
Teaching Software Engineering and Software Project Management:
An Integrated and Practical Approach

Gabriele Bavota1, Andrea De Lucia1, Fausto Fasano2, Rocco Oliveto2, Carlo Zottoli1
1School of Science, University of Salerno, 84084 Fisciano (SA), Italy
2STAT Department, University of Molise, 86090 Pesche (IS), Italy

gbavota@unisa.it, adelucia@unisa.it, fausto.fasano@unimol.it, rocco.oliveto@unimol.it, eomeredoras@hotmail.com

Abstract—We present an integrated and practical approach
to teach Software Engineering (SE) and Software Project
Management (SPM). The two courses are thought in the same
semester, thus allowing to build mixed project teams composed
of five-eight Bachelor students (with development roles) and
one or two Master students (with management roles). The
main goal of our approach is to simulate a real-life development
scenario giving to the students the possibility to deal with issues
arising from typical project situations, such as working in a
team, organising the division of work, and coping with time
pressure and strict deadlines.

I. INTRODUCTION

One of the main challenges when teaching software
engineering within an undergraduate course is providing the
students with meaningful experiences they will find useful
when they enter the labour market [4]. Such an experience
is typically represented by a project where students have
the possibility to experience team working and understand
in the practice the concepts dealt with in the course (see
e.g., [6], [13], [22]). In addition to development methods,
such an experience should also focus on management. How-
ever, while the need of emphasising both software project
development and management in undergraduate computer
science curricula is long dated [1], in general a first software
engineering course is more oriented to teach basic concepts
related to software process models, requirements elicitation
and analysis, software design, and software testing, while
concepts related to software project management and soft-
ware quality are only marginally addressed. Nevertheless,
in most cases such a project is leaded by one of the
students [15].

For this reason, it is generally difficult to assign man-
agement and coordination roles to students involved in such
a project, unless students have a natural attitude towards
coordination. In some cases, management roles are assigned
by the lecturer that after identifying the attitudes of the
students through some interviews [10], or based on the role
preferences of the students [9]. As imposed leaders can get
the opposition of natural leaders in the project group, often
the leaders are elected within the groups [8], [24], or the
coordination roles are assigned in turn to all the students
for a short period [7], [11], [12]. Each of these approaches

has some risks, due to the lack of knowledge about software
project management and the lack of a senior status of the
students taking management roles. In addition, students do
not effectively experience the complexity of management
and the different levels of responsibility in a project. For
this reason, in some cases the class is viewed as a software
company managed by the instructor, where the team negoti-
ates with the instructor the selection of the project, timelines,
and deliverable products [3]. In other cases a real client is
involved and students relate directly to it [10] even outside
of the traditional academic environment [13].

On the other hand, when the focus of the course is on
software project management issues, managing the com-
plexity of a realistic project is a problem [17]. Building
project teams within the same course might be not effective,
because students would be required to work more with
technical roles, than with management roles that should
be assigned in turn to the different students involved in a
project. Finding the right balance between technical and
management issues can be difficult in this case [4]. As
a result, the practical aspects tend to be restricted to a
simulation of a real project [2], [17] or to an unrelated last
year software engineering capstone project [14], and most
of the effort is dedicated to the development of a software
project management plan [18] or to address homework
assignments and exercises [19].

In the academic year 2003/2004, the second author of this
paper moved to the University of Salerno and was asked to
teach in the second semester a mandatory Software Engi-
neering (SE) course for Bachelor students in Computer Sci-
ence and an elective Software Project Management (SPM)
course for Master students in Computer Science1. This was
considered as a unique chance to build mixed project teams
composed of Bachelor students with development roles and
Master students with management roles. Such a project
organization would have solved the two main problems
discussed above: (i) providing the Bachelor students with
an imposed senior leadership, thus allowing to understand
the different levels of responsibility in a project and (ii)

1Besides the lecturer of these two courses, the list of authors include two
past teaching assistants and two students who attended the SPM course in
the past.



providing the Master students with the main resources they
required, i.e., people to coordinate, guide, coach, and mentor.
In addition, within the projects bachelor students could
have the possibility to learn more on project management
concepts through the Master students.

This first experience was very successful, so it was
replicated in the following years by improving and better
structuring the project organization and infrastructure. In
this paper we present a seven years experience of teaching
these two Bachelor and Master courses in an integrated
and practical manner through the common project. This
experience involved 69 Master students and 313 Bachelor
students organised in 45 projects. We also analyse in detail
the data of the projects developed in the last 5 years as we
have full and coherent data for them. Finally, we analyse the
preliminary results of a recent survey we are still conducting
to get the feedbacks of these students on the impact that
these courses and the project experience have had on their
academic as well as professional life.

The paper is organised as follows. Sections II and III
present the organization of the two courses and of the
project, respectively. The data collected from the analysis
of the projects is presented in Section IV, while Section V
presents the preliminary results of the survey. Section VI
concludes the paper.

II. ORGANISATION OF THE COURSES

This section describes the organisation of the SE and of
the SPM courses.

