
TraceME: Traceability Management in Eclipse

Gabriele Bavota1, Luigi Colangelo1, Andrea De Lucia1, Sabato Fusco1, Rocco Oliveto2, Annibale Panichella1
1University of Salerno, Fisciano (SA), Italy
2University of Molise, Pesche (IS), Italy

gbavota@unisa.it, luigicolbn@hotmail.it, adelucia@unisa.it
sabafusco@gmail.com, rocco.oliveto@unimol.it, apanichella@unisa.it

Abstract—In this demo we present TraceME (Traceability
Management in Eclipse), an Eclipse plug-in, that supports the
software engineer in capturing and maintaining traceability
links between different types of artifacts. A comparative anal-
ysis of the functionalities of the tools supporting traceability
recovery highlights that TraceME is the more comprehensive
tool for supporting such a critical activity during software
development.

Keywords-Traceability Management; Information Retrieval

I. INTRODUCTION

Traceability is the activity that allows to create links be-
tween and within software artifacts. Such activity is widely
recognized as an important factor for program comprehen-
sion, software maintenance, impact analysis, and reuse of
existing code components [1]. The importance of maintain-
ing traceability links is confirmed on one side by the support
provided by many CASE tools (see for instance Rational
Requisite Pro1) and on the other side by the methods
and tools presented in the literature to capture traceability
links. Indeed, maintaining traceability information up-to-
date during software development is generally impracticable
due to (i) the huge number of dependencies existing be-
tween artifacts; and (ii) the evolutionary nature of software
systems. This has pushed researchers to define methods and
techniques to help the software engineer during the iden-
tification of traceability links. Promising results have been
achieved using Information Retrieval (IR) [2] techniques.
These techniques compare a set of source artifacts (used as
a query) against a set of target artifacts and ranks the textual
similarity of all possible pairs of artifacts (the output is a
ranked list of candidate traceability links). The conjecture is
that artefacts having a high textual similarity probably share
several concepts, so they are likely good candidates to be
traced from one to another [1].

Several IR-based tools supporting the capturing of trace-
ability links have also been proposed (see e.g., [3], [4], [5],
[6]). However, none of these tools provide a comprehensive
support for capturing and managing traceability information
during software development and maintenance.

This limitation has pushed us to develop TraceME, an
Eclipse plug-in targeted at providing complete support for

1http://www-01.ibm.com/software/awdtools/reqpro/

effectively capturing and managing traceability links during
software development. TraceME allows the software engi-
neer to:

• Define different artifacts categories, depending on the
types of artifacts the software engineer is interested in
tracing (e.g., use cases, classes).

• Capture traceability links between the defined artifacts
categories by using the Lucene IR engine2. TraceME
also provides two enhancing strategies (i.e., used feed-
backs [7] and coverage analysis [8]) to improve the
accuracy of the IR engine aiming at reducing the effort
for the software engineer during traceability capturing.

• Manage the traceability information storing it in XML
files and allowing its modification and deletion. More-
over, given one or more artefacts, TraceME shows
their traceability dependency graph with respect to the
other software artefacts. This feature of TraceME is
particularly useful to support impact analysis.

A comparative analysis of the functionalities of the ex-
isting tools supporting traceability capture and management
highlights that TraceME provides the most comprehensive
support for such critical activities. Our tool is available
online together with a demonstration video3.

II. TRACEME IN ACTION

In this section we will explore the TraceME functionalities
through an usage scenario. Jim is a software developer
working on a software system called SMOS. His project
is becoming increasingly large day by day, due to the
implementation of new requirements. Thus, Jim was asked
by his project manager, Tom, to create and store traceability
links between the SMOS’s artefacts in order to ease the
software maintenance activities. Since Jim uses Eclipse as
IDE, he chooses to use TraceME to support the traceability
recovery process and starts by recovering links between use
cases and classes of the source code.

