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Abstract—Unit testing represents a key activity in software
development and maintenance. Test suites with high internal
quality facilitate maintenance activities, such as code com-
prehension and regression testing. Several guidelines have
been proposed to help developers write good test suites.
Unfortunately, such rules are not always followed resulting
in the presence of bad test code smells (or simply test smells).
Test smells have been defined as poorly designed tests and
their presence may negatively affect the maintainability of
test suites and production code. Despite the many studies
that address code smells in general, until now there has been
no empirical evidence regarding test smells (i) distribution in
software systems nor (ii) their impact on the maintainability
of software systems.

This paper fills this gap by presenting two empirical studies.
The first study is an exploratory analysis of 18 software systems
(two industrial and 16 open source) aimed at analyzing the
distribution of test smells in source code. The second study,
a controlled experiment involving twenty master students, is
aimed at analyzing whether the presence of test smells affects
the comprehension of source code during software mainte-
nance. The results show that (i) test smells are widely spread
throughout the software systems studied and (ii) most of the test
smells have a strong negative impact on the comprehensibility
of test suites and production code.

Keywords-Test smells; Unit testing; Mining software reposi-
tories; Controlled experiments

I. INTRODUCTION

Data abstraction, encapsulation, and modularity are key
Object-Oriented design principles that assure a set of non-
functional quality characteristics. Example characteristics of
a software system include maintainability, understandability
and ease of evolution [1], [2], [3]. However, even when de-
velopers are familiar with OO principles, deadline pressure,
too much focus on pure functionality, or just inexperience
may lead to violations of these design rules [4].

The presence of bad code smells is symptomatic when
developers disobey OO design principles. The term bad
code smells was coined by Fowler [4] who presented an
informal definition of 22 code smells and provided a set
of characteristics used as indicators for design flaws with
respect to the maintainability of software systems.

Recent studies have proved that the occurrence of bad
code smells in a system’s source code can significantly
reduce its understandability, especially when the source code
contains combinations of different bad code smells [5]. In
addition, bad code smells increase the likelihood of classes
needing to changed to fix a fault [6]. To reduce all of these
concerns, specific refactoring operations can be applied to
remove bad smells [4].

Bad code smells do not plague only production code, but
they are also found in test code such as unit test suites [7].
However, test code has a distinct set of smells (bad test code
smells or simply test smells) that relate to the ways in which
test cases are organized, how they are implemented, and how
they interact with each other. Similar to bad code smells,
test smells are conjectured in the literature to decrease the
quality of systems and ad-hoc refactoring operations have
to be applied to remove them [7].

Despite several studies that consider test smell definitions,
identification and refactoring [7], [8], [9], no studies have
empirically investigated to what extent test smells are spread
in existing software systems nor the impact that they have
on program comprehension, a central activity of effective
software maintenance and evolution. A good understanding
of both the production code and the test code is essential to
allow the inspection, maintenance, reuse, and extension of
source code.

This paper fills this gap, by presenting two empirical
studies. The first study is an exploratory study of 18 soft-
ware systems (two industrial and 16 open source) aimed
at analyzing the distribution of test smells in source code
(e.g., how are test smells spread in software systems? Which
test smells are the most frequent?). The second study is a
controlled experiment involving twenty master students. It
is aimed at analyzing whether the presence of test smells
affects the comprehension of source code during software
maintenance. In the study we asked subjects to perform
different program comprehension tasks and we measured the
subjects’ performance using both correctness and the time
spent to perform a task.

Collected data from the first study shows that there is a
high diffusion of the test smells in both open source and

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE



Table I
TEST SMELLS DEFINITION [7]

Name Description Possible Effects
Mystery Guest A test uses external resources (e.g., file containing test data) Difficulties in test comprehension because of unknown values
Resource Optimism A test makes assumptions about the state/existence of external resources Non-deterministic result depending on the state of the resources
Test Run War A test allocates resources also used by others (e.g., tmp files) Failures occur when several people run tests simultaneously
General Fixture A test case fixture is too general and the test methods only access a part of it Difficulties in test comprehension
Eager Test A test method checks several methods of the tested object Difficulties in test comprehension and maintenance
Lazy Test Several test methods check a method of the tested class using the same fixture Difficulties maintaining consistency during test maintenance
Assertion Roulette Several assertions with no explanation within the same test method If an assertion fails it can be difficult to identify which type it is
Indirect Testing A test interacts with the object under test indirectly via another object Difficulties in test maintenance and debugging
For Testers Only A production class contains methods used only by test methods Difficulties during production code maintenance and comprehension
Sensitive Equality The toString method is used in assert statements Failures may occur if the toString method is changed
Test Code Duplication Code clones contained inside the unit tests Code clones have bad effects on maintainability.

industrial software systems. In addition, the second study
provides evidence that test smells have a strong negative
impact on program comprehension and maintenance.

The rest of the paper is organized as follows. Section
II provides background information on test smells and dis-
cusses the related literature. Section III presents the results of
the exploratory study, while Section IV presents the results
of the controlled experiment. Finally, Section V concludes
the paper highlighting directions for future work.

II. BACKGROUND AND RELATED WORK

Code smells in production code and test smells in test
code should be avoided by following well defined best
practices of good programming. For example, best practices
for JUnit tests have been defined by Schneider [10]. How-
ever, the quality of unit tests is mainly dependent on the
quality of the engineer who wrote the tests [11]. For this
and other reasons, such as strict deadlines and developers’
inexperience, not all developers follow these guidelines
eventually leading to increased maintenance costs especially
for unit tests.

