
How Developers’ Collaborations Identified from
Different Sources Tell us About Code Changes

Sebastiano Panichella1, Gabriele Bavota1, Massimiliano Di Penta1, Gerardo Canfora1, Giuliano Antoniol2
1Dept. of Engineering, University of Sannio, Italy, 2 École Polytechnique de Montréal, Canada

Abstract—Written communications recorded through chan-
nels such as mailing lists or issue trackers, but also code co-
changes, have been used to identify emerging collaborations in
software projects. Also, such data has been used to identify the
relation between developers’ roles in communication networks
and source code changes, or to identify mentors aiding newcomers
to evolve the software project. However, results of such analyses
may be different depending on the communication channel being
mined. This paper investigates how collaboration links vary
and complement each other when they are identified through
data from three different kinds of communication channels, i.e.,
mailing lists, issue trackers, and IRC chat logs. Also, the study
investigates how such links overlap with links mined from code
changes, and how the use of different sources would influence
(i) the identification of project mentors, and (ii) the presence
of a correlation between the social role of a developer and her
changes. Results of a study conducted on seven open source
projects indicate that the overlap of communication links between
the various sources is relatively low, and that the application of
networks obtained from different sources may lead to different
results.

Keywords—Developers, Developer Social Network, Empirical
Study

I. INTRODUCTION

The communication among projects’ members plays a
paramount role in any successful software project. Indeed,
team coordination and communication has always been the
crux of people involved in software project management [1].
Notwithstanding the nature of a project (i.e., open source ver-
sus industrial/closed source), its domain, or size, the involved
people need to exchange information effectively, minimizing
the communication overhead and making sure they are up to
date with the project status.

In everybody’s experience, different communication chan-
nels play different, sometimes complementary sometimes al-
ternative, roles: news can be gathered from the radio, by
reading a newspaper, watching a TV broadcast or surfing
blogs. Each channel has its pros and cons: TV/radio tend to
be timely; Internet in addition has less control; newspapers
could provide a deeper and focused treatment of some topics.
Besides that, which communication channel is preferred is a
mere personal choice influenced by various factors, such as
the information need, the age, the culture or the life style.
Much in the same way, people contributing to a project
may prefer a particular communication channel. For example,
general discussions about a project’s perspective, software
design, or future development strategies may happen in mailing
lists, whereas discussions related to specific features or to the
resolution of bugs occur on issue trackers. Another factor is
the size, structure and general organization of the project. For

example, some projects tend to have in the past most of the
discussion over mailing lists, and only in recent years they
tend to use issue trackers much more. Finally, in industrial
projects part of the discussion occurs through face-to-face or
phone meetings [2].

In recent and past years, (written) communication has been
analyzed by several authors for different purposes and ex-
ploited to support software evolution tasks. For example, Bird
et al. [3] and Hong et al. [4] studied to what extent emerging
teams identified from email and issue tracker communication
reflect the latent structure of software projects. Bird et al. [5]
found a correlation between social network metrics and change
activities. Finally, Bettenburg et al. [6] and Kumar et al. [7]
studied how social network metrics could be used for bug
prediction purposes. Canfora et al. [8] used data from mailing
lists and issue trackers to recommend mentors.

The studies mentioned above have analyzed projects’ com-
munication by observing one or two sources of communica-
tion. The conjecture we want to investigate is that, different
communication channels would provide different views of
developers’ interaction. As a consequence, the use of such
information in recommender systems could produce different
results.

To this aim, we analyze written communication between
developers (i.e., people changing the code) recorded through
mailing lists, issue trackers, IRC chat logs, and code co-
changes. The overarching goal is to provide evidence that by
analyzing a single communication channel one may obtain a
misleading portrait of people interaction, and that in general
different combinations of the sources may provide different
views of the project’s interaction.

By analyzing the communication occurring in seven open
source projects we show that (i) not all developers use all
communication sources; (ii) people interacting using a given
channel may or may not communicate through other channels;
(iii) the identification of key project roles—such as devel-
opers with a high communication degree or mentors [8]—
leads to different results if done over different communication
channels; (iv) a study performed in the literature [5] would
have achieved different findings when looking into different
communication channels.

Paper structure. Section II presents the details of the
empirical study design, selected system, approach adopted to
collect and analyze data. Section III reports empirical findings
and is followed by Section IV where we discuss the threats
to validity. After a discussion of related work in Section V,
Section VI concludes the paper and outlines directions for
future work.

TABLE I. CHARACTERISTICS OF THE ANALYZED PROJECTS.
Project URL Year Observed Size #Commits #Comments in #Emails in #Messages in

Started Period (KNLOC) issue tracker mailing list IRC chat
Apache HTTPD http://httpd.apache.org/ 1996 June 2011-June 2013 2,021-2,240 4,315 1,659 5,487 640,471
Apache CXF http://cxf.apache.org 2005 June 2011-June 2013 593–771 4,911 6,016 3,049 305,802
Hibernate http://hibernate.org 2003 June 2011-June 2013 984–1,096 1,805 992 2,423 84,218
Infinispan http://infinispan.org 2009 June 2011-June 2013 146–286 2,482 9,305 3,886 893,780
Apache Lucene http://lucene.apache.org 2000 June 2011-June 2013 198–437 2,957 68,055 10,821 104,901
Samba http://www.samba.org 1996 June 2010-June 2012 1,278–1426 11,151 9,132 9,979 17,591
Weld http://weld.cdi-spec.org 2008 June 2011-June 2013 108–139 1,225 1,996 2,423 98,044
Total – – – – 28,846 97,155 38,068 2,144,807

II. EMPIRICAL STUDY DESIGN

The goal of the study is to analyze developers’ collabo-
rations mined from different sources of information, with the
purpose of understanding their commonalities and differences.
The perspective is of researchers interested in studying to what
extent using different sources could produce a different view of
how developers interact in a project during its evolution. When
such a view is used in the context of empirical studies—e.g., to
verify if the number of code-changes performed by developers
is related to their activity in the social network—or to build
different kinds of recommenders—e.g., to suggest mentors—
this could produce different results.

The context of the study consists of data from seven
open source projects, whose characteristics are summarized
in Table I. In particular, Table I reports: an URL linking to
the project website, the date when the project started, the
observed time period, the code size in terms of non-commented
KLOC (KNLOC), and the size of data from the four sources
of information. HTTPD is an open-source HTTP server for
modern operating systems. CXF is a framework providing
APIs for web service development while HIBERNATE is an
object-relational mapping library for Java. INFINISPAN is a
data grid platform written in Java and designed to be highly
scalable. LUCENE is a Java-based indexing and search tech-
nology. SAMBA is a re-implementation of the SMB/CIFS
networking protocol mostly written in C. Finally, WELD is
an implementation of the Contexts and Dependency Injection
for Java EE. On the one hand, we have chosen such projects
to ensure enough diversity in terms of size (of the code
base, of the developers’ population and of the exchanged
messages). On the other hand, we looked for projects having
the availability of data from the four investigated sources—
versioning systems, issue trackers, mailing lists, and IRC
logs—for a period of at least two years; we deemed two years
long enough to observe collaborations.

