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Abstract—When developers perform a software maintenance
task, they need to identify artifacts—e.g., classes or more specif-
ically methods—that need to be modified. To this aim, they
can browse various kind of artifacts, for example use case
descriptions, UML diagrams, or source code. This paper reports
the results of a study—conducted with 33 participants— aimed at
investigating (i) to what extent developers use different kinds of
documentation when identifying artifacts to be changed, and (ii)
whether they follow specific navigation patterns among different
kinds of artifacts. Results indicate that, although participants
spent a conspicuous proportion of the available time by focusing
on source code, they browse back and forth between source code
and either static (class) or dynamic (sequence) diagrams. Less fre-
quently, participants—especially more experienced ones—follow
an “integrated” approach by using different kinds of artifacts.

I. INTRODUCTION

Maintenance tasks are generally facilitated when software
documentation (e.g., the requirements specification, design
document, test report, and user manual) is available [2], [9],
[28]. Indeed, having documentation available during system
maintenance reduces the time needed to understand how
maintenance tasks can be performed by approximately 20%
[28]. In addition, besides time reduction, documentation allows
developers to find better and more accurate technical solutions
to a given maintenance task [28].

Although several studies have shown the usefulness of
documentation during maintenance tasks (see e.g., [2], [6], [9],
[17], [26], [28]), it is still unclear how such documentation is
browsed by developers to understand how the system should be
modified to implement a specific change. At one extreme, one
can argue for using all the available documentation, as each
artifact is equally useful, since it provides a description of the
system with different levels of details. Also, the documentation
could be browsed starting from high-level artifacts (e.g., use
cases) to low level artifacts (e.g., dynamic models). Even if
there is an anecdotal evidence that such an approach could
work, without a proper empirical investigation it remains only
a conjecture. Also, different developers—with different skills
and experience—might follow different paths. Thus, on one
hand, guessing a priori navigational paths is quite challenging.
On the other hand, understanding such paths is relevant not
only to highlight the importance of high-level documentation,
but also to help tool developers enhancing modelers and
Integrated Development Environments (IDEs) to better support
program comprehension activities by facilitating effective and
efficient artifact navigation and browsing.

All these considerations motivate our work. We conduced
a study, involving 33 participants—-among undergraduate and

graduate students from different universities—aimed at ana-
lyzing to what extent developers use different kinds of docu-
mentation when identifying pieces of code (e.g., methods) to
be changed and whether they follow specific navigation paths
among different kinds of artifacts. In the context of our study,
we asked participants to perform 8 different maintenance tasks
on a Java software system. Besides source code, participants
had available use case descriptions, sequence diagrams, class
diagrams, and Javadoc. We used an Eclipse plugin to capture
how much time was spent by participants on different artifacts,
and how they navigated from an artifact to another.

The obtained results indicated that—even if a substantial
proportion of time (about 80% on average) is spent on source
code, participants also browsed back and forth between source
code and either static (class) or dynamic (sequence) diagrams,
the latter being more used than the former. Less frequently,
participants—and in particular those with a higher degree
of experience, i.e., graduate students—follow an “integrated”
approach, in which different kinds of artifacts were used,
for example starting the task from use cases, then browsing
sequence and/or class diagrams before accessing the source
code. Such results could be used to enhance IDEs with a
recommendation system able to suggest a particular navigation
path aiming at facilitating the browsing of the available docu-
mentation. Such a recommender might be particular useful in
large systems where the browsing of myriad software artifacts
could represent an obstacle instead of a facilitation when
performing the maintenance task [7], [14].

Paper organization. Section II presents the definition and
planning of our study, while Section III discusses the results
achieved. Section IV presents the threats that could affect the
validity of our study. Finally, after a discussion of the related
literature (Section V), Section VI concludes the paper outlining
direction for future work.

II. STUDY DEFINITION AND PLANNING

This section describes the design and planning of our
empirical study. The goal of the study is to observe how
developers browse different kinds of software artifacts, with
the purpose of understanding how they build knowledge
needed to deal with a maintenance task and, specifically, to
identify classes and class elements (methods and attributes)
that need to be changed when performing a maintenance
task. The perspective is of researchers interested to identify
relevant navigation paths across artifacts that result helpful
during a software evolution task. This result can be used, for
example, to build smart recommenders that guide developers
by suggesting navigations across artifacts or to better organize
and index the documentation available for a software project.



A. Context Selection

The study involved 33 participants, selected entirely on a
voluntary basis—i.e., using a convenience sampling—mainly
among undergraduate students of the Computer Science De-
gree at the University of Molise, and among master students,
PhD students (including visiting students) of the Computer
Science Engineering Degree of the University of Sannio.
Overall, 11 Bachelor students, 18 Master students, and 4 PhD
students participated to the study. Master and PhD students
had already experience on some industrial or research projects,
as well as on the development and maintenance of complex
software systems.

The objects which the tasks were performed on are use
case descriptions, design level sequence and class diagrams,
Javadoc, and Java source code files of a school automation
system, named SMOS, developed by graduate students at the
University of Salerno (Italy). SMOS offers a set of features
aimed at simplifying the communication between the school
and the student’s parents. The system is composed of 121
classes with their respective Javadoc for a total size of 23
KLOC. The documentation is represented by 67 use cases,
72 design level sequence diagrams, and 6 design level class
diagrams. Each class diagram represents the relationships
between all the classes involved in a specific subsystem, e.g.,
teaching management. On average, each use case describes 4
interactions between the actor and the system, each sequence
diagram reports 10 interactions between the actor and the
system’s code components, and each class diagram depicts 15
classes and their dependencies.