A. Software Engineering Course

The SE course is a mandatory course of the Bachelor
program in Computer Science. The course aims to contribute
to the students’ professional profile required to operate in
the software industry. It provides an overview on theory,
models, techniques and technologies that characterise the
development and the entire life-cycle of a software system,
with particular reference to the Object-Oriented (OO) de-
velopment. Covered topics are software development life-
cycles, the Unified Modelling Language (UML) [?], re-
quirements elicitation and analysis, system (high-level) and
object (low-level) design, implementation, and testing (with
particular emphasis to black-box testing techniques). Some
basic management concepts are also covered, including
project organisation and communication, software configu-
ration management, and design rationale management. The
main reference book for this course is [?] with integration
of other material by the lecturer.

After successful completion of the course, students should
be able to understand and be fluent in the use of software
engineering terminology, communicate with other software
engineers and stakeholders in a software project, take on
technical roles (developer, system analyst, software architect,
and tester) in a software development organisation, and be

able to document all phases of the software development
process.

Some prerequisites are required to the students attending
this course. They should have at least good knowledge
of algorithms and data structures, OO programming, and
database systems (design and implementation). Knowledge
of networking and web technologies is not a pre-requisite
but it is highly recommended.

The course is scheduled on 24 lessons of 2 hours each.
In addition, 12 laboratory lessons of 3 hours each are also
scheduled. Some of the laboratory lessons are dedicated
to train the students on the use of software development
technologies, including (i) ADAMS, an advanced artefact
management system developed at the University of Salerno
[16]; (ii) Subversion2, a version control system; (iii) Rational
Software Modeler3, a UML-based visual modelling and
design tool developed by IBM; (iv) Eclipse4, an integrated
development environment; (v) JUnit5 and PHPUnit6, two
code-driven testing frameworks to support unit testing; (vi)
Selenium7, a tool to create robust, browser-based regression
testing automation. The remaining lab lessons are devoted
to the discussion of technical issues concerned with the
software systems developed by the different project teams
(see Section III).

B. Software Project Management Course

The SPM course is an elective course of the Master
program in Computer Science. The main goal of the SPM
course is to introduce the main concepts and techniques of
software project management and quality management and
train project leaders through the experience of best practices.

The course is composed of two modules. The first mod-
ule focuses on software project management and aims at
introducing the students with organisational and economical
aspects of software engineering, including project planning
and monitoring, risk management, cost estimation, and peo-
ple management. The second module focuses on software
quality management and provides background information
about product and process quality, with particular empha-
sis on software metrics, software quality models, quality
assurance, quality planning, quality control, and process
improvement. The text books of the course are [?], [?]
for the introduction of basic concepts of software project
management, while other books [?], [?], [?], [?], [?] with
integration of other material by the lecturer as well as the
PMBOK (Project Management Body of Knowledge)8 are
used for specific topics.

2http://subversion.tigris.org/
3http://www-01.ibm.com/software/awdtools/modeler/swmodeler/
4http://www.eclipse.org/
5http://www.junit.org/
6http://phpunit.sourceforge.net/
7http://seleniumhq.org/
8http://www.pmi.org/



After successful completion of the course, students will be
able to organise the work of a team during the development
of software systems within schedule and budget constraints.
Students will be also able to plan and control the quality of
both products and processes within a software project.

Some prerequisites are required to the students attending
this course. The students should have good knowledge
of software development processes, requirement elicitations
and analysis, software design, and testing. They should be
also familiar with UML. Last but not least, the students
should have knowledge of component-based software en-
gineering in order to (i) promote the reuse of software
components and (ii) suggest solutions based on design
patterns and frameworks.

The course is scheduled on 24 lessons of 2 hours each.
There are no laboratory lessons. However, some lessons
are scheduled to discuss and share with the other Master
students on particular management issues raised within the
different projects (see Section III).

III. PROJECT ORGANISATION

The two courses of SE and SPM are thought in the
same semester, thus allowing to build mixed project teams
composed of Bachelor students with development roles
and Master students with management roles. The project
organisation is the core of the proposed approach that allows
teaching SE and SPM in an integrated and practical way.
The main goal of our approach is to simulate a real-life
development scenario. Besides allowing Bachelor students
to understand the dynamics of team working and Master
students to experience the project and quality management
techniques presented during the course, a side effect goal
of these project is that key project and quality management
concepts (that are not part of the SE course) are transferred
from Master students to Bachelor students through the
project meetings, activities, and documents. The projects
have duration of four months and span different phases,
including a Definition phase (three weeks), a Development
phase (three months), and an Acceptance phase (one week).

A. Project Definition and Start-up

During the Definition phase Master students attending the
SPM course submit project proposals to develop software
systems with a three tier architecture. A project proposal
has to solve a real business problem, should include an
analysis of competing systems, and should be stimulating
and appealing for the developers. The project proposals are
evaluated and can be rejected (in this case students need to
re-formulate it). When the proposal is accepted, the lecturer
“funds” the projects by providing the Master student with a
team of Bachelor students.

In the meantime, the Bachelor students apply for this type
of mixed and coordinated project. It is worth noting that this

type of project is not mandatory: students who are not moti-
vated can decide to work on smaller projects in teams of two
or three people without the coordination of Master students
and without tight deadlines. Bachelor students applying for
the coordinated project can also express preferences to work
with other Bachelor students and these preferences are taken
into account when building the teams.

Anyway, the ratio between the number of Bachelor stu-
dents applying for the coordinated project and the number
of Master students is variable. As a rule of thumb, each
team should include at least five Bachelor students and
a Master student should not coordinate more than eight
students [6]. In fact, with a higher number of team members,
the coordination effort required would be too high (and
unbalanced with respect to the work load of the course),
while a number of team members lower than 5 would not
well simulate the typical dynamics of team working [13].