A. Research Questions

In the context of the study, we formulated the following
research questions:

• RQ1: To what extent do developers discuss through the
different communication channels? The conjecture is that
some developers may use a limited set of the available
communication channels. For instance, it may happen that
only a small “core” team actually discusses through IRC,
while many more may discuss over the issue trackers.

• RQ2: How do the inferred links between developers
overlap when using different sources of information? This
research question investigates whether different sources of
information provide a different view of the project social
network or, in other words, of the project’s members
interactions.

• RQ3: How do social network metrics change when using
different sources, and how would this impact on using
such information to build recommenders? In this research
question we analyze to what extent (i) recommenders
aimed at identifying people having some particular role in
the project—such as developers having a high degree in
the communication or mentors [8]—produce different re-
sults when using different sources of information, and (ii)
how does the correlation between social network metrics
and developers’ activity (i.e., how many commits they
perform) change when using different sources. To this
aim, we replicate, using different sources, an empirical
study previously performed by Bird et al. [5].

B. Data Extraction Process

This section describes the data extraction process that we
follow with the aim of collecting the data needed to perform
our study.

1) Downloading the Four Sources of Information: Com-
mits checked in by developers are collected by mining the
change log of the versioning system hosting the seven subject
projects. Note that the versioning system adopted for the
analyzed systems, i.e., Git, provides explicit information for
authors, other than just for committers, although in many
cases authors and committers match. In particular, for each
commit we stored: (i) the project’s member performing it, (ii)
the involved files, and (ii) the commit date. In total, 28,846
commits have been downloaded.

Issue trackers are mined with the aim of extracting
developers’ discussions carried out on this communication
channel. In particular, for each system we download all issues
created in the analyzed time period (see Table I) regardless
their type (e.g., bug, new feature, etc.) and status (e.g., closed,
open, etc.). To perform such a task we built two crawlers for
the Bugzilla issue tracker (used by SAMBA) and Jira (used by
the other six projects). For each issue, both crawlers extract
(i) the name of the project member posting the issue, (ii) the
issue title, (iii) the issue description, (iv) the posting date, and
(v) the comments left by project members to the issue, storing
for each of them the name, the date, and the message. In total,
we collected 5,790 issues comprising 97,155 comments.

Development mailing lists are downloaded from the Web,
either by downloading available archives (HTTPD, SAMBA,
HIBERNATE, WELD, INFINISPAN), or by crawling Web-based
mailing list (LUCENE and CXF). Then, emails are parsed to
extract, for each message: (i) the message ID, (ii) the project’s
member sending the email (i.e., the from email field), (iii) the
project member(s) to which the email was sent (i.e., the to
email field), (iv) the ID of the message being replied, (v) the
email subject, (vi) the email timestamp, and (vii) the message
body. In total, 38,068 emails have been collected.

IRC chats are mined from the Web. In particular, for each
discussion thread (reported in a separate page of the chat
log) we store: (i) the (nick)name of developers taking part
in the discussion, (ii) the thread date, and (iii) the messages
exchanged in the thread. In total, 2,144,807 messages have
been downloaded.

2) Unifying Project Contributors’ Names: We use an ap-
proach similar to the one used by Bird et al. [5] and used in
our previous works [8], [9]. The approach is composed of the
following steps:

1) Normalization: names are converted into lower cases,
and special characters, including dots “.”, are removed.

2) Ignore middle names, e.g., john p Smith corresponds to
john smith unless this leads to an ambiguity.

3) First name referred with initials only, e.g., john smith
corresponds to j smith, unless this generates an ambiguity.

4) Last name only, e.g., john smith corresponds to smith
unless this generates an ambiguity.

5) Initials only, e.g., j s correspond to john smith, unless
this generates an ambiguity.

6) User ID-like name: IDs, often used in versioning com-
posed by concatenating first and last names (or their
initials). For example, john f. smith could be referred as
johnsmith, jsmith, or jfsmith. Again, we check if the same
ID can be obtained from multiple persons’ names.

To deal with cases where email addresses are used in the
project’s members’ communication, we use a set of heuristics,
mostly derived from the above ones, to associate emails to
names:

1) Extract name: first, we extract the name from the email
address, i.e., anything preceding the “@” and split it into
terms considering special characters as separators.

2) Map email address to a name: we try to map the name
extracted from the email to full names occurred in other
emails. For example, jsmith@google.com is mapped to
John Smith, even if he was previously associated with a
completely different email address.

3) Map multiple email addresses of the same person:
we map multiple email addresses applying—on the name
extracted from the email address—the same heuristics
defined for names.

Overall, it is worthwhile to point out that the adopted
approach for unifying names and email is a conservative
one, i.e., it performs an unification only when there are no
multiple (ambiguous) possibilities of unification for the same
name. Since we have no guarantee that the aforementioned
approach is 100% accurate and complete, we integrated it with
a manual analysis performed by two of the authors, aimed at
verifying the existing mappings and adding missing ones. Such
an analysis lasted four working days, and helped to fix less
than 5% of wrong mappings and to add about 20% of missing
ones.

3) Extracting Developers’ Links: Once unified the names,
we restrict our attention to commit authors’ only. This is
because we want to focus our attention to discussions occurring
between people involved in code changes only, rather than
other people participating to the discussions.

Given two project’s members, Mi and Mj , we identify
a link Mi ↔ Mj between them in the four sources of
information by applying the following heuristics:

• Versioning system: Mi and Mj modify the same file
during a specific time interval, fixed in this work to six
months. Bear in mind this is not really communication,
however it has been used in some past studies [10], [11].
We considered the six months period as not so short
(otherwise it would be unlikely to find links) nor so long
that the two contributions were completely detached.
• Issue tracker: Mi and Mj left a comment to the same

issue, Mi left a comment to an issue created by Mj (or
vice versa).
• Mailing list: Both Mi and Mj sent emails / replied to

the same email thread [5]. Emails belonging to the same
thread have been identified by looking at the message ID
of the email itself (for the email opening a thread) and
the message ID of the email being replied.
• IRC chat: Mi and Mj take part in the same discussion

thread.

C. Analysis Method

This subsection describes the analyses and statistical proce-
dures used to address the three research questions formulated
in Section II-A.

To address RQ1, we compute and report the overlap (in
percentage) of authors that used the various communication
channels.

Similarly, for RQ2, we compute the overlap (in percentage)
of links existing between different authors when considering
different sources of information.