In the context of our study, we asked participants to
perform 8§ different maintenance tasks on SMOS, of which
3 were bug-fixing tasks, 3 related to add a new feature,
and 2 related to improve existing features, i.e., performing
a perfective maintenance task. On average, each maintenance
task impacted 5 code components (with a minimum of 1 and
a maximum of 15).

B. Research Questions

The study aims at investigating the following research
questions:

e RQq: How much time did participants spend on different
kinds of artifacts? This research question aims at analyz-
ing the time spent by participants on the different kinds
of available artifacts. On the one hand, artifacts used for
less time can be thought of being less useful. On the
other hand, some artifacts intrinsically require more time
to be read (e.g., source code) while for others (e.g., use
cases, sequence diagrams) a quick look may just suffice
to provide a useful piece of information.

e RQs: How do participants navigate different kinds of ar-
tifacts to identify code to be changed during the evolution
task? This research question is the core of our study
aimed at analyzing the sequences of interactions made
with different artifacts. In particular, we will investigate
(1) how do participants start the task, (ii) what kinds of
artifacts do they browse before getting to the source code,
and (iii) whether there are frequent browsing patterns,
e.g., repeated navigation back and forth between source
code and class diagrams.

TASK DESCRIPTION

In SMOS a registered user can have six different roles: Admin,
Teacher, Student, Parent, Janitors, and Director. Suppose that we
want to remove the "Director” role, which changes do you need to
made on source code? Specify for each involved class/method
the changes you would apply.

QUESTIONS

Write the list of methods modified to perform this task specifying
how you modified these methods. For example:
"application.userManagement.UpdateUser.doGet”. | added the
line of code "x=3;” after the line of code "y++;”.

Write the list of attributes modified to perform this task.
For example: "bean.User.UID”.

Fig. 1. Example of task description and related questions.

For each research question, we also analyzed the impact of
participants’ experience on the use and the navigation of the
software documentation.

C. Study Procedure and Material

Before the study, we explained to participants what we
expected them to do during their tasks. Specifically, we asked
them to identify methods and attributes to be changed when
performing each change task. We provided an overview of
what kinds of artifacts they have available, briefly summarizing
the purpose of each of them.

After illustrating the study, we gave participants up to 3
hours of time to perform the task. Note that it was not our
intention to measure the task efficiency, hence we were not
strict with the time. We only made sure participants properly
performed the task, without collaborating.

We provided each participants with a customized Eclipse
installation containing:

e The Java Development Environment (JDT) with the
SMOS software system already imported together with its
documentation, i.e., sequence diagrams, class diagrams,
use cases, and Javadoc.

e FLUORITE' (Full of Low-level User Operations
Recorded In The Editor), an Eclipse plug-in able to
capture all of the low-level events when using the Eclipse
editors. FLUORITE keeps track of all of the events that
occur in the Eclipse editors also storing timestamps for
each event. All data is saved in an XML log file.

e The Pdf4Eclipse? plug-in (used to visualize use cases,
sequence diagrams, and class diagrams).

e An Eclipse HTML Editor® plug-in, used to visualize the
Javadoc files.

Also, we provided participants with an URL of a page
on ESurveysPro*, a online survey tool we used to collect
participants’ answers.

Thttp://www.cs.cmu.edu/ fluorite/

Zhttp://borisvl.github.io/Pdf4Eclipse/

3http://amateras.sourceforge.jp/cgi-bin/fswiki_en/wiki.cgi?
page=EclipseHTMLEditor

“http://www.esurveyspro.com/



During the study, we instructed participants to access the
ESurveysPro page and, for each of the eight tasks to be
performed, to work following this procedure:

1) Access the page describing the task, and read the task
description.

2) Then, use Eclipse to find a solution for the task (without
however applying the change).

3) Answer the questions in the opened ESurveysPro page.
For each task, participants had to provide, using two
different form fields, the list of methods and instance
variables (attributes) that need to be modified. Fig. 1
shows an example of task description and questions being
asked for the task. For each question examples of answers
are provided. We made clear to participants that example
answers are not related to the task, thus they are not valid
answers.

After having completed the 8 tasks, participants had to fill
a post-study questionnaire. The post-study questionnaire asked
participants an opinion about the usefulness of the various
kinds of artifacts, using a Likert scale [16] ranging between 1
(totally useless) and 5 (very useful). We also asked participants
to provide a comment for the rank assigned to each kind of
artifact.

D. Data Collection

After tasks were completed, we collected from each par-
ticipant (i) the XML logs generated by FLUORITE; and (ii)
the answers provided on ESurveysPro. Concerning FLUORITE
logs, they have been parsed through a Java tool developed on
purpose. The tool extracts, for each task performed by each
participant, the ranked list of documents explored during such
a task together with the time spent on each document. An
example of generated list is:

UseCase(27) — SequenceDiagram(48) — Code(82)

indicating that the participant started by reading an use case
description for 27 seconds, moving then to a sequence diagram
for 48 seconds, and finally access the source code for 82
seconds.

We pruned out from such logs browsing activities shorter
than 5 seconds. Such a threshold was set by observing how
subjects navigated source code during the tasks. Although
this would remove some potentially useful information, we
assume that such short activities are mainly due to the need
for scrolling across various windows in the IDE.

E. Analysis Method

To answer RQ;, we measure (in seconds) the time spent
by participants on each of the artifact types considered in our
study (i.e., the four different documentations plus source code).
We also analyze the scores provided by the participants in the
post-survey questionnaire to indicate their perceived usefulness
of the exploited artifacts. Results are reported in terms of
descriptive statistics and boxplots.