A. Artefacts’ Categories Creation

To start using TraceME on the SMOS Eclipse project, Jim
has to define the categories of artefacts he is interested to
trace. Selecting SMOS in the Eclipse workspace and clicking

2http://lucene.apache.org/core/
3http://www.distat.unimol.it/reports/traceme/

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

Figure 1. The Traceability Recovery View

on the Add Artefact Category menu item in the TraceME
menu, Jim can add a new artefact category by simply
defining its name (e.g., use cases) and selecting the folder
containing artefacts of that category. TraceME will associate
to the defined category all files in the selected folder (and
subfolders) having one of the supported formats, i.e., txt,
odt, pdf, and all those belonging to the Microsoft Office
suite. Moreover, when running for the first time on a project,
TraceME automatically creates a category SourceCode and
associates to it all artefacts contained in the src folder of
the selected Eclipse’s project. Thus, to perform traceability
recovery between use cases and source code classes, Jim
has to define only the use cases category. Clearly, Jim can
always delete or modify the created categories.

B. Traceability Recovery

Once the artefact categories have been created, Jim can
use TraceME to recover traceability links between them.
TraceME supports IR-based traceability recovery using the
IR engine Lucene4, an implementation of the Vector Space
Model (VSM). Figure 1 shows the TraceME’s traceability
recovery view.

To start the recovery process, Jim has to select the source
and target artefact categories he is interested in (UseCase
and SourceCode in Figure 1). TraceME will show in the
Source List and Target List the artefacts belonging to the
two selected categories.

4http://lucene.apache.org/

Starting from these two lists, it is possible to perform
traceability recovery in different ways. In particular, select-
ing all artefacts from the two categories the software engi-
neer can perform a massive traceability recovery, where the
IR engine computes the similarity between all possible pairs
of artefacts. On the other hand, the software engineer can
perform focused traceability recovery sessions by selecting
a single source artefact and looking for links between it
and the set of target artefacts. Clearly, TraceME also allows
the selection of any subset of artefacts in the source and/or
target category on which the software engineer wants to
focus his/her attention. In this case, since Jim has to perform
traceability recovery from scratch, he chooses to start with
a massive approach, retrieving links between all source and
target artefacts.

The next step is to choose a method to cut the ranked
list of candidate links generated by the IR engine. Empirical
studies have indicated that the list of candidate links contains
a higher density of correct traceability links in the upper
part of the list and a much lower density of such links in
the bottom part of the list [9]. This means that in the lower
part of the ranked list the effort required to discard false
positives becomes much higher than the effort to validate
correct links and thus, cutting the ranked list at some point
is recommendable, especially when performing a massive
traceability recovery process. In TraceME, the software
engineer has three possible choices: (i) visualizing the full
ranked list, (ii) visualizing the top n candidate links (i.e., the
n pairs of artefacts with the higher textual similarity, and
(iii) visualizing the candidate links having a similarity value
higher than a defined threshold t. In this case, Jim chooses to
adopt an incremental traceability recovery process [9], and
thus to visualize and classify the top n candidate links at a
time. In this way, the process can be stopped when the effort
to discard false positives is becoming much higher than the
effort to identify new correct links [9]. Jim sets n = 10
visualizing the 10 top pairs of artefacts at each iteration of
the incremental process (see Figure 1).

Then, Jim clicks on the Recovery button asking the IR-
engine (i.e., Lucene) to compute the ranked list of candidate
links. Jim has to classify the links proposed by TraceME as
correct or false positives using the provided radio buttons
(see Figure 1). The classified links (both corrects and false
positives) are stored by TraceME into XML files. Jim can
also choose to provide his classification as input to the IR
engine to allow it to learn from the user feedback and change
the rank of the suggested links based on this. The learning
process is based on the standard Rocchio [7] that is the most
used relevance feedback algorithm for traditional IR tasks.
Previous studies show as this kind of feedback mechanism
can be useful to improve the performances of IR-engines
during traceability recovery [10]. As shown in Figure 1, in
this case Jim chooses to enable the feedback mechanism.