Fowler defined a large set of production code bad smells
(and refactoring operations to remove them) [4]. However,
bad smells affecting test suites are not taken into account
in Fowler’s work. The importance of refactoring production
code and its test suites was highlighted for the first time
by Beck [12]. In his book, Beck explains the importance of
refactoring and testing activities in Test Driven Development
(TDD). When refactoring, the developer must ensure that
all unit tests continue to pass, so unit tests may need to be
refactored alongside the source code. Therefore, refactoring
the code should be followed by refactoring the tests [8].

The concept of test smells – denoting a poorly designed
test – was introduced by Van Deursen et al. [7]. They
identified eleven static test code smells and describe how
to remove them through specific refactoring operations. The
identified test smells (shown in Table I) refer to tests making
inappropriate assumptions on the availability of external
resources (Mystery Guest and Resource Optimism), tests that
are long and complex (General Fixture, Eager Test, Lazy
Test, Indirect Testing), tests containing bad programming
decisions (Assertion Roulette and Sensitive Equality), and

tests exposing signs of redundancy (Test Code Duplication).
The final test smell, For Testers Only, is unusual in that,
unlike the other ten, it does not appear in the test suite but
rather in the production code.

Meszaros [9] described the concept of test smells in a
broader context by explaining, in detail, the reasons test
smells appear as well as their side effects. Although both Van
Deursen et al. [7] and Meszaros [9] describe the potential
negative effects of each one of the test smells summarized
in Table I, no empirical investigation has considered their
presence or impact. We fill in this gap by empirically
analyzing which of these smells (i) appear in software
systems and (ii) which have a negative impact on software
maintenance.

Despite the lack of evidence regarding the negative im-
pacts of test smells on software maintenance, there has
been work on the automatic identification of test smells.
Van Rompaey et al. [13] propose a heuristic metric-based
approach to identify the General Fixture and Eager Test
bad smells. Reichhart et al. [14] propose TestLint, a rule-
based tool to detect static and dynamic test smells in
Smalltalk SUnit code. Breugelmans and Van Rompaey [15]
introduce a reverse engineering tool called TestQ able to
detect test smells through static source code analysis. These
authors also identify the need for empirical study to further
characterize test smells, their interaction, and their impact
on maintainability.

III. TEST SMELLS IN SOFTWARE PROJECTS

This section reports the results of the study we conducted
to analyze the distribution of the test smells defined by Van
Deursen et al. [7] in real software applications. In the study
nine of the eleven test smells are considered. Because the
test smells Mystery Guest, Resource Optimism and Test Run
War are similar and are caused by the same problem (i.e.,
usage of an external resource), we merge them under the
name Mystery Guest.

A. Planning

The four goals of the study are (i) determining how test
smells are spread in software systems; (ii) identifying the
most frequent test smells; (iii) investigating the similarities



Table II
OBJECT SYSTEMS USED IN OUR STUDY

System KLOC # Classes #JUnit
Classes

#JUnit
KLOC Link

AgilePlanner 2.5 24 299 32 4 ase.cpsc.ucalgary.ca
Apache Ant 1.8.1 108 851 75 8 ant.apache.org
ArgoUML 0.30.1 124 1,430 75 7 argouml.tigris.org
Barcode 2.1.0 14 167 35 3 barcode.sourceforge.net
Colossus 0.13.0 58 304 9 5 colossus.sourceforge.net
DependencyFinder 1.2.1.b3 29 498 120 19 depfind.sourceforge.net
eXVantage 20090507173755 28 348 17 4 research.avayalabs.com
FindBugs 2.0.0 92 1,023 27 2 findbugs.sourceforge.net
Hsqldb 2.2.8 131 443 12 3 hsqldb.org
Jabref 2.7.2 62 544 50 5 jabref.sourceforge.net
JMulTi 4.24 44 192 3 1 www.jmulti.de
JwebUnit 3.0 8 36 30 3 jwebunit.sourceforge.net
Morph 1.1.1 19 262 20 2 morph.sourceforge.net
Optal 1.4 28 356 11 1 opal.sourceforge.net
QuickFixj 1.5.2 19 204 49 6 www.quickfixj.org
Regain 1.7.11 22 223 4 1 regain.sourceforge.net
TripleA 1.3.2.2 97 640 54 9 triplea.sourceforge.net
xBaseJ 20090902 8 36 14 2 xbasej.sourceforge.net
All Systems 915 7,856 637 85 -

and differences in the distribution of test smells in industrial
and open source systems; and (iv) investigating the corre-
lation between system characteristics (i.e., production code
LOC, number of Classes, JUnit Classes LOC, number of
JUnit Classes) and the test smells present.

We analyzed the distribution of the test smells in the 18
software systems reported in Table II. For each system the
table reports its name, Kilo Lines Of Code (KLOC) in the
production code, number of classes, number of JUnit tests
under study, KLOC for the JUnit tests, and a reference link.
Two systems, AgilePlanner and eXVantage, are industrial,
while the remaining 16 are open source systems. All the
object systems are written in Java and have a JUnit test
suite.

Having 637 JUnit classes to analyze makes manual de-
tection of the nine test smells prohibitively expensive. For
this reason, we developed a simple tool to detect the nine
analyzed test smells. The tool outputs a list of candidate
JUnit classes (production code classes for For Testers Only)
potentially exhibiting a test smell. Then, we manually val-
idated the classes suggested by the tool. The validation
was performed by three Ph.D. students who individually
analyzed and classified as true positive or false positive all
the candidate test smells. Finally, the students performed an
open discussion with researchers to resolve any conflicts and
reach a consensus on the detected test smells.

To ensure high recall, our detection tool uses very simple
rules that overestimate the presence of test smells in the
code. This is done at the expense of precision. Even though
this choice resulted in a longer list of candidates and thus
more expensive manual validation, it was necessary because
of our goal to try to not miss any test-smell instances. Table
III reports the rules applied by our tool to detect each of the
nine analyzed test smells.