Besides such a quantitative analysis of the links, we are also
interested to investigate the nature of the discussions occurring
over the different communication channels. Undoubtedly, the
most suitable way to do this kind of analysis is to rely on
grounded theory, as done by Guzzi et al. [12]. However, This
is not feasible when analyzing several sources from seven
projects. Instead, we perform two different kinds of analyses.
First, we perform a quantitative analysis, done using topic
models. For each project and for each communication channel,
we build a topic model using Latent Dirichlet Allocation
(LDA) [13]. LDA allows to fit a generative probabilistic
model from the term occurrences in a corpus of documents.
Basically each document is treated as a probability distribution
of topics, in turn being distributions of words. The corpus for
emails and issues consists of message subjects/bug title/short
descriptions only (each of them represents a document in the
corpus), because the rest of the message/issue discussion often
contains details that would only add noise to the overall topic
characterization. For IRC discussions, we took all messages
(each of them is a document), since they are often very short
and because no subject/short title is available in this case.
The corpus is then processed by applying English stop word
removal and Snowball stemming, and then topic models are
generated. After, we analyze how topics discussed over the
various communication channels are similar, by comparing
the topic models using the Hellinger distance [14]. Since
the Hellinger distance varies between 0 and 1, and since

we were interested to show the similarity of the discussion
between pairs of communication channels, we convert it into a
similarity as follows S(P,Q) = 1−H(P,Q). The whole topic
analysis has been performed using the topicmodels package
of the R statistical environment. Note that, when applying
LDA one needs to calibrate the number of topics k, the
smoothing factors for topic distributions in documents (α)
and word distributions in topics (β), and the number of
Gibbs iterations (n) required to generate the topic model.
Although we are aware that LDA can produce sub-optimal
results if not properly calibrated [15], in this case we did it
by observing how our results vary by considering a number
of topic k ∈ {25, 50, 100, 200}. For all projects, we did not
notice any substantial difference when going beyond 50. For
this reason, we have set k = 50. Similarly, we set α = 0.1,
and β = 1/k, and n = 10.

To address RQ3, we use the communication links extracted
from the different sources of information to (i) recommend
developers playing particular roles, and (ii) replicate the results
of the study reported by Bird et al. [5]. Specifically, with
respect to point (i) we rank developers using the following
metrics:

• Degree: i.e., the number of in-out communication links a
developer has within a given communication channel [16].
The conjecture is that a person taking the leadership in
a discussion would have a high degree. Degree metrics
have been computed using the R package sna. To under-
stand whether high-degree developers identified by the
various communication networks are actually recognized
as “important” developers by the community, we rely on
the Ohloh1 Kudos score. A Kudos depends on the level
of appreciation or respect of a developer working for a
project receives, and it is based on the judgement of other
project members2. Specifically, a member can give Kudos
to other members, by assigning them a score ranging
between 1 and 10. An example of Kudos ranking for
the project Apache HTTPD can be found at the URL
http://www.ohloh.net/p/apache/contributors.

• Mentorship: a project member is a mentor if s/he shows
the ability to effectively train other people, generally
newcomers. While the identification of developers with
high degree is quite trivial, to identify mentors we rely on
a recommender system defined by Canfora et al. [8]. This
approach is able to identify, given a newcomer joining the
project in a given moment, the project’s member that has
been her/his mentor by taking into account factors like
(i) the communication exchange between the newcomer
and each project member, (ii) the level of sociability
(degree) of each project member, and (iii) the difference
in seniority of the newcomer with each project member.
The previously performed empirical evaluation indicated
a 75% accuracy in the mentorship identification [8].

Note that the aforementioned degree and mentorship metrics
are not Boolean, they rather indicate to what extent a project
member plays (or not) one of the two roles described above.

As for point (ii), Bird et al. [5] exploit the social network
built by mining mailing lists to compute the Spearman’s rank

1http://www.ohloh.net
2http://meta.ohloh.net/kudos

TABLE II. RQ1 : OVERLAP (IN PERCENTAGE) BETWEEN AUTHORS
CONTRIBUTING TO DIFFERENT SOURCES. cc ≡ ISSUES ∪ EMAILS ∪ CHAT.

Apache HTTPD
#authors issues chat emails cc

commits 45 80% 6% 80% 91%
issues 36 8% 86% 100%
chat 3 100% 100% 100%
emails 36 86% 8% 100%
cc 41 88% 7% 88%
CXF

#authors issues chat emails cc
commits 21 57% 71% 43% 76%
issues 12 92% 58% 100%
chat 15 73% 53% 100%
emails 9 78% 88% 100%
cc 16 75% 94% 56%
Hibernate

#authors issues chat emails cc
commits 77 24% 42% 34% 56%
issues 19 68% 68% 100%
chat 32 41% 59% 100%
emails 26 50% 73% 100%
cc 43 44% 74% 60%
Infinispan

#authors issues chat emails cc
commits 40 73% 78% 75% 90%
issues 29 90% 83% 100%
chat 31 84% 87% 100%
emails 30 80% 90% 100%
cc 36 81% 86% 83%
Lucene

#authors issues chat emails cc
commits 32 78% 53% 31% 84%
issues 25 64% 36% 100%
chat 17 94% 41% 100%
emails 10 90% 70% 100%
cc 27 92% 63% 37%
Samba

#authors issues chat emails cc
commits 101 79% 21% 71% 90%
issues 80 25% 76% 100%
chat 21 95% 86% 100%
emails 72 84% 25% 100%
cc 91 88% 23% 79%
Weld

#authors issues chat emails cc
commits 66 45% 32% 3% 52%
issues 30 56% 0% 100%
chat 21 81% 9% 100%
emails 2 0% 100% 100%
cc 34 88% 62% 5%

correlation [17] between the number of changes (commits)
performed by developers on source code files (srcChanges),
on documentation changes (docChanges) and their out-degree
(i.e., to how many different project members a developer sends
messages), in-degree (i.e., from how many different project
members a developer receives messages), and betweenness
(i.e., an indication of the extent to which a developer is in
communication paths involving other developers [16]). We
replicate such a study with the four sources of information
considered here, however without making distinction between
in- and out-degree—because this is in principle not possible
in channels such as chat—but using the overall degree metric
instead.

D. Replication Package

The replication package for this study is publicly avail-
able3. Specifically, we provide: (i) the downloaded data from
all sources of all projects, (ii) the developers’ links extracted,
and (iii) the R scripts and working data sets used to produce
the results reported in this paper.

III. ANALYSIS OF THE RESULTS

This section discusses the results achieved in our study and
aimed at addressing the three research questions formulated in
Section II-A.

3www.rcost.unisannio.it/mdipenta/devel-net.tgz

A. RQ1: To what extent do developers discuss through the
different communication channels?

Table II reports (i) the number of developers (i.e., commit
authors) contributing to the different sources of information;
and (ii) the percentage of overlap between the different
sources. In addition, we also considered the union of all com-
munication channels (emails, issues, and chat). It is important
to note that given a source Si indicated on the row and a source
Sj indicated on the column, the overlap of the authors A(Si)
participating in Si with the authors A(Sj) participating in Sj

is given by |A(Si) ∩A(Sj)|/|A(Si)|. For this reason Table II
is not symmetric.