If the ratio between the number of Bachelor students and
the number of Master students is lower than eight, teams are
composed of five-eight Bachelor students and are randomly
assigned to one or two (depending on the availability) Master
students. This case simulates a shortage of developers and
master students have to work with the available people.

In case the ratio is higher than eight, a selection of Bache-
lor students is needed: groups of more than eight students are
composed (again preferences expressed by the students are
taken into account) and randomly assigned to each Master
student. The Master student is required to interview the
Bachelor students (under the supervision of the lecturer or of
teaching assistants) and select and hire up to eight students to
build his/her project team. Students who are not selected will
be required to work on a small project without coordination
of Master students. For Bachelor students this represents a
first (simulated) experience of being interviewed to get a job.
Failures are very important to teach them what might also
happen in the real life.

B. Development and Acceptance phase

Once the teams are composed, the project Definition phase
ends and the Development phase starts with a kick-off meet-
ing. During this meeting Master students present the problem
statement and the project management plan for the software
system to be developed. Usually, the project managers also
conduct an icebreaker game to (i) get a preliminary idea on
the skills and attitudes of the team members; and (ii) attempt
to identify whether a Bachelor student is more task or
interaction oriented and elicit potential technical leaderships
and conflicts in the team.

Each project has to be completed within schedule and
budget constraints. Concerning the schedule constraints, the
lecturer establishes the deadlines for the three phases of the
project. As for the budget constraints, project managers can
employ team members for no more than 80 hours each. This
means that Master students have to collect data about the



Table I
DOCUMENTS TO BE PRODUCED DURING THE PROJECT.

Document Name Students in Charge
Master Bachelor

Project Proposal and Problem Statement X
Software Project Management Plan X
Quality Plan X
Meetings Agenda X
Meetings Minutes X
Requirements Analysis Document X
System Design Document X
Database Design Document X
Object Design Document X
Test Plan X
Test Case Specification X
Test Execution and Incident Report X
Test Summary Report X
User’s Manual X
Software Project Management Report X
Quality Report X

effort spent by each team member for each completed action
item. Several meetings are conducted during the project
(generally once or twice per week) to report on progresses
and/or completion of action items, to assign new action
items, and to discuss and/or make decisions about some
emerging issues.

An incremental software development process model is
adopted in each project. Students perform a complete re-
quirements elicitation and analysis and high-level design
of the software system to be developed (resulting in a
Requirements Analysis Document and System Design Doc-
ument, respectively) and then proceed with an incremental
development of the subsystems. The goal is to release at
least one increment by the end of the three months of
the Development phase (deadline for closing the projects).
For each developed subsystem, the Bachelor students have
to produce (besides the implementation) a System and
Integration Test Plan, including functional test case spec-
ifications (typically derived using category partition [21])
as well as test case specifications derived by non functional
requirements. An Object Design Document (mainly focusing
on the specifications of the module interfaces) and test
execution documents are also produced for each subsystem.
Unit tests are developed (for example using JUnit), but are
not documented. Finally, a Database Design Document is
also produced. Table I lists the documents to be produced.

The master students are responsible for coordinating the
project, defining the project schedule, managing project
risks, organising project meetings, collecting process met-
rics, and allocating human resources to tasks. They have
also to manage the quality of the project processes and
artefacts, by defining process and product standards, collect-
ing product and process metrics, and organising checklist-
based artefact reviews for quality control around the project
milestones. Finally, Master students are required to evaluate
the contribution of the Bachelor students within the project

on a four levels ordinal scale from sufficient to excellent9.
Master students develop a Software Project Management

Plan before the kick-off meeting and a Quality Plan early in
the project Development phase. They have also to monthly
report the lecturer about the project status. Besides produc-
ing a project management report (including detailed activity
re-planning for the next month) and a quality report, a formal
presentation is made at the end of each month to discuss
about project risks and other issues.

At the end of the Development phase, students have
one week (Acceptance phase) to print and submit the final
version of the documents produced and prepare the slides
for final presentation. The Acceptance phase ends with the
presentation of the project, where Bachelor students focus
on the technical aspects, while Master students discuss man-
agerial issues and present the evaluations of the Bachelor
students.

C. Students’ Evaluation

The evaluations of the Master students contribute to define
the final marks of the Bachelor students mainly based on
individual examinations on the theoretical part of the course.
On the other hands, Master students are evaluated only on
the projects. The evaluation is based on the quality of the
management documents produced, on the coverage of the
techniques presented during the lectures, and on the way
they have conducted the project and managed the team.

In this type of projects Master students have a high
authority status (an imposed leadership), so they are also
evaluated on the way they use it. We expect that their
seniority status results in respect from Bachelor students,
but this respect can be mined by several issues, including
for example lack of technical skills, lack of actions, lack of
commitment, anxiety and excessive pressure on the team
members. Master students should also identify technical
leaderships and positive energies within the project and try
to drive them towards the project success, should dominate
and resolve conflicts, and should share most decisions with
the team members. For example, the evaluations of the
team members made by the Master students should be
accepted and not questioned by the Bachelor students. It
is a responsibility of the Master students to clearly define
and advertise within the project the criteria for evaluating the
team members. Also, it is highly recommended that Master
students conduct and make public their evaluations through
all the phases of the project, so that team members are aware
of how they are being evaluated, can discuss with project
managers potential problems, and improve their contribution
to the project. This mitigates the risk that the Bachelor
students do not accept the final evaluations.

