, pp. 33–36.

[27] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
Journal of Systems and Software, pp. 1120–1128, 2007.

10