First, we can notice that a good percentage of commit
authors were found in the communication channels (column
cc): such a percentage varies between 52% for WELD and 90%
for SAMBA, with an average value of 75%. The communication
channel attracting the largest percentage of authors varies be-
tween projects. For three projects (HIBERNATE, INFINISPAN,
and CXF) the most popular channel is the chat, for SAMBA,
LUCENE and WELD it is the issue tracker, while for HTTPD
are issues and emails.

In six projects out of seven (i.e., all but INFINISPAN),
authors mainly use two out of three communication channels,
whereas the third one is only used sporadically. For example,
in Samba the issue tracker and the emails are used by 79% and
71% of the authors respectively, while only 21% use the chat.
There may be many factors, such as the project size, internal
organization and structure, or its age, that may influence
the proneness of developers to use different communication
sources. For example, SAMBA is relatively older than other
projects (16 years of life, since 1998) and developers used for
years mailing lists to communicate. Only recently, they also
adopted an issue tracker and, very recently, developers began
to systematically use the chat. Indeed, the set of authors that
exchange messages over issue tracker and mailing lists largely
overlaps with the (small) set of people using the chat (95% and
86% respectively). However, not all old projects have such a
behavior. Consider, for example, LUCENE. This is a relatively
old project (2000), however developers mainly rely on chat and
issue trackers to exchange messages and organize their work.
This also confirm what Guzzi et al. [12] found when analyzing
its mailing lists. LUCENE, indeed, differs from SAMBA in
terms of number of authors (32 vs. 101) and domain (it is more
a scientific project than a widely-used utility like SAMBA). In
some sense, developers form a sort of “small community” that
tends to gather a lot over the chat.

In HTTPD the IRC is poorly used by developers, while it is
the most used communication channel in HIBERNATE, where
developers began to use IRC just two years after the project
started. INFINISPAN is also a relatively young project (2008),
and in this case the use of all communication channels is very
balanced: 73% for the issue tracker, 78% for the chat and 75%
for emails. Last, but not least, WELD authors very rarely use
emails during the observed period. That is, developers find it
more convenient to directly interact through chat or to discuss
specific issues over proper means, i.e., the issue tracker.

RQ1 Summary: It is unlikely that all developers com-
municate over all channels, therefore to properly observe their
interaction multiple channels should be considered. In addition,

TABLE III. RQ2 : NUMBER OF AUTHOR LINKS FOUND IN THE
DIFFERENT SOURCES OF INFORMATION, AND OVERLAP (IN PERCENTAGE)

BETWEEN THEM.
Apache HTTPD

#links commits issues chat emails cc
commits 371 13% 0% 19% 29%
issues 100 49% 0% 26% 100%
chat 0 0% 0% 0% 0%
emails 195 37% 13% 0% 100%
cc 269 41% 37% 0% 72%
CXF

#links commits issues chat emails cc
commits 73 14% 26% 5% 38%
issues 30 33% 40% 13% 100%
chat 85 22% 14% 2% 100%
emails 11 36% 36% 18% 100%
cc 109 26% 28% 78% 10%
Hibernate

#links commits issues chat emails cc
commits 184 3% 1% 12% 21%
issues 19 26% 16% 26% 100%
chat 248 8% 1% 13% 100%
emails 81 28% 6% 41% 100%
cc 307 13% 6% 81% 26%
Infinispan

#links commits issues chat emails cc
commits 193 33% 36% 22% 63%
issues 147 43% 37% 29% 100%
chat 445 16% 12% 19% 100%
emails 165 26% 25% 50% 100%
cc 593 20% 25% 75% 100%
Lucene

#links commits issues chat emails cc
commits 195 19% 11% 4% 27%
issues 140 27% 29% 4% 100%
chat 110 20% 37% 5% 100%
emails 23 30% 26% 22% 100%
cc 222 23% 63% 50% 10%
Samba

#links commits issues chat emails cc
commits 729 16% 2% 13% 27%
issues 360 33% 1% 18% 100%
chat 50 28% 10% 18% 100%
emails 313 30% 21% 3% 100%
cc 647 31% 56% 8% 48%
Weld

#links commits issues chat emails cc
commits 82 5% 16% 0% 18%
issues 24 17% 38% 0% 100%
chat 109 12% 8% 0% 100%
emails 0 0% 0% 0% 0%
cc 124 12% 19% 88% 0%

for the projects under study, while in the past developers used
emails as main communication channel, nowadays they are
massively using chats or issue trackers.

B. RQ2: How do the inferred links between developers overlap
when using different sources of information?

Table III reports the number of authors’ links found in
the different sources of information, and the overlap (in
percentage) between the various sources (plus the union of
all communication channels cc). A link represents a pair of
authors that interact within a source. In most cases, the sources
exhibiting the highest number of links are issue trackers and
chat logs. A strong exception to this trend is the IRC chat of
HTTPD, only used by three developers that used it just to
communicate with other people external to the development
team (as pointed out, in the user support page of HTTPD4)

The links identified from the commits have an overlap
with other sources ranging between 0% (commits vs. emails in
WELD) and 36% (commits and chat in INFINISPAN). Clearly,
the former 0% is due to the limited participation of authors in
WELD mailing lists as observed in RQ1. When computing the
overlap in the opposite direction (other sources vs. commits),
we can notice relatively high values for issues (49% HTTPD,
43% INFINISPAN, 33% CXF and SAMBA, 27% LUCENE, 26%
HIBERNATE). If merging all communication channels, the link
overlap of commits with other sources raises, going from
18% for WELD up to 63% for INFINISPAN. This highlights

4https://httpd.apache.org/support.html

Fig. 1. Hibernate: network of five developers as it is captured from different sources of information.

the importance of analyzing more than one communication
channel when building developers collaboration networks.

However, the amount of messages, and thus, links in
channels like the chat and issue tracking system are in general
higher than messages and links in emails and IRC logs. This
is partially due to the strong assumption for chat and issue
tracking system that all people participating to a discussion are
considered linked (especially for the chat where the number of
links is very high). Indeed, a developer in such channels, very
often answers the previous comment in a discussion, and thus,
he/she replies (communicates) with few people in a discussion.
For the emails this cannot happen because, it is a point-to-
point communication. Thus, merging links between different
sources of information requires a particular attention (a single
link between developers in emails is more reliable with respect
to a link in chat). It is interesting to note from Table III that for
the majority of the projects, links from emails have a higher
overlap with links in issue than links in chat. This means that
communication in mailing lists (more reliable) are intrinsically
more bound to the (one-to-many) communication of the issue
tracker.