Note that we choose to not use existing detection tools
because their detection rules are too restrictive and may
miss test smell instances. As an example, to detect the
General Fixture test smell, the TestQ detection tool [15] uses
a heuristic metrics-based approach, while we simply retrieve
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Figure 1. The precision of our tool for detecting test smells.

as candidates those JUnit classes that have at least one
method not using the entire test fixture defined in the setUp()
method. Moreover, to detect the three test smells, Eager Test,
Lazy Test, and Indirect Testing, requires knowing the tested
classes of the analyzed JUnit tests. While this information
is ignored by TestQ during the detection of these three
test smells, we exploit test-to-code traceability information
previously derived by the same three Ph.D. students.

B. Analysis of the Results

Before presenting the test smells’ distribution, it is impor-
tant to report the precision achieved by the tool used to detect
candidate test-smell instances. Figure 1 reports the precision
of the tool in detecting each of the nine test smells. We
are assuming that recall is 100%, since our detection rules
overestimate the presence of test smells in the code. Even
using the simple detection rules shown in Table III, the tool
achieved very high precision, with the lowest point being
the detection of the Lazy Test bad smell (71%). Note that
the rule applied to detect this smell was very simple (i.e.,
“all the JUnit classes having at least two methods using the
same method of the tested class”).

As for the results related to our research goals, Table IV
shows the distribution of the test smells in the analyzed
object systems1. It is worth noting that the results for the
For Testers Only test smell are not shown in the table since
the instances of this smell appear in the production code
and not in the test suite. In particular, For Testers Only
represents a method (or an entire class) in the production
code that is used only by some test methods. We found
instances of For Testers Only in only two of the analyzed
systems, AgilePlanner and Apache Ant where three classes
in AgilePlanner and twelve in Apache Ant were For Testers
Only.

As for the other eight test smells, Table IV highlights their
significant presence in the analyzed systems. In particular,
the two test smells Eager Test and Assertion Roulette are
present in all 18 systems. These test smells are present in
the 32% and 62% of the total JUnit classes, respectively.
Thus, understanding if they represent an actual problem for

1The raw data of our study is available online [16].



Table III
RULES APPLIED TO DETECT TEST SMELLS IN JUNIT CLASSES

Test Smell Candidate Classes
Mystery Guest JUnit classes using an external resource (e.g., a file or database)
General Fixture JUnit classes having at least one method not using the entire test fixture defined in the setUp() method
Eager Test JUnit classes having at least one method that uses more than one method of the tested class
Lazy Test JUnit classes having at least two methods using the same method of the tested class
Assertion Roulette JUnit classes containing at least one method having more than one assert statement and at least one assert statement without explanation
Indirect Testing JUnit classes invoking, besides methods of the tested class, methods of other classes in the production code
For Testers Only Classes in the production code having structural relationships (e.g., method invocations, inheritance) with only JUnit classes
Sensitive Equality JUnit classes having at least one assert statement invoking a toString method
Test Code Duplication JUnit classes identified as containing clones by the CCFinder clone detection tool (http://www.ccfinder.net)

Table IV
THE DISTRIBUTION OF TEST SMELLS IN SOFTWARE SYSTEMS

System #JUnit
Tests

JUnit Tests
with test smells

Test Code
Duplication

Mystery
Guest

General
Fixture

Eager
Test

Lazy
Test

Assertion
Roulette

Indirect
Testing

Sensitive
Equality

Agileplanner 32 29 (91%) 1 ( 3%) 5 (16%) 6 (19%) 11 (34%) 5 (16%) 26 (81%) 3 ( 9%) 1 ( 3%)
Apache Ant 75 65 (87%) 20 (27%) 22 (29%) 12 (16%) 38 (51%) 0 ( 0%) 42 (56%) 10 (13%) 3 ( 4%)
ArgoUML 75 73 (97%) 12 (16%) 0 ( 0%) 17 (23%) 18 (24%) 3 ( 4%) 56 (75%) 14 (19%) 6 ( 8%)
Barcode 35 29 (83%) 4 (11%) 1 ( 3%) 0 ( 0%) 11 (31%) 1 ( 3%) 25 (71%) 2 ( 6%) 2 ( 6%)
Colossus 9 8 (89%) 2 (22%) 0 ( 0%) 2 (22%) 5 (56%) 1 (11%) 6 (78%) 4 (44%) 0 ( 0%)
DependencyFinder 120 98 (82%) 40 (33%) 5 ( 4%) 41 (34%) 30 (25%) 0 ( 0%) 46 (38%) 10 ( 8%) 9 ( 7%)
eXVantage 17 17 (100%) 6 (35%) 1 ( 6%) 2 (12%) 7 (41%) 1 ( 6%) 17 (100%) 12 (71%) 1 ( 6%)
FindBugs 27 24 (89%) 4 (15%) 1 ( 4%) 6 (22%) 3 (11%) 2 ( 7%) 19 (70%) 2 ( 7%) 4 (15%)
Hsqldb 12 11 (92%) 8 (67%) 2 (17%) 2 (17%) 1 ( 8%) 0 ( 0%) 7 (58%) 0 ( 0%) 0 ( 0%)
Jabref 50 28 (56%) 7 (14%) 6 (12%) 5 (10%) 8 (16%) 2 ( 4%) 23 (46%) 14 (28%) 1 ( 2%)
Jmulti 3 3 (100%) 1 (33%) 1 (33%) 0 ( 0%) 1 (33%) 0 ( 0%) 3 (100%) 1 (33%) 0 ( 0%)
JwebUnit 30 18 (60%) 6 (20%) 2 ( 7%) 3 (10%) 2 ( 7%) 0 ( 0%) 15 (50%) 0 ( 0%) 0 ( 0%)
Morph 20 8 (40%) 1 ( 5%) 0 ( 0%) 2 (10%) 1 ( 5%) 0 ( 0%) 5 (25%) 0 ( 0%) 0 ( 0%)
Optal 11 10 (91%) 5 (45%) 0 ( 0%) 0 ( 0%) 8 (73%) 2 (18%) 9 (82%) 7 (64%) 0 ( 0%)
QuickFixj 49 42 (86%) 13 (27%) 3 ( 6%) 6 (12%) 22 (45%) 0 ( 0%) 34 (69%) 8 (16%) 8 (16%)
Regain 4 2 (50%) 0 ( 0%) 0 ( 0%) 0 ( 0%) 1 (25%) 0 ( 0%) 1 (25%) 0 ( 0%) 0 ( 0%)
Triplea 54 49 (91%) 18 (33%) 0 ( 0%) 16 (30%) 27 (50%) 6 (11%) 47 (87%) 17 (31%) 3 ( 6%)
Xbasej 14 13 (93%) 0 ( 0%) 1 ( 7%) 1 ( 7%) 9 (64%) 0 ( 0%) 13 (93%) 3 (21%) 0 ( 0%)
All Systems 637 525 (82%) 148 (23%) 50 ( 8%) 121 (19%) 203 (32%) 23 ( 4%) 394 (62%) 107 (17%) 38 ( 6%)