As a further example, Master students are given the
authority to fire team members, in case they show scarce

9Student contribution can also be evaluated as insufficient: in this case,
an individual extra work on the project is required to pass the exam.



interest in the project, do not attend the meetings, or repeat-
edly miss the deadlines for assigned tasks, without providing
a valid reason. These behaviours constitute a risk for the
project and Master students are allowed to fire Bachelor
students acting in this way. However, in this case Master
students have to overcome the risk of opposition deriving
from group loyalty, so they should share with the other team
members such a decision, by explaining that the goal of the
group is more important than the individual goals.

IV. ANALYSIS OF THE PROJECTS

The first experience with this type of course and project
organisation was made in 2004, with 5 Master students and
36 Bachelor students organised in 5 projects. The experience
was replicated in 2005 with 34 Master students and 108
Bachelor students organised in 17 projects. The second year
has to be considered as an outlier. The high number of
Bachelor students was taken from two different undergrad-
uate software engineering classes, while the high number
of Master students was due to the fact that half of them
were from the SPM course and half of them were recruited
from a Master course on Advanced Software Engineering
(ASE) where quality management concepts were covered
in that year. In this way, students of the SPM course
assumed the role of project managers in the projects, while
students of the ASE course assumed the role of quality
managers. Unfortunately, due to some backup problems with
the ADAMS system [16] (used as project repository) we do
not have access anymore to the project documents for the
first two years (in particular management plans and reports
that have been used as main source for the analysis). Thus,
in this section we report an analysis of the project data
collected from 2006 to 201010. Since the academic year
2010/2011 the second author of this paper does not teach
the SPM course anymore. However, based on the experience
of the previous seven years, the new lecturer still maintains
the same project organisation, but using a different project
repository and infrastructure.

From 2006 to 2010, 199 students (30 Master and 169
Bachelor students) were organised in 23 teams. ADAMS was
used as main repository and project infrastructure. Master
students generally customised the project communication
infrastructure with other tools, such as Google Code11,
Microsoft Project12, and several tools to analyse system
quality, e.g., Metrics13, chum14 and Klocwork Insight15. Raw
data and some exemplar projects are available on-line16.

10However, the size of the project developed in 2004 and 2005 is in line
with the size of the projects developed from 2006 to 2010 [16].

11http://www.code.google.com/
12http://www.microsoft.com/project/
13http://www.metrics.sourceforge.net/
14http://www.spinellis.gr/sw/ckjm/
15http://www.klocwork.com/
16http://www.sesa.dmi.unisa.it/reports/teachingSE

Table II
STUDENTS INVOLVED IN THE PROJECTS FROM 2005 TO 2010.

Year # Projects Students Avg. Developed
Master Bachelor Total Team Size

2006 4 5 30 35 8
2007 5 6 45 51 9
2008 3 3 24 27 8
2009 6 6 42 48 7
2010 5 10 28 38 6
Total 23 30 169 199 7

Figure 1. Word cloud extracted from the project abstracts.

A. Resources Involved and Artefact Produced

Table II reports the number of projects and students
involved for each year. We had generally a limited number
of master students and a good number of Bachelor students
except in 2010 where we had a higher number of Master
students and a limited number of Bachelor students. From
2006 to 2009, due to the more limited number of master
students, we assigned to each team only one master student
that was in charge of both project and quality management.
However, there are two exceptions (one in 2006 and one in
2007) where we had one group coordinated by two master
students. Indeed, in 2007 two master students decided to
merge their teams in one team composed of 14 bachelor
students (this is the reason why in 2007 the average team
size is 9). In 2010, since we had a higher number of master
students but a low number of bachelor students, we assigned
two master students to each team.

Figure 1 shows the word cloud extracted from the project
abstracts. It gives an idea of the topics of the these projects.
The “hot topic” is represented by systems to support and
manage daily activities, such as medical doctor’s office,
travel agency, tourist guides, and secondary schools as well
as university. In addition, most of the developed projects
have a web-based user interface. In the other cases, they
are developed in Java with Graphical User Interface and a
distributed architecture.

Turning to the size of the developed projects, Figure 2
reports the average numbers of artefacts (grouped by types)
and the lines of code produced for each year. As we can see,
the developed projects are not trivial. The average number



0	
  
20	
  
40	
  
60	
  
80	
  

100	
  
120	
  
140	
  
160	
  
180	
  
200	
  

2006	
   2007	
   2008	
   2009	
   2010	
  

N
um

be
r	
  o

f	
  a
rt
ef
ac
ts
	
  

Year	
  

Use	
  cases	
   UML	
  diagrams	
   Test	
  cases	
  

(a)

0	
  

2500	
  

5000	
  

7500	
  

10000	
  

12500	
  

15000	
  

17500	
  

2006	
   2007	
   2008	
   2009	
   2010	
  

Li
ne

s	
  o
f	
  c
od

e	
  
(L
O
C)
	
  

Year	
  

LOC	
  (including	
  comments)	
   LOC	
  (excluding	
  comments)	
  

(b)

Figure 2. Average number of produced artefacts (a) and lines of code
(LOC) developed (b).