In CXF, we can notice that the overlap between chat and
emails is very low (2%, whereas the opposite is 18%), while it
raises up to 40% between issues and chat. In HIBERNATE and
INFINISPAN the highest overlap is between emails and chat
(41% and 50% respectively). In LUCENE, both issue tracker
and chat have a limited overlap with mailing lists (4% and
5%).Instead, the overlap between chat and the issue tracker is
37% (reverse 29%). The overlap between links in the issue
tracker and chat is also relatively high in WELD (38%) where
the reverse overlap is however low (8%), that is, there are
many links in the chat that do not appear in the issue tracker.
Finally, as also mentioned in RQ1, SAMBA developers are less
prone to use the chat, and this explains its limited overlap with
mailing lists and the issue tracker.

Let us consider, for example, the subset of five HIBERNATE
developers depicted in Figure 1. The figure shows five different
networks built considering the four sources of information con-
sidered in the study and their combination. When considering
only a source of information, some links may be missing: for
example Dustin performs commit with others, but he talks with
them only on the chat.

As also noticed by Shihab et al.[18], IRC online meetings
are often planned to answer questions related to common
project topics, or for brainstorming. For example, during an
IRC meeting a very active author of HIBERNATE wrote: “is
there a better way? dunno like I said this is brainstorming and
I have not given lots of thought to these cases”. Another author
said: “but we also need to create the attributes and values in
the entity binding..”. Topics that are also often discussed on
the IRC are related to planning testing activities “however a
pure standalone test suite would make things easier...”. Also,

TABLE IV. SIMILARITY MEASURE OF TOPICS EXTRACTED FROM
DIFFERENT COMMUNICATION CHANNELS.

issues vs. emails issues vs. chat emails vs. chat
Apache HTTPD 0.17 0.09 0.06
CXF 0.86 0.11 0.01
Hibernate 0.11 0.02 0.03
Infinispan 0.07 0.03 0.03
Lucene 0.08 0.3 0.02
Samba 0.06 0.02 0.02
Weld 0.11 0.04 0.03

developers discuss how to prioritize activities on issues and
whether or not to open issues on the issue tracker “okay I
think it is a bug and I’m going to create a jira first”.

By applying topics model as described in Section II-C,
the words describing the topic with the highest probability of
chats (for HIBERNATE) are test, fix, plan, project, unresolved,
migration, integration, branch. Instead, the topic with the
highest probability for the issue tracker contains fail, error,
test, issue, broken, valid, wrong, delete, build, core, while the
emails have test, build, valid, core, api, branch, fail, error,
build, documentation, strategies.

Table IV reports the similarity (computed using the
Hellinger distance) of all channel pairs. One can notice that
values in the first column (issues vs. emails) are always higher
than those in the other two columns, where issues and emails
are compared with the chat. Among other cases, one can notice
the very high similarity in CXF between issues and emails
(0.86). For this project, we noticed that the top topics for issues
and emails share several words such as test, build, valid, core,
fail, error, doc, strategies. Recently, developers are using issue
trackers more and more as a valid alternative to mailing lists
to discuss various kind of issues, not only related to specific
bugs to fix or features to add/improve. Vice versa, the IRC
chat has intrinsically a more interactive nature, and thus it is
more suitable to brainstorming.

RQ2 summary: The overlap of communication links be-
tween various sources is relatively low (generally below 30%-
40%) and varies depending on the project. Therefore, data
from multiple channels should be merged to have a better
view of developers’ interactions. The topics (and links) being
discussed in issues and emails are closer to each other than
those discussed in the IRC chat.

C. RQ3: How do social network metrics change when using
different sources, and how would this impact on using such
information to build recommenders?

In the following we report results of RQ3 for what concerns
(i) identifying high-degree developers and mentors, and (ii)
studying the correlation between social roles and change
activities.

1) Recommending Coordinators and Mentors: Table V
reports the percentages of overlap between the top five high-
degree authors, and mentors for the different sources of in-
formation. Note that we did not identify mentors from the

TABLE V. RQ3 : PERCENTAGE OF OVERLAP BETWEEN TOP FIVE
Coordinators AND Mentors AS EXTRACTED FROM THE FOUR SOURCES OF

INFORMATION.
HTTPD [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 40% 0% 20% 0% 20% - - -
issues 0% 60% 0% 20% 20% 60% 20%
chat 0% 0% 0% 20% 80%
emails 0% 60% 20%
CXF [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 40% 20% 40% 20% 40% - - -
issues 20% 40% 20% 20% 40% 60% 60%
chat 20% 100% 20% 20% 40%
emails 20% 60% 60%
Hibernate [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 40% 40% 40% 60% 20% - - -
issues 40% 40% 20% 60% 20% 40% 40%
chat 40% 80% 40% 20% 20%
emails 60% 60% 60%
Infinispan [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 80% 40% 80% 80% 40% - - -
issues 40% 80% 80% 40% 20% 60% 60%
chat 40% 60% 0% 20% 20%
emails 80% 60% 100%
Lucene [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 40% 0% 20% 80% 60% - - -
issues 20% 0% 60% 40% 40% 20% 60%
chat 0% 20% 20% 20% 40%
emails 20% 60% 40%
Samba [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 60% 20% 80% 80% 80% - - -
issues 0% 60% 60% 60% 20% 60% 80%
chat 20% 40% 20% 40% 40%
emails 80% 80% 80%
Weld [Coordinators] [Mentors]

issues chat emails cc kudos chat emails cc
commits 60% 0% 0% 20% 0% - - -
issues 0% 0% 20% 20% 40% 20% 60%
chat 0% 80% 0% 20% 60%
emails 0% 20% 40%

commits as this does not make sense. In addition, in Table V
we also report, for each source of information, the percentage
of overlap between the top five high-degree authors and the top
five developers that obtained the highest Kudos scores (column
kudos in Table V).

In terms of degree, the percentage of overlap between the
different sources is low (36%, on average). In 68% of the cases
the overlap between the compared pairs of sources is ≤ 40%,
and just in 20% of the cases the overlap is ≥ 80%. Vice versa,
when recommending mentors, the average overlap between all
pairs of sources is 41%, in 67% of cases the overlap is ≤ 40%,
while just in 9% of cases it is ≥ 80%. However, as highlighted
by the results of the RQ2, topics (and links) discussed in
mailing lists are closer to the topics (and links) discussed in
issue tracker. Thus, ideally, if we focus the attention between
these two communication channels we expect to have a higher
overlap in terms of coordinators and mentors. This result is
confirmed in Table V. In particular, the percentage of overlap
of the coordinators between emails and issues is 40% on
average, and the percentage in terms of mentors is 47% on
average. Vice versa, the chat obtained the lower overlap of
mentors/coordinator with the other communication channels
(it is very often lower than 20%). If we do not consider the
chat, in terms of degree, the percentage of overlap between
the different sources increases from 36% to 46% (on average),
while in terms of mentors, the percentage of overlap between
the different sources increases from 41% to 47% (in average).
Thus, it is clear that the chat channel identifies a set of
mentors/coordinators that are very decoupled with the set of
mentors/coordinators provided by the other communication
channel. The overlap of the top Kudos developers with those
having the highest degree highlights such a finding. By looking
at Table V, it is evident that the lowest overlap between top
degree and top Kudos is obtained by the chat channel, while the
highest overlap is achieved if considering emails. This means

TABLE VI. RQ3 : HIBERNATE’S TOP FIVE PROJECT MEMBERS:
HIGH-DEGREE DEVELOPERS AND MENTORS.