After some iterations and the classification of several

Note

SMOS32 SMOS66

SMOS33

SMOS38

SMOS68SMOS70

SMOS12 SMOS08

SMOS79

User

ManagerUserManagerRegisterRegister

DBconnection ServletInsertUser

ServletDeleteUser

Classes Use Cases
Legend

Figure 2. A snapshot of the TraceME’s traceability graph

candidate links, Jim observes as TraceME is only proposing
false positives and does not provide any further help in the
identification of new correct links. As said before, this is
typical of the IR-based traceability recovery, since in the
lower part of the ranked list there is a great predominance
of false positives [9]. Thus, he chooses to stop the recovery
process and click on the Traceability Graph button to see
the traced links. The obtained traceability graph is shown
in Figure 2 (we only reported a snapshot of the graph for
sake of readability). Jim noticed how some use cases (e.g.,
SMOS68) are not traced on any source code class. However,
Jim also knows that all the functionalities described in the
use cases have been implemented in SMOS. Thus, he goes
back to the traceability recovery view, selects again use
cases and source code as artefact categories, and checks the
Coverage Analysis checkbox (see Figure 1). In this way,
TraceME will sort the source artefacts in the Source List
based on their coverage index with the target artefacts. In
other words, use cases that have been poorly traced on
the source code classes will appear on top of the Source
List. The use of Coverage Analysis information during IR-
based traceability recovery has been demonstrated to be
worthwhile to enrich the set of correct links traced by the
software engineer [8]. Jim found on top of the Source List
the use case named SMOS68. Thus, he selects this artefact
from the list and performs a focused traceability recovery
session. This time TraceME will propose as candidate links
only those involving the selected use case (i.e., SMOS68).
Clearly, as Jim traces new links involving the SMOS68 use
case, the latter will be moved down in the Source List since
its coverage index is increasing.

Jim focuses his attention on all source artefacts high-
lighted by the coverage analysis as poorly traced, until he
feels that the traceability recovery task is completed.

III. ARCHITECTURE

The plug-in is decomposed into six modules, namely
View, IR-Traceability Engine, Feedback Engine, Artefact
Coverage Manager, and XML Manager (see Figure 3). The
module View implements the presentation layer of the plug-
in. This view extends the ViewPart view defined in Eclipse.

View

Eclipse

ActionSet

IR-Traceability
Engine

Lucene XML Manager

Feedback
engine

JDOM

Traceability
Graph Viewer

Graphviz

Artefact
Coverage
Manager

Figure 3. TraceME architecture

The IR-Traceability Engine module uses Lucene and is in
charge of providing the list of candidate links for the source
and target artefact categories provided as input. Note that,
before running Lucene on the document corpus (i.e., the
selected source and target artefacts), this module performs
a text normalization phase. In particular, two steps are
performed:

• Text pre-processing: white spaces and most non-textual
tokens (e.g., special symbols) are pruned out from the
text and all capital letters are transformed into lower
case letters. Moreover, code identifiers composed of
two or more words separated by using the under score
or camel case separators are split into separate words,
e.g., getName is split into get and name;

• Word extraction and filtering: a stop word function
prunes out all the words having a length less than 3,
while a stop word list cut-off all the words that are not
useful to characterize the semantics of the document
content (e.g., Java keywords, articles, etc.).

The IR-Traceability Engine module uses the Feedback En-
gine modules when the user selects to use the learning
mechanism based on the standard Rocchio (see Section II).
The links classified by the user are stored in XML files using
the XML Manager module that is in charge of managing all
the operations performed on the produced XML files.

The Artefact Coverage Manager computes the informa-
tion needed when performing coverage analysis during the
traceability recovery process. It uses the information stored
in the XML files to compute the coverage indexes of all
source artefacts.

Finally, the Traceability Graph Viewer uses the Graphviz5

visualization framework to visualize the traceability graph
(see Figure 2).

IV. DEMO REMARKS

In this demonstration we presented TraceME, an Eclipse
plug-in supporting the software engineer in the recovery