software maintenance is very important. The high diffusion
of the Assertion Roulette test smell was also previously noted
by Qusef et al. [11].

Other diffused test smells are Test Code Duplication
(23%), General Fixture (19%), and Indirect Testing (17%).
On the other hand, the three test smells Mystery Guest (8%),
Sensitive Equality (6%), and Lazy Test (4%), have a low
diffusion in the analyzed 18 systems. Note that the latter is
the test smell affecting the lowest number of systems (nine).

It is also worth noting that among the 637 analyzed JUnit
classes, only 112 (18%) are not affected by any test smell.
This means that 525 (82%) of the analyzed test suites are
affected by at least one test smell. Among these, 219 (34%)
are affected by only one test smell, 156 (25%) by two, 83
(13%) by three, 46 (7%) by four, 16 (3%) by five, and 6 (1%)
by six. Table V reports the detailed data for each system.
An example of a test suite affected by six test smells is
the JUnit class SynchronousPersisterTest contained in the
AgilePlanner project. This class is affected by the Mystery
Guest, Test Code Duplication, General Fixture, Eager Test,
Lazy Test, and Assertion Roulette test smells.

We also analyzed the co-occurrences of the test smells
inside the JUnit classes. In particular, we investigated how
often the presence of a test smell in a JUnit class implies the
presence of another test smell. Thus, for each test smell Ti
we measured the percentage of times that its presence in a
JUnit class co-occurs with each other test smell Tj (i 6= j).

Table V
TEST SMELLS PRESENCE IN JUNIT CLASSES

System Number of Test Smells Present
0 1 2 3 4 5 6

AgilePlanner 3 16 5 3 3 1 1
Apache Ant 10 23 24 5 8 1 4
ArgoUML 2 37 23 10 2 1 0
Barcode 6 16 10 2 1 0 0
Colossus 1 2 2 2 1 1 0
DependencyFinder 22 46 32 12 7 1 0
eXVantage 0 2 6 5 3 1 0
FindBugs 3 14 4 5 1 0 0
Hsqldb 1 5 3 3 0 0 0
Jabref 22 10 6 7 3 1 1
JMulTi 0 2 0 0 0 1 0
JwebUnit 12 9 8 1 0 0 0
Morph 12 7 1 0 0 0 0
Optal 1 0 2 5 3 0 0
QuickFixj 8 13 14 8 5 2 0
Regain 2 2 0 0 0 0 0
TripleA 6 11 10 15 7 6 0
xBaseJ 1 4 6 1 2 0 0
All Systems 112 219 156 83 46 16 6

Specifically, for each pair of test smells Ti, Tj , we measured
the percentage of co-occurrences of Ti and Tj as:

co-occurrencesTi,j
=
|Ti ∧ Tj |
|Ti|

where |Ti ∧ Tj | is the number of co-occurrences of Ti and
Tj and |Ti| is the number of occurrences of Ti. Note that



Table VI
TEST SMELLS CO-OCCURRENCES IN THE ANALYZED JUNIT CLASSES

Test
Code
Dupl.

Mystery
Guest

General
Fixture

Eager
Test

Lazy
Test

Assertion
Roulette

Indirect
Testing

Sensitive
Equality

Test
Code
Dupl.

14% 28% 42% 6% 64% 22% 11%

Mystery
Guest 42% 30% 58% 6% 66% 26% 4%

General
Fixture 34% 12% 31% 4% 67% 26% 7%

Eager
Test 31% 14% 18% 9% 73% 30% 8%

Lazy
Test 39% 13% 22% 78% 83% 61% 22%

Assertion
Roulette 24% 8% 21% 38% 5% 22% 6%

Indirect
Testing 31% 12% 29% 57% 13% 82% 7%

Sensitive
Equality 47% 6% 25% 44% 14% 61% 19%

co-occurrencesTi,j differs from co-occurrencesTj,i since the
formula’s denominator changes from |Ti| to |Tj |.