Coordinators
Rank commits issues chat emails cc kudos
1 sebers emmanuel sanne sebers sebers gavin
2 stliu hardy scott sanne sanne sebers
3 lukasz gmorling gail hardy gail emmanuel
4 bmeye bmeye emmanuel emmanuel scott hardy
5 gail sebers sebers stliu stliu erik
Mentors
Rank commits issues chat emails cc
1 - bmeye bein sebers sebers
2 - hardy pmui emmanuel scott
3 - lukasz suppor max sanne
4 - emmanuel adnan hardy hardy
5 - sanne stuartdou sanne stliu

that, by computing high degree on the network obtained from
emails, we are able to identify developers that have a high
reputation in the project.

In summary, recommendations of high-degree developers
and mentors computed using developers collaboration net-
works mined from different sources can be different. The set
of mentors/high-degree developers identified relying on chat
is very decoupled with the set of mentors and high degree
developers identified by the other channels. This analysis is
also confirmed by the analysis of Kudos.

Table VI reports the top five high-degree developers and
mentors extracted from each source of information of HI-
BERNATE. If one is interested in knowing which are the
high-degree developers of the HIBERNATE project, she could
choose to mine any of the available sources of information,
achieving however different results case by case. Indeed, the
project’s author sebers is the only one identified as high-
degree developer in all cases, while substantial differences can
be observed for other authors. An interesting case is related
to the HIBERNATE developer sanne, that has been identified
as a coordinator when mining chat, emails, or the union of
all communication channels (cc), while he is not in the top
five when mining commits (he is a committer, nevertheless)
and issues. His Linkedin profile5 mentions that he is one of
the project’s members leading HIBERNATE. However, if for
instance one limits the collaboration/communication analysis
to commits and issues, this information would not emerge.

2) Studying the correlation between developers activity
and social network metrics [5]: Tables VII and VIII show
the results we achieved on HTTPD and HIBERNATE6 when
replicating the study by Bird et al. [5] aimed at analyzing
the correlation between changes performed by developers
on source code (srcChanges) and on documentation (doc-
Changes) with two social network metrics highlighting the
importance of a developer in the social network (i.e., degree,
and betweenness—see Section II-C). Bird et al. [5] perform
their study on Apache HTTPD by relying on its mailing list to
build the developers social network. Their results show a high
correlation between the analyzed social network metrics and
changes on source code performed by developers, indicating
that developers who actually commit changes, play much more
significant roles in the email community than non-developers
[5]. For HTTPD, the replication of their study led us to similar
results both when using mailing list and the issue tracker
as sources to build the social network (see Table VII). Note
that for HTTPD it was not possible to exploit information
derived from the IRC chat, given the absence of links between

5http://it.linkedin.com/in/sannegrinovero
6Results for the other systems are available in our replication package.

TABLE VII. APACHE HTTPD: CORRELATION BETWEEN THE TOTAL
NUMBER OF CHANGES, CHANGES TO SOURCE, CHANGES TO DOCUMENTS,

DEGREE, AND BETWEENNESS.
EMAILS

changes srcChanges docChanges degree betweenness
changes 1 0.58 0.64 0.37 0.40
srcChanges 1 0.35 0.44 0.41
docChanges 1 0.48 0.52
degree 1 0.81
betweenness 1
Issues

changes srcChanges docChanges degree betweenness
changes 1 0.50 0.66 0.28 0.30
srcChanges 1 0.44 0.55 0.56
docChanges 1 0.40 0.48
degree 1 0.78
betweenness 1

TABLE VIII. HIBERNATE: CORRELATION BETWEEN THE TOTAL
NUMBER OF CHANGES, CHANGES TO SOURCE, CHANGES TO DOCUMENTS,

DEGREE, AND BETWEENNESS.
EMAILS

changes srcChanges docChanges degree betweenness
changes 1 0.98 0.54 0.62 0.52
srcChanges 1 0.52 0.60 0.50
docChanges 1 0.45 0.39
degree 1 0.88
betweenness 1
ISSUES

changes srcChanges docChanges degree betweenness
changes 1 1 0.61 0.29 0.68
srcChanges 1 0.61 0.19 0.68
docChanges 1 0.33 0.53
degree 1 0.68
betweenness 1
CHAT

changes srcChanges docChanges degree betweenness
changes 1 0.98 0.56 0.24 0.24
srcChanges 1 0.54 0.25 0.27
docChanges 1 0.06 0.10
degree 1 0.78
betweenness 1

developers in such a communication channel (see Table III).
Thus, on this system, the conclusions drawn on the correlation
between code changes and social network metrics do not
change across different communication channels.

The situation is different for HIBERNATE. In this case,
we can observe a high correlation between srcChanges and
the considered social network metrics when considering the
mailing lists as communication channel. When considering
the issues, a high correlation can only be observed between
betweenness and srcChanges. There is no correlation when
building the social network from IRC communication (see
Table VIII). We achieved results similar to HTTPD also for
INFINISPAN and LUCENE, while results inline with HIBER-
NATE have been observed for CXF, SAMBA, and WELD. In
summary, social network metrics captured from mailing lists
and issue tracker reflect well the developers’ activity, while
this is not the case for the chat.

RQ3 summary: Social network studies and recommenders
in software engineering should not limit their information
mining to a single source. However, some social network met-
rics extracted from the different sources may have a different
interpretation, e.g. high degree on chat does not necessarily
correspond to high code change activity.

IV. THREATS TO VALIDITY

Construct validity threats concern the relationship between
theory and observation. Such threats are mainly due to impre-
cision in the mapping of names used in different sources, and
in how links were identified. As for the unification/mapping of
names, as explained in Section II-B we have used an approach

inspired from previous work [5], [19], [8] and complemented it
by a thorough manual validation. However, we cannot exclude
possible mistakes. Nevertheless, given the high number of
developers involved in the study, it is unlikely that small
deviations will change the essence of our findings.

Concerning the identification of links, we used state-of-the-
art approaches to identify links in mailing lists, issue trackers
and chats. However, we are aware that the participation to
an issue in issue trackers does not mean communicating with
everybody involved there, and similarly it is likely that not
everybody in a chat session is really involved in each specific
discussion. Finally, we are aware that links inferred from ver-
sioning system may have little value because people working
on the same file might never get in touch. Nevertheless, our
aim is to show that links extracted from code changes or from
communication channels, although overlapped, have different
meaning and therefore can be quite different.

Last, but not least, it is important to point out that in this
study we did not aim at validating the mining links (which
might be part of our future work), because we were interested
to only understand how the mined communication links vary
between sources and how do such links influence studies
conducted upon such datasets.