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

2006	
   2007	
   2008	
   2009	
   2010	
  

N
um

be
r	
  o

f	
  a
rt
ef
ac
ts
	
  

Year	
  

Use	
  cases	
   Implemented	
  Use	
  Cases	
   Tested	
  Use	
  Cases	
  

Figure 3. Average number of use cases documented, implemented, and
tested.

of use cases is about 60 (ranging from 20 to 139). Since the
goal of the project is to release at least one increment by
the end of the semester, students do not implement all the
documented use cases. On average, students implemented
50% of the documented use cases. In addition, due the
short time available, students prioritised the implemented
functionalities and, in some cases, they decided to test the
ones with highest priority. On average, students tested 90%
of the implemented functionalities (see Figure 3).

The modeling language used by students was the UML.

Figure 2 also shows the average number of UML diagrams
produced by students. These diagrams include use case dia-
grams, high-level and low-level sequence diagrams, package
diagrams, component diagrams, and deployment diagrams.
In the projects with a web based architecture students also
used Conallen’s extensions [5].

The artefacts related to the testing process represents the
highest number of produced artefacts. On average students
produced more than 100 test cases. In particular, the number
of test cases produced in 2009 and 2010 is huge, ranging
from 79 to 284 in the different projects (on average 150).
Indeed, in the last two years category partition [21] was
introduced in the program of the SE course. This technique
resulted much more usable and effective than the combi-
nation of other black-box techniques, such as equivalence
class partitioning and boundary value analysis [23]. Another
reason for this increment is the fact that besides the XUnit
framework, in the last two years we also presented the
Selenium framework to support regression testing. The use
of such a tool improved the performances of regression
testing, thus allowing students to test more functionalities
and consequently increase the number of test cases.

Regarding the size of the developed projects, the lines
of code produced are generally higher than 10 KLOC (see
Figure 2). In particular, for the projects developed in 2007-
2009 the lines of code produced is higher than the other
years (15 KLOC on average). In 2007, the team composed
of 14 Bachelor students and coordinated by two Master
students developed eTour, a tourist electronic guide of 40
KLOC. This is the largest project developed in all the
seven years. Another project that is worth mentioning is
SMOS, a system developed by 7 Bachelor students and one
Master student in 2008. In this case, the students developed
the entire system producing 35 KLOC. However, there are
also cases where the number of lines of code is very
small (around 5 KLOC). In these few cases master students
allocated much more time on the documentation than on the
source code. Basically, due to the short time available, in
the latest phases of the projects the managers preferred to
pay more attention to activities such as document review,
code inspection, and testing, rather than coding. Figure 2
shows the average number of lines of comments including
and excluding comments. On average, the percentage of
comments in the source code is acceptable, ranging from
15% to 25%.

Other than analysing the size of projects in terms of
artefacts and lines of code produced, we also report the
average number of pages of the documentation produced
by the students (see Table III). We group the documents
in three groups: (i) analysis, (ii) design, and (iii) testing.
As we can see, students produced a considerable amount
of documentation. The average number of pages of the
produced documentation is about 550 pages. The documen-
tation produced by students in 2008 is notable, on average



Table III
AVERAGE NUMBER OF PAGES OF DOCUMENTATION PRODUCED

GROUPED BY TYPE.

Year Analysis Design Testing Total
2006 204 109 107 420
2007 141 208 166 516
2008 349 164 287 801
2009 251 137 219 607
2010 142 96 229 467

composed of 861 pages (ranging from 561 to 960).
Once again, testing activities produced the highest number

of documentation pages. Very often, the average number
of pages of testing documents is higher than 200. In 12
projects the number of pages is lower than 200 and only in
6 cases is lower than 100. It is worth noting that testing is
related to only few subsystems, since students performed a
complete requirements analysis and high level design of the
software system to be developed and then proceeded with
an incremental development of the subsystems. Based on
this consideration, the number of artefacts related to testing
is much more important, highlighting the effort devoted by
students in such a critical activity of the development process
and the attention paid by managers on quality management.

The number of pages of the Requirements Analysis Doc-
ument (RAD) highlights the size of the software systems
developed. Generally, also the RAD has more than 200
pages (only in 2 projects it has less than 100 pages). The
RAD of the system ELEION developed by a team composed
of 8 Bachelor students and one Master student is notable.
ELEION aimed at managing the e-voting process and it was
developed by using J2EE17 and Ajax technologies18. The
system includes 98 use cases and a considerable number
of non-functional requirements. The RAD produced by the
students was composed of 525 pages. In this project, students
also used OCL (Object Constraint Language) to describe the
electronic voting functionality. In addition, even if students
only implemented 40 use cases and tested 20 functionalities
of the developed system, they produced a testing document
of 246 pages (including 86 test case specifications).

B. Project and Quality Management

As said before, each Master student had to schedule the
tasks of the Bachelor students taking into account that they
could use up to 80 hours for each team member. Master stu-
dents tried to keep low the effort for the Bachelor students.
Indeed, the average effort is usually lower than 70. However,
there were cases (only 4 out of 169 students) where the
work load was higher than 80 hours. The reason was that
the managers asked for an extra work load to compensate the
abandonment of the project of a team member. We registered

17http://java.sun.com/j2ee/overview.html
18http://developers.sun.com/scripting/ajax/index.jsp

Table IV
TASKS AND ROLL-OVERS: AVERAGE DATA.