Table VI shows the results. The first result that leaps to
the eyes is that all the test smells frequently co-occur with
Assertion Roulette. However, this is easily explained by the
high diffusion of this test smell, which is present in 62% of
the JUnit classes. Perhaps, more interesting is that when a
Lazy Test test smell is present in a JUnit class, then 78%
of the time it is accompanied by an Eager Test. On the
contrary, an Eager Test is accompanied by Lazy Test only 9%
of the time. We manually analyzed these cases, observing
that a Lazy Test often occurs when there is a method in the
tested class that is hard to test because several different test
scenarios are needed to exhaustively test the class. Moreover,
this kind of method often implements the key responsibility
in the tested class, which makes its execution essential to
support the test of other methods in the tested class. This
results in the introduction of an Eager Test. On the other
hand, the presence of an Eager Test implies the presence of
a Lazy Test only 9% of the time. We observed that for classes
relatively simple to test, developers often write test methods
that test several (simple) methods of the tested class. This
results in the introduction of an Eager Test without a Lazy
Test. Thus, the 9% of co-occurrences is likely due to the
causes described above, where the introduction of both Lazy
Test and Eager Test is forced by the peculiarity of the tested
method (i.e., particularly hard to test and essential to support
the test of other methods).

Another interesting analysis is a comparison between the
two industrial systems and the sixteen open source systems
involved in our study. In particular, we analyzed the diffusion
of test smells in the two types of systems. We excluded
For Testers Only from the analysis since we know that
it is present only in two systems, the industrial system
AgilePlanner and the open source system Apache Ant.
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Figure 2. Test smells distribution on industrial and open source systems

Figure 2 depicts the distribution of test-smell instances in
open source (black bars) and industrial (gray bars) systems.
As is visually evident, the trend is very similar for the
two categories of systems. In both industrial and open
source systems Assertion Roulette is the most frequent
test smell with 43 out of 46 (88%) JUnit classes affected
in the industrial systems and 351 out of 588 (60%) in
the open source systems, followed by Eager Test. On the
other hand, test smells like Sensitive Equality and Lazy
Test have few instances in both industrial and open source
systems. While the trend in the distribution of bad smells is
similar, it is interesting to note that for most types of bad
smells, the percentage of bad-smell instances is higher in
the industrial systems. This is potentially explained by the
greater time pressure often found in an industrial context,
which would make industrial programmers more prone to
bad programming practices. Note that, due to the difficulty
in finding industrial repositories, we have analyzed only two
industrial systems. This clearly limits the external validity
of the results.

Finally, to analyze possible correlations between the sys-
tems’ characteristics (i.e., production code LOC, number of
Classes, number of JUnit Classes, and JUnit Classes LOC)
and the test smells’ presence, we computed, for each object
system, the Pearson product-Moment Correlation Coefficient
(PMCC) [17] between the values of each system’s character-
istic and the percentage of occurrences of each test smell in
this system. PMCC is a measure of correlation between two
variables X and Y defined in [−1, 1], where 1 represents a
perfect positive linear relationship, −1 represents a perfect
negative linear relationship, and values in between indicate
the degree of linear dependence between X and Y . Cohen
et al. [17] provided a set of guidelines for the interpretation



Table VII
CORRELATIONS BETWEEN SYSTEMS CHARACTERISTICS AND TEST

SMELL PRESENCE (PMCC)

Test Smell LOC #Classes #JUnit Classes JUnit Classes
LOC

Mystery Guest 0.22 -0.04 -0.02 -0.07
General Fixture 0.49 0.44 0.45 0.46
Eager Test -0.15 -0.15 -0.08 0.02
Lazy Test 0.03 0.12 -0.17 -0.11
Assertion Roulette 0.06 0.01 -0.26 -0.19
Indirect Testing -0.06 -0.02 -0.22 -0.08
Sensitive Equality 0.18 0.25 0.25 0.24
Test Code Duplication 0.15 0.10 0.04 0.19

of the correlation coefficient. It is assumed that there is
no correlation when 0 ≤ ρ < 0.1, small correlation when
0.1 ≤ ρ < 0.3, medium correlation when 0.3 ≤ ρ < 0.5,
and strong correlation when 0.5 ≤ ρ ≤ 1. Similar intervals
also apply for negative correlations.

Table VII reports the PMCC for the analyzed correlations.
As we can see there are no strong correlations between
the system characteristics and the presence of test smells
in their test suites. However, there are some interesting
medium correlations as for example those between the
General Fixture bad smell and the four analyzed systems
characteristics. The positive correlations achieved tell us that
the bigger the system (in terms of all LOC, number of
Classes, number of JUnit Classes, and JUnit Classes LOC)
the higher the likelihood that its JUnit classes are affected
by the General Fixture test smell. This is in someway an
expected result, since this test smell generally implies a large
test environment declared in the affected test suites. These
large test environments are mostly declared when several ob-
jects are needed to exhaustively test a class. It is reasonable
to think that larger systems are more complex and thus more
often require complex test environments in their test suites.
As for the other test smells, no interesting correlations were
observed with the four investigated systems’ characteristics.

Summarizing, the diffusion of the test smells in the 18
analyzed software systems is generally high. Their preva-
lence highlights the need for empirical evaluation targeted
at analyzing test smells influence on the maintainability of
the test suites. In our second empirical study (Section IV)
we provide such evidence.

C. Threats to Validity

There are three main threats that could affect the validity
of our results. First, the tool used to detect candidate test-
smell instances could fail to retrieve some of the test-
smell instances in the software repositories. To mitigate this
concern, we defined the rules used in the detection process
(see Table III) to overestimate the presence of test smells
in the code, confiding in the subsequent manual validation
to eliminate false positives. In fact, given the test smell
definitions and the exploited detection rules, our tool will
certainly overestimate the test-smell instances.