Threats to internal validity concern factors that could have
influenced our results. Our study is based on what in our
opinion are the most widely used communication channels in
open source projects. As it will be discussed in Section V,
other channels—e.g., microblogging through Twitter—indeed
exist. While we found that for the analyzed projects Twitter
is mainly used for advertisement purposes, in a different
setting—e.g., small industrial organization—it could be used
during development. Last, but not least, besides all (written)
sources of information one can consider, we are aware that
there is still a portion of the developers’ communication
happening by voice, and that are not traceable elsewhere [2].

External validity threats concern the generalizability of
our results. The study is limited to seven systems and, for
consistency and comparison between projects, to the most
recent project years. Although we expect similar findings,
further, larger studies need to be conducted to generalize,
confirm, or contradict our findings.

V. RELATED WORK

In the following, we discuss work concerning the analysis
of developers collaboration networks (DCN) for various pur-
poses in the context of software engineering studies, and with
the aim of building software engineering recommenders.

Previous studies analyzed DCN applying social network
analysis on data extracted from Versioning Systems [20], [21],
[10], [11], [22], [23], [24] community at SourceForge, finding
that the obtained developer network is a scale-free network. For
example, Pohl et al. [11] showed how social networks could
be used to determine roles in the community of developers
belonging to the a software project. We share with Pohl et
al. the approach used to identify relations between developers
from versioning system data (two developers are connected if
contributed to the same file during the same period). Studies by
Singh et al. [22] observed how committers networks is a small-
world network. Surian et al. [23] findings are consistent with

those of Singh et al. [22]; that is, the small-world phenomenon
also exists in SourceForge, especially when developers in a
network are separated, on average, by approximately 6 hops.
More recently, Meneely et al. [21] used two issue tracking
annotations—i.e., solution originator and solution approver—
from bug databases to complement the developers network of
versioning data. In a subsequent work, Meneely et al. [10]
showed that SNA metrics represent socio-technical relation-
ships in open source development projects. This reflects the
work done in our RQ3, which however highlights that such
socio-technical relationships may change when using different
sources of information.

Various authors have investigated developers’ collaboration
through mailing lists [5], [25], [12], [26]. Bird et al. [5] dis-
covered that—in mailing list DCN—few members account for
a large proportion of messages sent and of replies. They also
found high correlations between various social network status
metrics and source code development. Bird et al. [3] analyzed
the relationship between communications structure and code
modularity, and found that sub communities identified using
communication information are related to code collaboration
behavior. Sometimes, mailing list communication cross the
boundaries of a single project as studied by Canfora et al. [19]
on the collaboration between OpenBSD and FreeBSD devel-
opers with the aim of fixing related bugs. The heterogeneity of
email content and discussion was investigated by Bacchelli et
al. [25] and Guzzi et al. [12]. Bacchelli et al. [25] presented a
technique that classifies email lines into five categories (text,
junk, code, patch, and stack trace) and evaluated such approach
on a (statistically) significant amount of emails gathered from
mailing lists of four unrelated open source systems. Guzzi et
al. [12] quantitatively and qualitatively analyzed a sample of
506 email threads from the development mailing list of Apache
Lucene. Their study shows that developers participate in less
than 75% of the threads, and that in only about 35% of the
threads source code details are discussed.

Hence, developers also discuss through other communica-
tion channels, including issue trackers and IRC. Indeed, IRC
meetings are increasing in popularity among OSS developers
[27]. Elliot et al. [28] reveal how, using IRC instant messaging
streams, persistent IRC logs and mailing lists help not only
to build a community but also resolve conflicts. Shihab et
al. [18] analyzed IRC logs and found that a small and stable
number of the participants contribute the majority of messages.
LaToza et al. [29] surveyed eleven developers with the aim
of investigating common practices and their satisfaction in
software development. They discovered several barriers pre-
venting email (and in general written communication) usage.
They found that face-to-face communication has advantages
and that the use of more interactive communication channels
(like IRC) is more desirable than emails.

While mailing lists have been used a lot in the past,
nowadays many projects are moving most of the discussion
onto issue trackers, that are used besides the simple discussion
of bugs to be fixed. For this reason, various authors have
proposed developers based on issue trackers. Haythornthwaite
[30] found that the set of core developers identified considering
interactions on issue trackers differ from the “formal” lists of
contributors published on projects’ Website. Hong et al. [4]
compared the evolution of DCN extracted from issue trackers

with the evolution of general social networks (e.g., Facebook
or Twitter, etc.), finding some commonalities and differences.
Other works by Crowston et al. [31] and Zhou et al. [32] used
co-occurrence of developers on bug reports as indicators of a
social link. With the aim at addressing the problem of inter-
team coordination, Begel et al. [33] presented Codebook, a
framework for connecting engineers and their work artifacts
together.

Recently, several researchers investigated and evaluated the
the role played by communications in Twitter and more in
general, the role played by “microblogging”, in software de-
velopment organizations [34], [35], [36], [37]. Zhao et al. [37]
surveyed 11 microblog participants to better understand the
conversational aspects of Twitter discovering the potential
benefits it brings to informal communication at work. However,
as Zhang et al. [36] highlighted, there is a large variation in
the posting activity of various users, and there are barriers in
adopting such new social communication channels. Moreover,
Ehrlich et al. [34] showed how different the use of the exter-
nal/internal microblogs are: external microblogs are used for
sharing general information; instead, internal microblogs are
used to technical assistance and discussion. Finally, Dullemond
et al. [35] evaluated microblogging discussions, and found how
“mood-activity environment” helps to obtain information that
is traditionally harder to obtain in a less volatile form. In sum-
mary, although there are barriers, microblogging could likely
become another promising communication channel. However,
we did not consider it in our study, because (i) we found that
the Twitter accounts of the analyzed projects are mainly used
for advertisements, e.g., of new releases; (ii) since we deal
with (sometimes large) open source projects rather than closed
organizations, it is not feasible to keep track of the Twitter
accounts of all developers (if any).

VI. CONCLUSION AND FUTURE WORK

In this paper we analyzed developers’ communication over
different channels (mailing lists, issue trackers, IRC chat) and
their co-change activities captured from versioning systems.
The study concerned a period of observation of at least two
years for seven open source projects.

Results of the study highlighted that analyzing developers
collaboration/communication through specific channels would
only provide a partial view of the reality, and that differ-
ent channels may provide different perspectives of develop-
ers’ communication. In particular, (i) not all developers use
all communication channels; and (ii) people mainly interact
through two out of three communication channels, whereas
the third one is only used sporadically.

Therefore, if using specific collaboration/communication
networks for various purposes—e.g., identifying experts or
mentors—one should be careful as different channels may
lead to more or less accurate—and in any case different—
results. For example, we found that high degree in chat does
not necessarily correspond to high code change activity, while
for mail and issue it is correlated. Thus, especially when such
networks are used to identify development high degree, the
choice of the most appropriate source should be done carefully,
bearing in mind what was the purpose of such a channel in the
project (e.g., whether or not it was used to coordinate coding
activities).