Year # of Projects Tasks Roll-overs % of Roll-overs
2006 4 53 17 32.5
2007 2 90 25 27.2
2008 2 199 30 14.8
2009 6 57 10 16.6
2010 5 63 22 34.1

only two abandonments, one in 2006 and the other one
in 2009. In addition, even if the Master students had the
possibility to fire Bachelor students, they never used such a
weapon and tried to keep all the team members, except in
case where students abandoned the project by yourself.

Interesting is the data on the number of roll-overs, i.e.,
late tasks that were re-scheduled. Table IV reports the
data we collected from some projects where these data
were available. As we can see, the number of roll-overs
is generally low as compared to the number of assigned
tasks. However, there are two exceptions. In 2006 there is
a higher number or roll-overs due to a team member that
started working with a team and some weeks later decided
to abandon the project. However, he did not complete or
completed with delay almost all the tasks assigned to him. In
2010 we also observed a much higher number of roll-overs.
However, the year 2010 has to be considered as a special
case. Indeed, in 2009 we changed the organisation of the
Bachelor program in Computer Science and the Software
Engineering Course moved from the second to the third
year. For this reason, in 2010 there were no second-year
students requiring to attend this course. We decided anyway
to organise a remedial course for late students. The number
of these students was rather low (17), while the number of
Master students (10) was higher than in the previous years.
For this reason, we decided that the participation to the
coordinated project had to be mandatory for all Bachelor
students (including students with a scarce motivation). In
addition, even allocating all the students we were not able
to achieve a minimum number of students to build five
teams composed of two Master students and at least five
Bachelor students. For this reason, we decided to create
two distributed teams recruiting students from University of
Sannio (Italy) and University of Molise (Italy). We believe
that the lack of motivation of some Bachelor students as
well as the geographical distribution of some teams are the
causes of the higher number of roll-overs as compared to the
previous years. However, allocating two Master students to
these projects enabled to effectively manage project risks and
close the projects in time and with an overall good quality.

Students usually scheduled at least one meeting per week.
In 5 projects meetings were scheduled twice a week. The
average duration of the meetings is around 25 minutes. In
each meeting students first discussed on the progress of the
assigned tasks and rolled-over some late action items. Then,



managers presented the new tasks and possibly discussed
about problems encountered by the team members. Meetings
were usually held in the software engineering laboratory
at the University of Salerno. Due to logistic issues, in
4 projects (including the 2 distributed projects in 2010),
students organised virtual meetings using Skype19.

Regarding the communication among team members, the
primary channel is email. To facilitate the exchange of email
usually managers defined a project mailing list. Besides
emails, team members also used other communication chan-
nels, such as IRC. In some projects, managers also analysed
the emails exchanged by students noting that the number of
exchanged emails is usually stable during the development
process with some peaks just before the milestones.

Regarding risk management, we observed several risks
that where overestimated by students. We derived such
information comparing the risk assessment reported in the
first and final project reports. The abandonment of one or
more team members was overestimated in almost half of
the projects, while the risk related to unskilled members
and members’ training were overestimated in about 30%
and 20% of the projects. The risk related to an opti-
mistic schedule was also overestimated in about 20% of
the projects. Besides overestimated risks we also observed
underestimated risks. The unavailability or poor availability
of one or more team members during a critical phase was
underestimated in about 20% of the projects as well as the
risk related to the delayed delivery of documents or software
system components.

Concerning quality planning and control, students used
the quality model of the ISO 9126 standard20 and different
direct and indirect product and process metrics to anal-
yse the developed systems. Concerning the characteristic
functionality, in almost all projects (91%) students analysed
the suitability considering the functional coverage (i.e., the
ratio between implemented use cases and documented use
cases). Students also payed attention to the analysis of the
security, performing a deeper testing on the access control
subsystems. In almost all the projects (82%) students also
analysed the reliability by measuring its error tolerance (and
in some cases also the error recovery). For the efficiency,
students focused their attention on the time performances
measuring the turn-around time. Only in a few number of
projects, students analysed the usage of the system resources.
Learnability and operability were the two characteristics
analysed by the students to assess the usability of the devel-
oped system. In addition, in several projects, students also
analysed the comprehensibility of the system by verifying
the presence of useful help messages. In one system, the
manager also applied the Nielsen’s heuristics [20] to analyze
the usability of the developed system. Modifiability and

19http://www.skype.com
20ISO/IEC 9126-1:2001 Software engineering – Product quality

Table V
AVERAGE NUMBER OF VERSIONS (VER) AND REVIEWS (REV) FOR THE

REQUIREMENTS ANALYSIS DOCUMENT (RAD), SYSTEM DESIGN
DOCUMENT (SDD), OBJECT DESIGN DOCUMENT (ODD), AND

TESTING DOCUMENTS.

Year RAD SDD ODD Testing
Ver. Rev. Ver. Rev. Ver. Rev. Ver. Rev.

2006 7 3 6 3 4 1 13 3
2007 6 2 5 1 2 1 6 3
2008 4 3 5 2 2 2 5 3
2009 5 2 3 1 3 1 10 3
2010 5 2 3 2 3 1 9 3

analyzability were the primary characteristics analysed by
the students to assess the maintainability of the system.
However, in several projects also testability was analysed.
Finally, adaptability and installability were the main charac-
teristics analysed related to the portability of the system.