Besides analyzing the whole dataset collected during our
study, we investigate whether participants with different levels
of experience (graduate vs. undergraduate students) use arti-
facts differently. Due to the limited number of PhD students,

and also for the sake of simplicity, we just distinguish between
undergraduate (i.e., bachelor) and graduate (i.e., Master or
PhD) students. The main reason why we analyzed results of
graduate and undergraduate students separately is because the
former had (i) some real working experience, and (ii) in all
cases, some experience in the development and maintenance of
complex projects, which would often favor the need for using
high-level documentation when performing a comprehension
task.

In addition to descriptive statistics and boxplots, we use
Mann-Whitney test [5] to compare the proportion of time
spent on each kind of diagram by participants having different
levels of experience. We use a non-parametric test because the
Shapiro-Wilk normality test indicated that data—related to all
kinds of artifacts for both undergraduate and graduate—deviate
from a normal distribution (p-value < 0.001 in all cases).
We also evaluate the magnitude of the observed differences
using the Cliff’s Delta (or d), a non-parametric effect size mea-
sure [11] for ordinal data. We followed the guidelines in [11]
to interpret the effect size values: small for d < 0.33 (positive
as well as negative values), medium for 0.33 < d < 0.474 and
large for d > 0.474.

Still in the context of RQ;, we verify if there is a correla-
tion between the kind of artifacts exploited by participants and
the correctness of the performed tasks. Note that our study does
not aim at investigating whether the usage of different artifacts
influences the task correctness. This cannot be done, because
it would have required a specific controlled experiment with
participants receiving different treatments, e.g., using some
diagrams only, or “forced” to follow specific navigational paths
only. Instead, this analysis should be considered as a form
of sanity-check, to determine whether participants performed
tasks seriously and whether participants using more specific
kinds of artifacts could have suffered particular problems.

To measure the completeness and correctness of the tasks
performed by each participant (i.e., her ability in correctly
individuating the code components impacted by a maintenance
activity), we used a combination of two well-known Informa-
tion Retrieval metrics, recall and precision [3]. Recall measures
the percentage of code components actually impacted by a
maintenance activity correctly identified by a participant, while
precision measures the percentage of identified components
that are actually impacted. Since recall and precision measure
two different (but related) concepts, we use their harmonic
mean (i.e., F-measure [3]) to obtain a balance between them
when measuring task correctness.

The correlation between the type of artifacts exploited by
participants and the correctness and completeness of the per-
formed tasks is computed through (i) the Spearman correlation,
performed between the time spent by participants in each task
on each type of artifact and the correctness achieved in the task,
and (ii) by building a logistic regression model for correctness
based on the use (or not) of different kinds of artifacts.

Concerning RQ2 we extracted, using the data derived by
the FLUORITE plugin, information concerning how partici-
pants navigate different artifacts, and specifically:

e What artifacts did participants looked first, i.e., where the
comprehension task started. Usually, one assumes this



TABLE 1. RECALL, PRECISION, AND F-MEASURE ACHIEVED BY

PARTICIPANTS WHEN PERFORMING THE TASKS.

Dataset Recall  Precision F-measure
Mean 0.65 0.79 0.71
Undergraduates  Median 0.81 1.00 0.82
St. Dev. 0.40 0.38 0.37
Mean 0.67 0.88 0.76
Graduates Median 0.88 1.00 0.93
St. Dev. 0.37 0.31 0.35
Mean 0.67 0.85 0.75
All Median 0.88 1.00 0.86
St. Dev. 0.38 0.34 0.36

starts from requirements/use cases, although there are
developers that start from source code directly.

e What artifacts did participants browse before getting to
source code. This could potentially indicate the pattern
followed to locate the source code element to be changed.

e What is the likelihood of making a transition from one
kind of artifact to the other. This can likely indicate
how the information gained by browsing a certain kind
of artifact raises the need for accessing another kind
of artifact, e.g., browsing source code after accessing
sequence or class diagrams, or else looking at static
models after dynamic models.

e What are the most frequently followed patterns. This was
done by matching regular expressions of length varying
from two to four onto the mined logs, and determining
for each pattern whether it was iterated, e.g., participants
could go back and forth between source code and class
or sequence diagrams repeatedly.

Finally, we investigated whether participants with different
levels of experience followed different patterns and whether
following certain patterns can influence the task correctness.

All statistical analyses of this paper have been performed
using the R environment [18]. For all statistical procedures,
we assumed a significance level of 95%.

FE. Replication package

To facilitate the replication of this study, a complete
replication package is available®. It includes (i) an Eclipse
installation bundle, with all the exploited plug-ins installed
and the object system SMOS (source code and other artifacts)
already imported, (ii) the task description for all 8 tasks, (iii)
the post-study questionnaire, and (iv) the FLUORITE logs for
the 33 participants. Also, the package includes the working
data set with our study results.

III. ANALYSIS OF THE RESULTS

Before answering the research questions formulated in Sec-
tion II-B, it is important to verify whether participants seriously
performed the assigned tasks. To this aim, Table I reports the
average values for recall, precision, and F-measure achieved
by undergraduate and graduate students, as well as when
considering the entire dataset. Results show that participants
were able to achieve quite good performances, with an average
F-measure of 0.75. This sanity check makes us confident
that participants seriously performed the assigned tasks. Also,
as expected, graduate students achieved, on average, better

Shttp://distat.unimol.it/reports/icsm-docs/

TABLE II. USE (PERCENTAGE OF TASKS AND TIME SPENT) OF
DIFFERENT KINDS OF ARTIFACTS: DESCRIPTIVE STATISTICS.