The second threat is related to the manual validation of the

Table VIII
JUNIT CLASSES AND TEST METHODS INVOLVED IN OUR STUDY

Test Smell JUnit Class Test Methods
Mystery
Guest

ConversionTest (AgilePlanner)
tmptest (eXVantage)

testStoryCardExpectingWierdness
testInteg

General
Fixture

ServerBlackBoxTest (AgilePlanner)
ProjectTest (eXVantage)

testServerSetup
test1Create

Eager Test CardModelTest (AgilePlanner)
NewCFGTest (eXVantage)

testUpdatedIterationModelAndStoryCardModel
test1

Lazy Test ModelTests (AgilePlanner)
CFGActionTest (eXVantage)

testCreatedStoryCardIteration, testCreatedIteration
test1, test2, test3

Assertion
Roulette

ConversionTest (AgilePlanner)
SessionTraceBitFormatterTest (eXVantage)

testIterationExpectingWeirdness
testEncodeOversizeId

Indirect
Testing

PersisterFactoryTest (AgilePlanner)
AboutCFGTest (eXVantage)

testSetPersister
test2

Sensitive
Equality

CardModelTest (AgilePlanner)
ASTTest (eXVantage)

testHashCode
test30

Test Code
Duplication

SynchronousPersisterTest (AgilePlanner)
CFGActionTest (eXVantage)

Whole class
Whole class

candidate test-smell instances performed by the three Ph.D.
students. To avoid biasing the experiment, these students
were not aware of the experimental goal. To further mitigate
this threat, the students individually validated the test-smell
instances and then the list of true positives was finalized
in a review meeting attended by the students and academic
researchers.

Finally, while the number of analyzed open source sys-
tems (16) is sufficient to infer generalizations of the results,
more industrial systems are needed beyond the two analyzed
in this paper to corroborate our results.

IV. INFLUENCE OF TEST SMELLS ON MAINTENANCE

This section reports the design and results of the empirical
study we conducted to analyze the effects of the eight test
smells (Mystery Guest, General Fixture, Eager Test, Lazy
Test, Assertion Roulette, Indirect Testing, Sensitive Equality,
and Test Code Duplication) on software maintenance. The
test smell For Testers Only was not considered since (i) it
appears only in two of the systems and (ii) in contrast to the
other eight test smells, it affects the production code rather
than the test suite.

A. Design

In this study the following research question is investi-
gated:

What is the impact of test smells on program
comprehension during maintenance activities?

To answer this research question we performed a controlled
experiment involving 20 master students attending the Soft-
ware Engineering course at the University of Salerno (Italy).
We performed the experiment on two systems, AgilePlanner
and eXVantage. We chose these systems since (i) both have
at least one instance of each test smell (see Table IV) and (ii)
they are both industrial systems. The latter reason reduces
the possibility of the development environment being a
confounding factor.

We randomly selected for each of the eight test smells a
JUnit class from each object system having the smell. Table



Table IX
EXPERIMENTAL DESIGN

Group Test Smells
NO YES

A AgilePlanner (Lab1) eXVantage (Lab2)
B AgilePlanner (Lab2) eXVantage (Lab1)
C eXVantage (Lab1) AgilePlanner (Lab2)
D eXVantage (Lab2) AgilePlanner (Lab1)

VIII reports the selected JUnit classes with the methods af-
fected by the test smells. To obtain a version of each selected
JUnit class without test smells, we manually refactored them
following the guidelines provided by Van Deursen et al. [7].

The experiment was organized in two laboratory sessions.
Each subject worked on JUnit classes of a system with test
smells in one laboratory session and on JUnit classes of
the other system without test smells in the other laboratory
session. The organization of each group of subjects in each
lab session (Lab1 and Lab2) followed the design shown in
Table IX. The rows represent the four experimental groups
and the columns show the presence or absence of test smells
in the analyzed JUnit classes.

The outcome observed in the experiment was the ability of
the subjects to correctly understand maintenance activities.
This was evaluated by asking subjects to answer a question-
naire (similar to that used by Ricca et al. [18]) consisting of
16 questions (eight for each system). The questions cover
all the test smells involved in our evaluation (each question
covers one of the eight test smells). Note that the questions
were exactly the same (and involved exactly the same JUnit
classes) between the questionnaire for the JUnit classes with
and without test smells. The only difference was the presence
of the test smells in the analyzed test code. The questionnaire
was uploaded on a server in the form of a web-application
able to (i) automatically balance the subjects among the four
experimental groups, (ii) show the questions to the subjects
in a random order to reduce the impact of learning effects
and subject fatigue, and (iii) measure the time spent by each
subject in answering each question.

Figure 3 shows two sample questions from the AgilePlan-
ner questionnaire. The first question was used to evaluate the
influence of the Lazy Test smell, while the second was used
to evaluate the influence of the Test Code Duplication smell.
The complete questionnaire is available online [16].

B. Variable Selection and Data Analysis

We performed a single factor within-subjects design,
where the independent variable (main factor) is the presence
or absence of test smells in the analyzed test suites. This
variable, denoted TestSmells, takes the value true or false.

The dependent variables are correctness, which denotes
the ability of a subject to correctly understand the mainte-
nance activities, and time, which measures the time spent
by the subject in answering each question. To measure
the correctness we used a combination of the two well

The method getIterations implemented inside the class 
ProjectModel is tested by the Test Suite ModelTests. If a 
change is performed to getIterations, which test methods 
inside ModelTests should be executed to perform regression 
testing?

Lazy Test

The Test Suite SynchronousPersisterTest tests the class 
PersisterToXML. The constructor of PersisterToXML has 
been changed, and now takes one more parameter as input. 
Which lines of code from the Test Suite are impacted by this 
change?