As for to the review process, Table ?? reports the average
number of versions and reviews for the RAD, System Design
Document (SDD), Object Design Document (ODD), and
testing documents. As we can see, testing documents are
those with the higher number of versions and reviews.
This again highlights the effort devoted by students to
testing activities. The RAD and the SDD had generally
lower number of versions as compared to testing documents.
However, the number of reviews for the RAD is comparable
to the number of reviews of the testing documents while for
the SDD the number of reviews is only slightly lower than
those of the testing documents. The ODD was the documents
with generally the lowest number of versions and reviews.
This document is mainly focused on the specifications of
the module interfaces, while UML diagrams (typically class
and sequence diagrams) are obtained by reverse engineering
the produced code with the adopted CASE tool.

V. THE STUDENTS’ POINT OF VIEW

Other than analysing project data, we are conducting to
get the feedbacks of students about the course and the project
they participated. Since this survey was not made at the
end of the projects, but years after the students attended
the courses, we had the possibility to ask questions related
to whether the course satisfied their expectations as well
as industrial needs, in addition to questions related to the
difficulty and the organisation of the course. We also asked
students to evaluate how much the project participation en-
riched and/or complemented the knowledge acquired during
the lectures of the course. In particular, we explicitly asked
Bachelor students to specify how much they learnt about
project and quality concepts from Master students through
the project activities and documents.

It is worth noting that we contacted students extracting
e-mail addresses from the project repository and some of
them were out of date. In addition most students are not at
the University anymore, so it is likely that they did not pay
attention to the e-mail. We have not sent any reminder yet



and we are just planning to do it. Until now the questionnaire
has been completed by 15 Master students and 36 Bachelor
students. As this work is still on-going here we only present
the results of some preliminary analyses.

Students generally considered adequate the topics covered
by the courses. However, for the SE course some students
suggested to give more details on design pattern driven de-
velopment and refactoring. An interesting suggestion given
by one of the respondent is to schedule some laboratory
lessons to train students on the use of JMeter21, a tool to load
test functional behaviour and measure performance. As for
the SPM course, some students suggested to expand the part
of the course concerned with people and risk management.
Also in this case, interesting topics were suggested by the
respondents, e.g., strategies usually employed to launch a
new software product on the market.

Concerning the project experience, both master and bach-
elor students were generally satisfied and appreciated its
organisation. While Master students particularly appreciated
project management activities (i.e., scheduling and people
management), generally Bachelor students considered the
collaborative work and the presence of deadlines the strength
of the project organisation. These two perspectives are
synthesised in two respondents’ comment. One of the Master
students mentioned “In this course (SPM) you have the
possibility to measure your organisation ability. But, more
important, you are able to know yourself, your skills and
attitudes”, while, one of the Bachelor students summarised
the SE course and the project organisation as follows: “In
this course you start understanding what is the difference
between academic and industrial environments. It test your
ability to work in team and pressed by strict deadlines
that usually reign supreme in the software industry. Very
important is also the final presentation of the developed
systems, since you start to train yourself to publicly present
your work. One of the most useful courses, one that gave
me something, that contributed to my professional training.
When I started to work in industry I realised that this course
and the project I participated were extremely important.”

Besides technical aspects, such as developed methodolo-
gies and tools, the project was extremely useful for the
students to enrich their communication skills and understand
the real life of software engineers and project managers
in industrial environments. In addition, Master students
declared that the participation to the project contributed
to sensibly increase the knowledge on risk and people
management, as well as on quality management. The project
organisation also facilitates the transfer of key project and
quality management concepts from Master students to Bach-
elor students through the project activities and documents.
In particular, Bachelor students enriched their knowledge
on key project management concepts, such as schedule and

21http://jakarta.apache.org/jmeter/

planning as well as people management. Part of the Bachelor
students also acquired key quality management concepts
through the project. The reason why quality concepts were
acquired only by a sub-population of Bachelor students is
that generally Master students allocated only few team mem-
bers on quality control activities. Thus, only a few number
of Bachelor students deeply read the quality management
documents provided by master students. The other students
did not pay attention to such documents and they were not
able to catch concepts related to quality management during
the project.

Finally, we asked the students whether they could rec-
ommend the course to younger students and to specify
a slogan to convince (or discourage) younger students to
attend the course. All the respondents recommended the
course to younger students. As for the slogan, students
specified from sophisticated, such as “This course gives you
a sense of responsibility. You will learn to do things faster,
by organising and planning your work better” or “A good
opportunity to get in touch with the labour market”, concise
slogans such as “The better course you can attend”, or
playful slogans, such as “This could be your only chance
to fire someone in your life!”.

VI. CONCLUSION

In this paper we presented an integrated and practical
approach to teach Software Engineering (SE) and Soft-
ware Project Management (SPM). The approach is based
on mixed project teams composed of five-eight Bachelor
students (with development roles) and one or two Master
students (with management roles). The experience was very
successful. The success was demonstrated by the higher
quality of the documentation and source code produced
within these projects (with respect to non coordinated
projects), balanced by an accurate distribution of the effort
to the different activities as well as to the different team
members.