Artifacts Tasks (%) Tasks (%) Tasks (%) Time spent (all data, %)
i (All)  Undergrad. Graduate mean 1Q median 3Q
Use case 33 28 36 3 0 0 2
Sequence Diagram 72 68 74 10 0 7 16
Class Diagram 60 49 66 13 0 4 15
Javadoc 15 21 11 2 0 0 0
Source Code 100 100 100 72 66 79 89
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Fig. 2. Usage (in percentage) of different kinds of artifacts. Ug = undergrad-
uate students, Gr = graduate students.

performances than undergraduate students (+5% in terms of
F-measure).

A. RQI: How much time did participants spend on different
kinds of artifacts?

Table II reports the percentage of tasks in which each kind
or artifact has been used (for the entire dataset as well as
by separately considering participants with different levels of
experience), and descriptive statistics about the percentage of
time spent on various kinds of artifacts (by considering the
entire dataset). Fig. 2 shows boxplots of such percentage for
different levels of experience.

If considering the whole dataset, and analyze the time
spent on artifacts (right-side of Table II), results indicate that
participants spent most of their time (72% on average) on
source code. Our conjecture—partially supported by what we
observed during the tasks and ny talking with participants—is
that this might be due to two reasons. First, even when partic-
ipants were able to identify the impacted components by ana-
lyzing documentation artifacts we observed that they checked-
back in the source code that the identified methods/attributes
were actually there and really impacted by the maintenance
activity to perform. This suggests a kind of distrust with respect
to documentation artifacts, as also confirmed by the fact that
source code has been used in 100% of the tasks. Second, source
code clearly requires more time to be read and understood
as compared to the artifacts present in the documentation. In
particular, participants spent, on average, 154 seconds on each
source code file, compared to the 70 spent on a class diagram,
49 on a Javadoc file, 35 on a sequence diagram, and 34 on a
use case.



TABLE III. PERCENTAGE OF TIME SPENT ON ARTIFACTS BY
PARTICIPANTS WITH DIFFERENT EXPERIENCE: MANN-WHITNEY TEST
AND CLIFF’S d EFFECT SIZE (POSITIVE VALUES INDICATE DIFFERENCES IN
FAVOR OF GRADUATE STUDENTS, NEGATIVE OF UNDERGRADUATES).

Artifact p-value Cliff’s d
Use Case 0.1020 0.1030
Sequence Diagram 0.3102 0.0749
Class Diagram 0.0001 0.2757
Javadoc 0.0268 -0.1040
Source Code < 0.0001 -0.2939

If we look at the percentage of tasks in which each kind of
artifact was used at least once (left-side of Table II), we notice
that—besides source code, obviously used in 100% of the
tasks—the most commonly used documentation artifacts are
class and sequence diagrams. The latter were used in 72% of
the task. On such diagrams, participants spent on average 10%
of their time (median=7%). Only one of the 33 participants
did not exploit at all sequence diagrams during the tasks
and justified such a choice in the post-study questionnaire:
“sequence diagrams would be useful only if class diagrams
were not present”. However, as we will see shortly, this is an
isolate point-of-view.

As for class diagrams, they were used in 60% of tasks
and participants spent, on average, 15% of their time on them
(median=4%). This strong misalignment between the mean and
the median values for class diagrams highlights that, while
generally they are used for a lower proportion of time as
compared with sequence diagrams, some participants spent a
very high proportion of their time on class diagrams, as also
shown by the outliers reported in Fig. 2. Two participants did
not use at all class diagrams in the tasks.

Turning to use cases, they were used in 33% of tasks
by participants, which focused on them just the 3% of their
time, on average. As said before, participants spent just 34
seconds, on average, on each consulted use case against, for
instance, the 154 spent on each source code file. Among the
33 participants, three of them did not access at all use cases.

Finally, Javadoc documentation was not used a lot by
participants of our study. They accessed Javadoc in just 15%
of the tasks. Also, 11 participants out of 33 never open Javadoc
files during the tasks.

Concerning the time spent by participants with different
experience levels on different artifacts, Fig. 2 and the results
of the Mann-Whitney test reported in Table III indicate that:
(1) there is no significant difference in accessing use cases and
sequence diagrams; (ii) graduate students use class diagrams
significantly more than undergraduates, with a medium effect
size; (ii) undergraduates students used source code and Javadoc
significantly more than graduate students, with a small and
medium effect size respectively. Such results partially contra-
dict those of other studies [19], which indicated that junior
developers tend to benefit of models than senior developers,
that tend to directly focus onto source code.

To better understand the results of the quantitative analysis,
we analyzed the feedbacks provided us by means of the post-
study questionnaire. Fig. 3 shows boxplots—for different levels
of experience—of the ratings provided by participants to the
usefulness of the different kinds of artifacts used. As explained
in Section II-C, one corresponds to classify a kind of artifact
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Fig. 3. Perceived usefulness of the different kinds of artifacts as indicated
by participants. Ug = undergraduate students, Gr = graduate students.

(documentation as well as source code) as “totally useless”,
while five indicates a “very useful” kind of artifact.

As we can notice, sequence diagrams are considered to
be the most useful kinds of artifact, with a mean score of
4.3 for both undergraduates and graduates (median 4 for
undergraduates and 5 for graduates). Some of the comments
left by participants in the post-study questionnaire explain the
reasons behind this evaluation. Several of them explained how
“once found the sequence diagram(s) describing the feature(s)
involved in a change request, it was easy to identify the
candidate impacted components. This strongly speeds up the
tasks.” Others explained as sequence diagrams “represent a
fair compromise between use cases (too abstract) and class
diagrams (providing useless details about an entire subsys-
tem)”.