Test Code Duplication

Figure 3. AgilePlanner: sample questions

known Information Retrieval metrics, recall and precision
[19]. These two are defined as follows:

recalls =

∑
i

|answers,i ∩ correcti|∑
i

|correcti|
%

precisions =

∑
i

|answers,i ∩ correcti|∑
i

|answers,i|
%

where answers,i is the set of answers given by subject s
to question i and correcti is the set of correct answers
expected for the question i. Note that the aggregate measures
defined above differ from mean average precision and mean
average recall because they take into account the cases where
a subject does not provide an answer to a given question
[20]. Finally, recall and precision measure two different (but
related) concepts, and thus we use their harmonic mean (i.e.,
F-measure [19]) to obtain a balance between them when
measuring correctness.

As for the time, we measured (in seconds) the time spent
by the subjects in answering each question. In this way, it
is possible to determine if the time needed to answer the
questions related to test suites with test smells was higher
than that needed when test smells were not present.

Because the data did not follow a normal distribution,
the non-parametric Wilcoxon test [21] was used to analyze
the differences exhibited by subjects working with and
without test smells for both correctness and time. Moreover,
because each subject performed a task on two different
systems (AgilePlanner or eXVantage) analyzing test suites
with or without test smells (i.e., TestSmells was true for
one system and false for the other), a paired test was
used. Differences are considered statistically significant at
α = 0.05 level. We also estimated the magnitude of the effect
of the main treatment on the dependent variables using the



Table X
DESCRIPTIVE STATISTICS OF CORRECTNESS AND TIME BY TEST SMELL

Test Smell
Smell not present (TestSmells = false) Smell present (TestSmells = true)

correctness time correctness time
Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

Mystery Guest 0.83 1.00 0.37 290 276 120 0.22 0.00 0.39 347 292 182
General Fixture 0.84 0.88 0.23 270 168 257 0.63 0.62 0.22 274 245 175
Eager Test 0.88 1.00 0.16 176 147 189 0.52 0.46 0.29 354 294 245
Lazy Test 0.97 1.00 0.11 235 181 213 0.86 1.00 0.32 250 239 135
Assertion Roulette 0.90 1.00 0.31 272 229 215 0.00 0.00 0.00 335 276 230
Indirect Testing 0.87 1.00 0.31 219 143 166 0.66 0.48 0.37 242 256 121
Sensitive Equality 0.95 1.00 0.22 176 203 112 0.58 1.00 0.49 197 159 119
Test Code Duplication 0.90 1.00 0.24 227 182 145 0.72 0.80 0.33 258 238 107

Table XI
WILCOXON TEST FOR CORRECTNESS AND TIME BY TEST SMELL

Test Smell
correctness time

NoTestSmell$FM - TestSmell$FM p-value effect size NoTestSmell$Time - TestSmell$Time p-value effect sizeMean Median St. Dev. Mean Median St. Dev.
Mystery Guest 0.62 1.00 0.60 < 0.01 1.03 -57 -22 336 0.27 -0.17
General Fixture 0.21 0.21 0.26 < 0.01 0.79 -5 -22 327 0.43 -0.01
Eager Test 0.37 0.34 0.37 < 0.01 0.98 -178 -207 326 < 0.01 -0.55
Lazy Test 0.12 0.00 0.35 0.11 0.33 -16 -18 264 0.23 -0.06
Assertion Roulette 0.90 1.00 0.31 < 0.01 2.92 -63 -82 383 0.28 -0.17
Indirect Testing 0.21 0.33 0.54 0.05 0.39 -24 -12 204 0.32 -0.12
Sensitive Equality 0.37 0.00 0.48 < 0.01 0.76 -20 -69 161 0.31 -0.13
Test Code Duplication 0.18 0.14 0.41 0.01 0.44 -31 -81 175 0.29 -0.17

Cohen d effect size [17]. The effect size is considered small
for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8 and large for
d ≥ 0.8 [17].

Finally, to better assess the effect of the test smells on
the subjects’ performance, it is necessary to consider other
factors (called co-factors) that may impact the results. In the
context of our study, we identify the following co-factors:

• System: since our experiment used two different sys-
tems, there is the risk that they may have confounding
effect with the main factor. For this reason we consid-
ered the analyzed system as a co-factor.

• Lab: as explained before, the experiment was organized
in two laboratory sessions. Although the experimental
design limits learning and fatigue effects, it is still im-
portant to analyze whether subjects perform differently
across subsequent lab sessions.

To analyze the effects of the co-factors on subject perfor-
mance and their interaction with the main factor we used
the two-way Analysis of Variance (ANOVA) [21].

C. Analysis of the Results

Table X shows descriptive statistics for the dependent vari-
ables, correctness and time separated by test smell presence.
For all the analyzed JUnit tests the subjects achieved a higher
correctness on the version without the test smells. Moreover,
for six out of eight test smells the difference in terms of
correctness is statistically significant (see Table XI). Also
the analysis of the effect size confirms that the impact of
this six test smells on the correctness is strong. In particular,
for four test smells, Mystery Guest, General Fixture, Eager
Test, and Assertion Roulette, the effect size is large (≥ 0.8)

while for the remaining two (i.e., Sensitive Equality and Test
Code Duplication) is medium (≥ 0.5).

Finally, the Lazy Test and Indirect Testing test smells have
a negative impact on the correctness achieved by the subjects
(see Table X) although it is not statistically significant (p-
value ≥ 0.05). In particular, the Lazy Test smell does not
seem to have a strong impact on program comprehension
and maintenance.

Assertion Roulette deserves specific consideration. From
the results reported in Table X it is clear that in the presence
of this test smell subjects were not able to perform the
required maintenance activity (F-Measure always equals
zero). In particular, we required subjects to identify which
line of code in a test suite generated a particular error
trace. It is worth noting that this test smell “comes from
having a number of assertions in a test method that have
no explanation” [7] and thus if one of the assertions fails it
is difficult to identify which one it is since no explanation
is present in the reported error trace. This is the cause of
the zero F-Measure achieved by the subjects in presence of
this test smell against 90% without it. This is of particular
importance, because Assertion Roulette is by far the most
frequent test smell in the 18 projects analyzed in Section
III, occurring in 62% of the JUnit tests.