Last but not least, the success was perceived in the
enthusiasm of both Bachelor and Master students, in the
positive feedbacks of the Bachelor students and in the great
improvements in the communication skills of the Master
students through the different phases of the project. In
particular, most of the students that responded to our survey
questionnaire declared that they are more mature and better
prepared for the workforce, having at least some idea of
some industrial scenarios. Some of the respondents are now
employed in industry and they declared that they use the ex-
perience acquired during the project to convince employers
that they are employable and competent. In some cases they
showed to the employers part of the documentation produced
during the project to reinforce their position.

We can conclude that the experience reported in this
paper was very successful both from the perspective of
educative outcomes and popularity, as highlighted by one



of the respondent “The SE course opens your mind, in
particular you get great satisfaction when you see your
software system – yes, the software system that you believed
impossible to develop some months before – working (and
working well) and with hundreds of documentation pages.”

REFERENCES

[1] J. Beidler. Teaching project management. In Proc. of SIGCPR
Conf., pages 20–24, 1979.

[2] B. Bohem. Software Engineering Economics. Prentice Hall,
1981.

[3] A. Bollin, E. Hochmuller, and R. Mittermeir. Teaching
software project management using simulations. In Proc. of
CSEET, pages 81–90, 2011.

[4] P. Brazier. Process and product in a software engineering
course: simulating the real world. In Proc. of Frontiers in
Education, volume 3, pages 1292–1297, 1998.

[5] F. Brooks. The mythical man month. Addison-Wesley, 1995.

[6] B. Bruegge and A. H. Dutoit. Object-Oriented Software
Engineering: Using UML, Patterns, and Java. Prentice Hall,
2003.

[7] A. T. Chamillard and K. A. Braun. The software engineering
capstone: structure and tradeoffs. In Proc. of Technical
Symposium on Computer Science Education, pages 227–231,
2002.

[8] J. Conallen. Building Web applications with UML. Pearson
Education, 2002.

[9] D. Dahiya. Teaching software engineering: a practical ap-
proach. SIGSOFT Software Engineering Notes, 35:1–5, 2010.

[10] P. Doerschuk. Incorporating team software development and
quality assurance in software engineering education. In Proc.
of Frontiers in Education, pages 7–12, 2004.

[11] M. Feldgen and O. Clua. An integrated software engineering
workshops program. In Proc. of Frontiers in Education,
volume 3, pages 1016–1021, 1998.

[12] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. PWS Publishing Company, 2nd
edition, 1996.

[13] Z. Gao and C. Xie. The study of content simulation using in
the software project management teaching. In Proc. of Int’l
Workshop on Education Technology and Computer Science,
volume 3, pages 576–578, 2010.

[14] M. Gnatz, L. Kof, F. Prilmeier, and T. Seifert. A practical
approach of teaching software engineering. In Proc. of
CSEET, pages 120–128, 2003.

[15] L. Hai. The four ps in an undergraduate software engineering
course. In Proc. of Frontiers in Education, pages S4E-7-S4E-
12, 2007.

[16] L. Huang, L. Dai, B. Guo, and G. Lei. Project-driven teaching
model for software project management course. In Proc. of
ICCSSE, volume 5, pages 503 –506, 2008.

[17] B. Hughes and M. Cotterell. Software project management.
McGraw Hill, 4th edition, 2006.

[18] E. P. Katz. Software engineering practicum course experience.
Proc. of CSEET, pages 169–172, 2010.

[19] P. Kruchten. Experience teaching software project manage-
ment in both industrial and academic settings. In Proc. of
CSEET, pages 199 –208, 2011.

[20] L. Leventhal and B. Mynatt. Components of typical under-
graduate software engineering courses: Results from a survey.
TSE, 13(11):1193 – 1198, 1987.

[21] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Fine-
grained management of software artefacts: the adams system.
SPE, 40(11):1007–1034, 2010.

[22] P. Mandl-Striegnitz. How to successfully use software project
simulation for educating software project managers. In Proc.
of Frontiers in Education, pages 19–24, 2001.

[23] J. McDonald. Teaching software project management in
industrial and academic environments. In Proc. of CSEET,
pages 151 – 160, 2000.

[24] M. Murphy. Teaching software project management: a
response-interaction approach. In Proc. of CSEET, pages 26
–31, 1999.

[25] J. Nielsen and R. Molich. Heuristic evaluation of user
interfaces. In Proc. of Human Factors in Computing Systems
Conference, pages 249–25, 1990.

[26] T. J. Ostrand and M. J. Balcer. The category-partition method
for specifying and generating functional tests. Comm. of the
ACM, 31(6):676–686, 1988.

[27] W. Pádua. Measuring complexity, effectiveness and efficiency
in software course projects. In Proc. of ICSE, pages 545–554,
2010.

[28] D. Richardson and L. Clarke. A partition analysis method to
increase program reliability. In Proc. of ICSE, pages 244–253,
1981.

[29] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling
Language Reference Manual. Addison-Wesley, 2004.

[30] I. Sommerville. Software Engineering. Pearson Education,
8th edition, 2007.

[31] L. Werth. Software process improvement for student projects.
In Proc. of Frontiers in Education, pages 2b1.1 –2b1.4 vol.1,
1995.

[32] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslen. Experimentation in Software Engineering -
An Introduction. Kluwer, 2000.