Class diagrams and source code were generally ranked as
equally useful. However, while undergraduates found source
code slightly more useful (mean 3.6, median 4) than graduates
(mean 3.2, median 3.5), the opposite happens for class dia-
grams, that were found more useful by graduate students (mean
3.9, median 4) than by undergraduates (mean 3.4, median 3).
Among the 8 participants that considered class diagrams very
useful, five of them explained as “it is easy to map class
diagrams on source code, and thus to fast check the candidate
impacted components identified from the diagram.” Five of
the 33 participants declared the source code as the most useful
artifact. The perceived reason is that: “while the provided high-
level documentation is useful to speed-up the task, consulting
source code is mandatory to perform some of them, like the
required bug-fixes.”

As for use cases, it is interesting to note that the usefulness
assessment provided by graduates (mean 3.2, median 3) is
higher than for bachelor (mean 1.5, median 1). This is the only
case for which the Mann-Whitney test reveals a statistically
significant difference (p-value=0.002, Cliff’s d 0.68 — high),
while for all other artifacts the differences between the two
levels of experience are not significant. This suggests how
more experienced participants are able to start the task from



TABLE IV. ‘WHAT PARTICIPANTS LOOKED FIRST. TABLE V. PATTERNS FOLLOWED BEFORE REACHING SOURCE CODE.
Artifact All data Undergrad. Graduates All data Undergrad. Graduates
#of Tasks Perc (%) # of Tasks (%)  # of Tasks (%) Pattern # of Tasks (%) # of Tasks (%) # of Tasks (%)

Use Case 31 .92 3 316 28 1697

Sequence Diagram 66 25.38 23 2421 43 26.06 SD gg }gig 1; lgig ;3 }égé

Class Diagram 45 17.31 9 9.47 36 21.81 . . :

Javadoc 9 3.46 4 421 5 303 (SD)+ 22 846 2210 20 12.12

Source Code 109 41.92 56 58.95 53 3212 (US)+ 18 692 2210 16 9.70

U(SD)+ 7 346 1 105 6 3.64

requirements/use cases before accessing models and source §DS)+ Z ?'gz ; é‘?g ? (3)'23
code. Undergraduates failed to explain use cases, as they tried U 4 154 0 000 4 242
to identify object names within them “in use cases it was not S(US)+ 3 LIS 1 105 2 121
possible to find information about components of the system (S)lél(eerH é 2'(7)3 2 2‘2(1) g ;ié

impacted by a change”, rather than relying on use cases
to identify the piece of functionality to be changed before
accessing sequence/class diagrams.

Finally, the provided feedbacks confirmed that Javadocs
were perceived as the least useful artifacts. For Javadoc, the
mean and median score was 2 (“useless”) for both undergrad-
uate and graduate students. Participants declared that “with
the other sources of documentation available Javadoc became
useless to identify impacted components.” This is to say, our
study does not show that Javadoc is useless: it is likely to be
very useful during development activities, e.g., when using a
new APIL. Instead, it provides a limited (or no) support when
analyzing the impact of a change.

As explained in Section II-E, we also analyzed the presence
of possible correlations between the time spent by participants
on the different kinds of artifacts and the correctness of the
performed tasks in terms of recall, precision, and F-measure.
By applying the Spearman correlation test no interesting cor-
relations were found for undergraduate and graduate students,
as well as when considering all participants as a single dataset.
Also, a logistic regression model for correctness based on the
use (or not) of different kinds of artifacts did not lead to any
significant result, i.e., none of the artifacts resulted significant
in the model.

Summary for RQ;.

1) Participants spent more time to analyze low-level
artifacts as compared to high-level artifacts.

2) Participants consider sequence diagrams as the
most useful source of documentation when per-
forming the required tasks, followed by class di-
agrams and source code.

3) Undergraduate students spent a significantly higher
proportion of time on source code than graduate
students who, instead, spent more time on class
diagrams.

B. RQ2: How do participants navigate different kinds of
artifacts to identify code to be changed during the evolution
task?

Table IV reports, for each kind of artifact used in our
study, the number and percentage of tasks participants started
from such artifact. The most frequent starting point is by
far source code (42% of the tasks), followed by sequence
diagrams (25%), class diagrams (17%), use cases (12%), and
Javadoc (3%). Note that this result is quite surprising since one
could expect that developers start their analysis from high-level
artifacts going down to the code. Instead, in our study 84%

S = Sequence Diagram, D = Class Diagram
U = Use Case, J = Javadoc

of the tasks started from source code and design models, i.e.,
class or sequence diagrams.

When observing data for different levels of experience
(right-side of the table), what we notice is pretty consistent
with findings of RQ; concerning the proportion of usage for
different kinds of diagrams. Basically, undergraduates tend
to start tasks mainly using source code (58%), while this
percentage is only 32% for graduates. The percentage of
participants starting with sequence diagrams is similar (24%
for undergraduates, 26% for graduates), while graduates tend
to start with class diagrams more than undergraduates (22% vs
9%). Finally, there is a non-negligible proportion of graduates
that starts from use-cases (17%, vs. 3% of undergraduates).
This is likely due to the fact that graduate students have a better
training on software engineering principles and on how using
models and high-level artifacts during maintenance tasks, and
also because they have more experience in evolving existing
systems.