Work-in-progress aims at replicating the study on further
projects, and also at showing how the result of other appli-
cations of developers’ social network analysis change when
using different sources. Last, but not least, we plan to survey
developers of the analyzed projects to collect and analyze their
perception about the strength of the identified communication
links.

REFERENCES

[1] F. Brooks, The Mythical Man-Month 20th anniversary edition. Boston,
MA, USA: Addison-Wesley, 1995.

[2] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings, 2009, pp. 298–308.

[3] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, ser. SIGSOFT ’08/FSE-16. New York, NY, USA: ACM,
2008, pp. 24–35.

[4] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a
developer social network and its evolution,” in IEEE 27th International
Conference on Software Maintenance, ICSM 2011, Williamsburg, VA,
USA, September 25-30, 2011. IEEE, 2011, pp. 323–332.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in Proceedings of the 2006 international
workshop on Mining software repositories, ser. MSR ’06. New York,
NY, USA: ACM, 2006, pp. 137–143.

[6] N. Bettenburg and A. E. Hassan, “Studying the impact of social
structures on software quality,” in International Conference on Program
Comprehension, ICPC 2010, 2010, pp. 124–133.

[7] A. Kumar and A. Gupta, “Evolution of developer social network and its
impact on bug fixing process,” in Proceedings of the 6th India Software
Engineering Conference. ACM, 2013, pp. 63–72.

[8] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going
to mentor newcomers in open source projects?” in Proceedings of
the 20th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Cary, NC, USA, 2012, p. 44.

[9] S. Panichella, G. Canfora, M. Di Penta, and R. Oliveto, “How the evo-
lution of emerging collaborations relates to code changes: an empirical
study,” in International Conference on Program Comprehension, ICPC
2014, 2014.

[10] A. Meneely and L. Williams, “Socio-technical developer networks:
Should we trust our measurements?” in Proceedings of the 33rd
International Conference on Software Engineering. New York, NY,
USA: ACM, 2011, pp. 281–290.

[11] M. Pohl and S. Diehl, “What dynamic network metrics can tell us about
developer roles,” in Proceedings of the 2008 international workshop on
Cooperative and human aspects of software engineering, ser. CHASE
’08. New York, NY, USA: ACM, 2008, pp. 81–84.

[12] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen,
“Communication in open source software development mailing lists,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013.
IEEE / ACM, 2013, pp. 277–286.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, March 2003.

[14] M. Nikulin, “Hellinger distance,” Encyclopedia of Mathematics, 2001.
[15] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and

A. De Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in 35th
IEEE/ACM International Conference on Software Engineering, ICSE
2013, San Francisco, CA, USA, May 18-26, 2013, pp. 522–531.

[16] J. P. Scott, Social Network Analysis: A Handbook (2nd edition). Sage
Publications Ltd, 2000.

[17] J. H. Zar, “Significance testing of the spearman rank correlation
coefficient,” Journal of the American Statistical Association, vol. 67,
no. 339, pp. pp. 578–580, 1972.

[18] E. Shihab, Z. M. Jiang, and A. Hassan, “Studying the use of developer
irc meetings in open source projects,” in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on, 2009, pp. 147–156.

[19] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “Social inter-
actions around cross-system bug fixings: the case of FreeBSD and
OpenBSD,” in Proceedings of the 8th International Working Conference
on Mining Software Repositories, MSR 2011, Waikiki, Honolulu, HI,
USA, May 21-28, 2011, 2011, pp. 143–152.

[20] A. Capiluppi and M. Michlmayr, “From the cathedral to the bazaar:
An empirical study of the lifecycle of volunteer community projects,”
in Open Source Development, Adoption and Innovation, International
Federation for Information Processing. Springer, 2007, pp. 31–44.

[21] A. Meneely, M. Corcoran, and L. Williams, “Improving developer
activity metrics with issue tracking annotations,” in Proceedings of the
2010 ICSE Workshop on Emerging Trends in Software Metrics, ser.
WETSoM ’10. ACM, 2010, pp. 75–80.

[22] P. V. Singh, “The small-world effect: The influence of macro-level
properties of developer collaboration networks on open-source project
success,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 2, 2010.

[23] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a
large developer network,” in Reverse Engineering (WCRE), 2010 17th
Working Conference on, 2010, pp. 269–273.

[24] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of
the open source software development community,” in Proceedings of
the 38th Annual Hawaii International Conference on System Sciences.
IEEE Computer Society, 2005, pp. 198.1–.

[25] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content
classification of development emails,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012,
pp. 375–385.

[26] P. Wagstrom, J. Herbsleb, and K. Carley, “A social network approach
to free/open source software simulation,” in Proceedings of the 1st
International Conference on Open Source Systems, Genova, Italy, 2005.

[27] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of internet relay
chat (IRC) meetings by developers of the GNOME GTK+ project,” in
Proceedings of the 2009 6th IEEE International Working Conference
on Mining Software Repositories. IEEE Computer Society, 2009, pp.
107–110.

[28] M. S. Elliott and W. Scacchi, “Free software developers as an occu-
pational community: Resolving conflicts and fostering collaboration,”
in Proceedings of the 2003 International ACM SIGGROUP Conference
on Supporting Group Work, ser. GROUP ’03. ACM, 2003, pp. 21–30.

[29] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of the 28th Inter-
national Conference on Software Engineering, ser. ICSE ’06. ACM,
2006, pp. 492–501.

[30] C. Haythornthwaite, “The strength and the impact of new media,” in
Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (HICSS-34)-Volume 1 - Volume 1. IEEE Computer
Society, 2001, pp. 1019–.

[31] K. Crowston and J. Howison, “The social structure of free and open
source software development,” First Monday, vol. 10, no. 2, 2005.

[32] M. Zhou and A. Mockus, “Does the initial environment impact the
future of developers?” in Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE 2011, Waikiki, Honolulu, HI,
USA, May 21-28, 2011. ACM, 2011, pp. 271–280.

[33] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering and
exploiting relationships in software repositories,” in Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering.
ACM, pp. 125–134.

[34] K. Ehrlich and N. S. Shami, “Microblogging inside and outside the
workplace,” in ICWSM. AAAI Press, 2010.

[35] K. Dullemond, B. v. Gameren, M.-A. Storey, and A. v. Deursen, “Fixing
the ”out of sight out of mind” problem: One year of mood-based
microblogging in a distributed software team,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR
’13. IEEE Press, 2013, pp. 267–276.

[36] J. Zhang, Y. Qu, J. Cody, and Y. Wu, “A case study of micro-blogging
in the enterprise: Use, value, and related issues,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2010, pp. 123–132.

[37] D. Zhao and M. B. Rosson, “How and why people twitter: The role
that micro-blogging plays in informal communication at work,” in
Proceedings of the ACM 2009 International Conference on Supporting
Group Work. ACM, 2009, pp. 243–252.