Another interesting case is the Mystery Guest test smell.
In this case the presence of this test smell in the test suite
lowered the average correctness by over 60 percentage points
(from 83% to 22%). A test suite affected by this smell “uses
external resources, such as a file containing test data” [7].
In our questionnaire we asked the subjects what changes
should be applied in the test suite to modify the test data.
In the test suite with the Mystery Guest the test data were



read from an XML file, while in the version without test
smell an Inline Resource Refactoring [7] had been applied,
putting the test data inside a String defined in the test suite.
As highlighted by Tables X and XI the effect of this simple
refactoring was dramatic.

Concerning time, Table X shows that the time spent by
the subjects was generally higher in presence of test smells.
The strongest difference is seen in presence of the Eager
Test smell, occurring when “a test method checks several
methods of the object to be tested” [7]. In this case we asked
the subjects to identify the methods tested by a test method
representing an Eager Test. Clearly, since this smell was
removed using the Extract Method Refactoring [4], which
separates the test code into several test methods that each
only test one method, the time needed to answer the question
in absence of the test smell was considerably lower. Note
that this test smell is also the only one for which we had a
statistically significant difference between the time spent in
the analysis of JUnit tests with and without test smell (see
Table XI).

Summarizing, the results show that test smells have a
strong negative impact on the maintainability of the affected
test suites in terms of both accuracy and time. This is true for
all the analyzed test smells except for the Lazy Test for which
we did not observe meaningful differences in the subject
performance.

D. Threats to Validity

In the following we discuss threats that could affect the
validity of our findings.

Even though the chosen design aims to mitigate learn-
ing and fatigue effects, there is still the risk that, during
labs, subjects might have learned how to improve their
performance. We tried to limit this effect by means of a
preliminary training phase performed through a two-hours
seminar about the JUnit framework. In addition, since the
subjects worked on two different systems, there is the risk
that one system might be easier than the other. For this
reason, as explained in Section IV-A, we analyzed the
effect of these two co-factors, Lab and System, and their
interaction with the main factor through the ANOVA test.
The analysis did not reveal any significant influence of either
co-factor nor any significant interaction between the main
factor and the two co-factors.

Another possible threat is represented by the questions
chosen to test the effects of the test smells on software
maintenance. For each test smell we tried to include in our
questionnaire a question focused as much as possible on
maintenance activities involving the test smell. However, a
set of different questions might lead to different results.

During the statistical analysis of the results we paid atten-
tion to the assumptions made by statistical tests. Whenever
the conditions necessary to use a parametric test did not
hold, an appropriate non-parametric test, most often the

Wilcoxon test for paired analyses was used. We verified
these conditions using the non-parametric Wilk-Shapiro test
[21]. We also used the parametric ANOVA test to analyze
the effect of the co-factors even though the distribution was
not normal. This is reasonable because the ANOVA test is a
very robust test [22]. In addition, even when the data was not
normally distributed we can relax the normality assumption
under the law of large numbers, which states that with a
population higher than 100 (our population is 320 = 20
subjects × 16 questions) it is safe to relax the normality
assumption [23].

The controlled experiment involved Master students at-
tending the Software Engineering course. The students had
good knowledge of Object Oriented programming and test-
ing, and a week before the experiment, they attended a two
hour seminar about the JUnit framework. As highlighted by
Arisholm and Sjoberg [24] the difference between students
and professionals is not always easy to identify. Neverthe-
less, there are several differences between industrial and
academic contexts. For these reasons, we plan to replicate
the experiment with industrial subjects to corroborate our
findings.

During the controlled experiment students analyzed the
source code by using the web-application we developed. On
one hand, this avoided to confound the results with how
familiar subjects were with a given IDE. On the other hand,
using some IDE’s features, subjects might be able to achieve
better performance during some of the required maintenance
activities.

To avoid social threats due to evaluation apprehension,
students were not evaluated on their performance. During the
experiment, we monitored the subjects to verify whether they
were motivated and paid attention in performing the assigned
task. We observed that students performed the required task
with dedication and there was no abandonment. Moreover,
students were not aware of the goal of our experiment nor
of the dependent variables.

As for the objects, we performed the experiment on two
industrial systems (AgilePlanner and eXVantage) because
both have at least one instance of each test smell (see Table
IV) and, belonging to the same category of systems, we
reduce the possibility of the development style acting as a
confounding factor.

V. CONCLUSION AND FUTURE WORK

Test code smells have been presented in the literature as
a possible threat to the maintainability of production code
and test suites. However, until now no empirical evidence
has demonstrated that test code smells occur quite frequently
in software systems and that they negatively impact the
maintainability of software systems.

This paper filled this gap by performing two empirical
studies. In the first study, we analyzed the distribution of test
smells in 18 software systems (two industrial and 16 open



source). The results demonstrated that from a total of 637
JUnit classes analyzed, only 112 (18%) were not affected by
any test smell, while the remaining 525 (82%) was affected
by at least one test smell with a peak of six test smells
founded in six (1%) of the JUnit classes. Thus, our first
case study highlighted the high diffusion of the test smells
in software systems.

In our second study, we asked 20 Master students to
perform maintenance activities on test suites of two software
systems with and without test smells. The results showed
that the presence of test smells has a strong negative impact
on maintainability.

As a first direction for future work, we plan to corroborate
our results by replicating the second study with different
subjects and systems. Moreover, we are working on methods
and tools able to (i) detect candidate test smell instances and
(ii) automatically refactor them.
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