Since we found that in 58% of cases source code does
not represent the entry point, we analyzed what are, in these
cases, the pattern followed by participants before reaching
source code. Table V reports all possible patterns followed by
participants (using through regular expressions). In a similar
proportion of tasks, participants access sequence or class
diagrams before going to source code. This happens in 71
tasks, 36 for sequence (14%) and 35 for class (13%) diagrams.

Another frequently followed path consists of one or more
switches between sequence and class diagrams. This path is
more frequent starting from the sequence (22 tasks)—row
(SD)+ in Table V—than from class diagrams (7 tasks)—row
(DS)+ in Table V. In both cases, participants tried to gain
source code knowledge from its most direct model repre-
sentations (i.e., class and sequence diagrams) before going
through it. Also, for 18 tasks, participants switch one or more
times between use case (used as starting point) and sequence
diagrams—row (US)+ in Table V. Overall, it is interesting to
note that sequence diagrams are accessed in four out of the
five most frequent path followed before reaching source code.
Other paths reported in Table V are quite uncommon, e.g.,
opening a use case (row U) or a Javadoc file (row J).

When looking at results by different levels of experience
(right-side of Table V), it can be noticed that, besides what
it is known already from previous analyses, graduate students
use much more navigation patterns across different kinds of
diagrams. As the table shows, undergraduates just looked at



TABLE VI AVERAGE TRANSITION FREQUENCIES BETWEEN THE

KINDS OF ARTIFACTS.
From/To U S D J C
U 56% 8% 0% 36%

S 5% 17% 1% 7%
D 2% 18% 2% 78%
J 0% 6% 16% 78%
C % 49% 37% 1%

S = Sequence Diagram, D = Class Diagram
U = Use Case, J = Javadoc, C = Source Code

sequence or class diagrams before diving into source code.
Instead, graduate students also followed more complex nav-
igation patterns, e.g., sequence+class (with some iterations),
use case+sequence (with some iteration), or even use cases
followed by iterations on sequence and class diagrams. Once
again, this indicated that people with more experience are
more prone to follow an “integrated” approach when perform-
ing a comprehension task. Then, we analyzed the transition
frequencies between the different kinds of artifacts used in
our study. Table VI reports the results considering the entire
dataset. As it can be noticed, the most frequent transitions
are toward the source code (column C), 77% of which are
from a sequence diagram, and 78% from class diagrams and
Javadoc files. The take-away of these results is that, after
have gathered information from one of those kinds of artifacts,
developers try to map them into source code elements. Note
that this is true also when separately analyzing participants
having different experience levels with small changes in the
transition frequencies.

The behavior of participants when reading use cases is,
instead, pretty different from the one observed above. They
shift toward source code in just 36% of times, privileging
the reading of a design diagram (64% of the cases, 56% for
sequence and 8% for class diagrams) before reaching source
code. However, when analyzing the data for participants having
different experience, some differences came out. In particular,
graduate students tend to consult a low-level diagrams after
accessing an use case (72%, 64% for sequence and 8% for
class diagrams), against the 43% of undergraduates (35% for
sequence and 8% for class diagrams). After reading an use
case, undergraduates go to source code in 56% of cases,
against the 27% of graduates. This further confirms that more
experienced developers are more prone to use different sources
of documentation when performing a comprehension task.

Other common transitions between different kinds of ar-
tifacts occur (i) when reading a sequence diagram toward a
class diagram (17%) and (ii) when reading a class diagram
toward a sequence diagram (18%). In this case, no interesting
difference has been observed between participants having
different experience.

It is also interesting to analyze what other artifacts partici-
pants access immediately after browsing source code. Table VI
indicates that participants go back from source code to docu-
mentation just to access design diagram, i.e., sequence (49%)
and class (37%) diagrams. Again, no important differences
were found between participants having different experience.

Finally, we analyzed the most frequent navigational pat-
terns followed by participants during the tasks. Table VII
and Fig. 4 report information about the seven most frequent
patterns we found. In particular, Table VII reports the number

TABLE VII. MOST FREQUENT NAVIGATIONAL PATTERNS.

Pattern All data Undergrad. Graduates
Occ. (%) Occ. (%) Occ. (%)
USDC 12 4.62 0 0.00 12 7.27
USD 21 8.08 2 2.11 19 11.52
USC 35 13.46 10 10.53 25 15.15
UuDC 13 5.00 3 3.16 10 6.06
SDC 55 21.15 15 15.79 40 24.24
SC 153 58.85 58 61.05 95 57.58
DC 128 49.23 39 41.05 89 53.94
N
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12 21 55 13 35 153 128
(5%) (8%) (21%) (5%) (13%) (59%) (49%)
Fig. 4. Most frequent navigational patterns and distribution of their repeti-

tions. S = Sequence Diagram, D = Class Diagram, U = Use Case, C = Source
Code.

and percentage of occurrences on the whole dataset and for
participants with a different degree of experience, whereas
Fig. 4 shows the boxplots for the distribution of its repetitions
(i.e., the number of times a pattern appears in a single task).
As it can be expected according to what observed so far, the
most frequent pattern consists of going back and forth from
sequence diagram to source code: this occurred in 153 tasks
(59%). The median of its repetitions is two, but we also found
cases where this pattern has been repeated more than 10 times
in a single task. Another very frequent pattern is that going
back and forth from class diagrams to source code, present in
128 tasks (49%) with also a median repetition of two. Among
the longer patterns (i.e., those having a length > 2), the most
frequent is that going from sequence to class diagram and then
to source code (SDC in Fig. 4). This pattern has been followed
by participants in 21% of the performed tasks, generally with a
single repetition. Also, in 13% of tasks, participants went from
use cases toward sequence diagrams, and finally to the code.
In addition, from the analysis of Fig. 4 we can conclude that
(1) Javadoc is not present in any of the most common patterns;
and (ii) all common patterns end (as expected) with a source
code artifact.