5http://www.graphviz.org/

Table I
SUMMARY OF TRACEABILITY RECOVERY TOOLS

Tool name Traceability
Recovery

Artefact Category
Management

Traceability
Link Visualization

Enhancing
Strategies

Coverage
Analysis

Support for
Link Evolution Architecture

ADAMS Re-Trace [11] LSI Yes No None Yes No Eclipse plug-in
Asuncion et al. [12] Manual No No None No Yes Standalone
Poirot [5] Probabilistic Model Yes No Hierarchical Modeling No No web-based
ReqAnalyst [4] LSI No No None No No web-based
RETRO [3] LSI and VSM No No User Feedback No No Standalone
Traceclipse [6] VSM Yes No None No No Eclipse plug-in
TraceME VSM Yes Yes User Feedback Yes No Eclipse plug-in
TraceViz [13] LSI Yes Yes None No No Eclipse plug-in

and management of traceability links. Table I compares the
characteristics of TraceME with the other tools presented in
literature. Note that, among the seven reported tools, the one
by Asuncion et al. [12] is the only one without IR-based
traceability recovery. Thus, characteristics like “enhancing
strategies” or “coverage analysis” simply do not make sense
for this tool. However, it is worth noting that this is the only
tool providing support for the evolution of the (manually)
traced links during software maintenance.

Among the IR-based tools, TraceME is the one providing
the largest set of features. As an example, tools as ReqAna-
lyst [4] or RETRO [3] do not allow the software engineer to
create his/her own categories of artefacts bounding he/she
in a set of pre-defined categories. This clearly negativly
influence the flexibility of these tools.

TraceME and TraceViz [13] are the only tools providing a
Traceability Graph View useful to quickly analyze the traced
links. For example, this feature can be particularly useful
while performing impact analysis.

As for the supported enhancing strategies, besides Poirot
[5] supporting the Hierarchical Modeling (an enhancing
strategy fitted for the IR probabilistic model), only TraceME
and RETRO [3] provides a self-learning engine based on
the standard Rocchio [7] that changes the ranks of candidate
links on the basis of the link classification feedback provided
by the user. The use of this kind of feedback mechanism
has been demonstrated to be worthwhile during traceability
recovery [10].

Finally, the coverage analysis [8] is implemented only by
ADAMS [8], [11] and TraceME despite its simplicity and
the benefits provided during traceability recovery [8].

Given the current state of TraceMe, it is clear that future
work should be focused on the implementation of supports
focused on the evolution of traceability links, e.g., provide
alerts to the developer when a link might be no more valid.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE TSE, vol. 28, no. 10, pp. 970–983,
2002.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

[3] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing
candidate link generation for requirements tracing: The study
of methods.” IEEE TSE, vol. 32, no. 1, pp. 4–19, 2006.

[4] M. Lormans and A. van Deursen, “Can LSI help reconstruct-
ing requirements traceability in design and test?” in Proc. of
10th CSMR. , 2006, pp. 45–54.

[5] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya,
G. Bedford, B. Berenbach, O. B. Khadra, C. Duan, and
X. Zou, “Poirot: A distributed tool supporting enterprise-wide
automated traceability,” in Proc. of 14th IEEE RE. , 2006,
pp. 356–357.

[6] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Trace-
clipse: an eclipse plug-in for traceability link recovery and
management,” in Proc. of the 6th TEFSE, 2011, pp. 24–30.

[7] J. J. Rocchio, The SMART Retrieval System – Experiments in
Automatic Document Processing. Prentice Hall, Inc., 1971,
ch. Relevance feedback in information retrieval, pp. 313–323.

[8] A. De Lucia, R. Oliveto, and G. Tortora, “The role of the cov-
erage analysis in traceability recovery process: a controlled
experiment,” in Proc. of 25th ICSM. , 2009.

[9] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recover-
ing traceability links in software artifact management systems
using information retrieval methods,” ACM TOSEM, vol. 16,
no. 4, p. 13, 2007.

[10] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental
approach and user feedbacks: a silver bullet for traceability
recovery,” in ICSM ’06: Proc. of the 22nd ICSM. , 2006,
pp. 299–309.

[11] A. De Lucia, R. Oliveto, and G. Tortora, “ADAMS Re-Trace:
Traceability link recovery via latent semantic indexing,” in
Proc. of 30th ICSE. , 2008, pp. 839–842.

[12] H. U. Asuncion, F. François, and R. N. Taylor, “An end-to-
end industrial software traceability tool,” in Proc. of the the
6th ESEC-FSE, 2007, pp. 115–124.

[13] A. Marcus, X. Xie, and D. Poshyvanyk, “When and how to
visualize traceability links?” in Proc. of 3rd TEFSE. 2005,
pp. 56–61.