When looking at the occurrences of patterns among partic-
ipants with a different level of experience (right-side of Table
VII), we can notice that (i) the SC pattern (sequence+code)
is consistently followed by about 60% of both undergraduates
and graduates; (ii) patterns involving use cases (USDC, USD,



USC, and UDC) are much more frequent for graduate than
for undergraduates; and (iii) for what concerns longer patterns
followed by undergraduates, the SDC pattern was followed in
16% of the cases, and USC in 10% of the cases. In summary,
we can notice a higher proportion of patterns reflecting a more
“integrated” approach for graduates. Also, graduate students
followed patterns involving class diagrams and code (DC)
more (54%) than undergraduates (41%). We did not notice
any significant difference in the number of iterations for all
the above mentioned patterns, except for the SC pattern, that
received a median of 3 iterations for undergraduates, that
used it and of 2 iterations by graduates that used it. The
difference is statistically significant (p-value =00017) and the
Cliff’s d effect size medium (d = 0.293). In other words, less-
experienced participants had to go back and forth between
sequence diagrams and source code more than experienced
ones to locate the methods to be changed.

As done for RQ;, we also statistically verified the rela-
tionship between the patterns followed by participants and the
correctness of their tasks. In particular, we built a logistic
regression model for correctness with respect to the use (or
not) of the different patterns. Also in this case, we did not
find any statistically significant result.

Summary for RQ..
1) Participants tend to start the assigned task from
source code or from design documents, i.e., class
and sequence diagrams.

2) More experienced participants tend to follow a
more integrated approach than less experienced
ones, traversing different kinds of diagrams, e.g.,
starting from use cases, and then browsing design
documents, until reaching source code.

3) During their task, participants tend to go back and
forth repeatedly between source code and to design
diagrams (sequence and class diagrams).

IV. THREATS TO VALIDITY

Threats to construct validity concern the relation between
the theory and the observation. In our study, this threat can
mainly be due to errors in the collected measurements. For
what concerns capturing participant’s browsing activities, we
relied on an existing tool (FLUORITE), making sure each
participant had correctly installed it, and carefully instructed
them how to browse artifacts in Eclipse while using the tool.
When collecting results, we discarded cases of short access
to artifacts (less than five seconds) that are unlikely to be
an indication of reading the document, but rather of scrolling
different documents. Clearly, this might have meant loosing
some quick, but valid, accesses. Another threat concerns the
way the correctness of the task is evaluated, i.e., by means
of precision, recall, and F-measure computed over the list of
elements to be modified as identified by participants. On the
one hand this allows a subjective evaluation and allows to
perform a comprehension task without requiring the execution
of source code. On the other hand, this can provide a coarse-
grained and partial evaluation of how the comprehension task
was performed.

Threats to internal validity concern any confounding factor
that could influence our results. For example, such a threat may
be due to the fact that some participants might have decided
not to browse diagrams because they were unreadable or the
tool was not usable. To mitigate such a threat, we avoided
to use any specific UML modeler (we used PDF documents
instead), and we produced diagrams large enough to be easily
readable.

Threats to conclusion validity concern the relationship
between the treatment and the outcome. As explained in
Section II, this is more an observational study rather than a
controlled experiment, as all participants received the same
treatment. Wherever possible, however, we used appropriate
statistical procedures and effect size measure to support our
claims.

Threats to external validity concern the generalization of
our findings. This study has been conducted with students,
and for this reason the obtained results may not generalize to
professionals, which might be used to perform comprehension
task using high-level artifacts in a different way, or in some
cases not using them at all. To some extent, our participants can
be considered as representative of junior developers, joining a
project as newcomers to perform a maintenance task. Another
threat to external validity is related to the use of source code
and documentation related to a single project. We do not know
whether the comprehension of other kinds of projects would
benefit of navigation patterns different than those discovered
in this paper.

V. RELATED WORK

Several studies have been performed to analyze the benefits
of UML documentation during software development and
evolution [4]. In the next section we focus the attention
on studies analyzing the effect of documentation on main-
tenance/comprehension tasks. In addition, we also discuss
studies carried out to analyze the behavior—from different
perspectives—of developers performing maintenance tasks.

A. Impact of UML documentation on Maintenance Tasks

Experiments aimed at studying the impact of UML doc-
umentation in software maintenance [2] indicated that such a
documentation improves the functional correctness of changes
and the quality of the design. While simple class diagrams,
with or without stereotypes, help low ability or low experi-
ence participants, a complete, thorough UML documentation
requires a certain learning curve to become useful [2]. In fact,
in some cases the previous experience of participants influ-
ences the understandability of UML diagrams. Torchiano [27]
showed that object diagrams have a significant impact on com-
prehension tasks, when compared with UML documentation
consisting of class diagrams only. Dzidek ez al. [9] performed
a controlled experiment aimed at investigating the costs of
maintaining and the benefits of using UML documentation
during the maintenance and evolution of software systems.
In the context of the experiment, participants (represented by
professional developers) performed evolutionary tasks with and
without UML documentation. Their results indicated that par-
ticipants using UML documentation were able to statistically
increase the correctness of changes.



UML limitations in aiding program understanding are high-
lighted in experiments performed by Tilley and Huang [26].
They highlighted that UML does not provide a sufficient
support to represent domain knowledge.

Scanniello er al. [21] analyzed if source code compre-
hension increases when exploiting UML class and sequence
diagrams. An experiment conducted with 16 Master’s students
show how participants benefited from the use of the UML
diagrams during comprehension activities.

The role of dynamic UML diagrams in software com-
prehension was investigated by Otero and Dolado [17]. The
comprehension level and the time required to perform the
comprehension task resulted different for different diagrams
and system complexities. Abrahdo et al. [1] also analyzed the
support given by sequence diagrams during the comprehension
of functional requirements. The results showed that sequence
diagrams improve the comprehension of the functional re-
quirements in the case of high ability and more experienced
participants.

We share with the aforementioned studies the need to
analyze the support given by software documentation during
software evolution. However, we did not focus on a specific
kind of documentation. Instead, we provided to participants
several documentation artifacts aim at studying which are the
most used artifacts and how developers use such artifacts.

Tryggeseth [28] conducted a study, for some aspects similar
to our, to analyze the impact of the availability of up-to-date
documentation on maintenance tasks. In the context of the
experiment participants were asked to perform maintenance
tasks with and without software documentation (requirements
specification, design document, test report, and user manual).
Their results indicated that participants using the available
documentation spent less time to understand how to implement
a change request. Besides reducing the time, the documentation
also allowed participants to better understand the system and
provided more detailed solution on how to incorporate the
changes. While we share with Tryggeseth the need for analyz-
ing the impact of several software documentation artifacts on
maintenance tasks, our study presents two main differences:
(1) we analyzed how developers use documentation during
software evolution aimed at identifying particular navigation
paths; and (ii) we also investigated the effect of experience on
how participants follow different usage paths.

B. Developers’ Behavior during Maintenance Tasks

von Mayrhauser and Vans [29] observed how professional
developers work when performing maintenance tasks, finding
that programmers use a multi-level approach during source
code understanding, switching between different programs as
well as between different sources of documentation.

Robillard et al. [20] performed an exploratory study to
analyze the factors that contribute to effective program in-
vestigation behavior, while Sillito et al. [23] performed two
qualitative studies aimed at understanding what a programmer
needs to know about a code base when performing a change
task, how a programmer goes about finding that information,
and how well today’s programming tools help in that process.

Singer et al. [24] studied the daily activities of developers.
Such a study provides some guidelines fro tool designers that
represent an alternative to the traditional paths taken in human-
computer interaction, namely those issuing from the study of
the users’ cognitive processes and mental models, and the
emphasis on usability. Also, DeLine et al. [8] identified several
usability issues of conventional development environments
when a developer has to update a software system, including
maintaining the number and layout of open text documents
and relying heavily on textual search for navigation.

de Alwis and Murphy [7] analyzed how programmers
experience disorientation when using Eclipse, identifying three
factors that may lead to disorientation: the absence of connect-
ing navigation context during program exploration, thrashing
between displays to view necessary pieces of code, and the
pursuit of sometimes unrelated subtasks.

Storey et al. [25] performed a study aimed at analyzing
whether program understanding tools enhance or change the
way that programmers understand programs. Based on the
results achieved the authors suggested that tools should support
multiple strategies (top-down and bottom-up, for example)
and should aim to reduce cognitive overhead during program
exploration.

The behavior of software developers has also been analyzed
aimed at identifying approaches able to reduce the information
overload (e.g., number of artifacts to be analyzed) of devel-
opers by filtering and ranking the information presented by
the development environment [10], [14], [15]. The findings of
our paper can complement such models. The usage patterns
identified in our study can be used to complement such
approaches providing a more effective support during program
comprehension.

Recently, eye tracking systems have been used to inves-
tigate the comprehension of UML diagrams [12], [30], the
effect of the layout on the comprehensibility of software
documentation artifacts [22], and the effect of design patterns
on comprehension [13]. The use of eye tracking systems is
particular useful to investigate on the way developers look at
the documentation aimed at deriving guidelines for facilitating
the comprehension of software documentation.

We share with all these studies the need to empirically
analyze the behavior of developers during software develop-
ment and maintenance. However, we analyzed the behavior
from a different perspective. Specifically, our analysis aimed at
analyzing how developers use software documentation in order
to identify recurring usage paths. Such paths could be used
to enhance contemporary IDEs and provide more effective
strategies for browsing documentation artifacts.

VI. CONCLUSION AND FUTURE WORK

This paper reported a study aiming at investigating how
developers navigate and browse documentation artifacts during
maintenance tasks. We asked 33 participants to perform 8§
different maintenance tasks on a Java software system pro-
viding them, besides the source code, use case descriptions,
sequence diagrams, class diagrams, and Javadocs. Through an
Eclipse plugin, we recorded how much time participants spent
on different artifacts, and how they navigated from an artifact
to another.



Results of our study indicated that participants spent most
of their time on source code when identifying code components
impacted by a maintenance activity, while preferring sequence
diagrams among the available sources of documentation, fol-
lowed by class diagrams. Also, they generally started their
tasks from source code, or from design documents (84%
of cases), then browsing back and forth between source
code and either class or sequence diagrams. Less frequently,
participants—especially more experienced ones (i.e., graduate
students)—-followed an “integrated” approach, by using dif-
ferent kinds of artifacts, namely starting from use cases, then
accessing design documents (class and/or sequence diagrams),
and finally accessing source code.

As a first direction for future work, we plan to corroborate
our results by replicating our study with different participants
and systems. Moreover, we plan to conduct other controlled
experiments to explicitly investigating possible relationships
existing between the way developers use the available docu-
mentation and the correctness of the tasks they perform.
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