
Using Structural and Semantic Information to Support Software Refactoring

Gabriele Bavota
School of Science, University of Salerno

Fisciano (SA), Italy
gbavota@unisa.it

Abstract—In the software life cycle the internal structure of
the system undergoes continuous modifications. These changes
push away the source code from its original design, often
reducing its quality. In such cases refactoring techniques
can be applied to improve the design quality of the system.
Approaches existing in literature mainly exploit structural
relationships present in the source code, e.g., method calls,
to support the software engineer in identifying refactoring
solutions. However, also semantic information is embedded
in the source code by the developers, e.g., the terms used in
the comments. This research investigates about the usefulness
of combining structural and semantic information to support
software refactoring.

Keywords-refactoring; semantic information

I. RESEARCH PROBLEM AND HYPOTHESIS

During software evolution change is the rule rather than
the exception [1]. In consequence of changes often software
quality decreases, resulting in more and more difficulties in
changing existing software [2]. In such cases a refactoring of
the system is recommended since several empirical studies
provided evidence that low design quality is generally as-
sociated with lower productivity, greater rework, and more
significant efforts for developers [3]. Applying the correct
refactoring operations1 it is possible to improve different
quality aspects of a system. As examples, class cohesion in
Object-Oriented (OO) systems can be increased performing
extract class refactoring on low cohesive classes.

However, software refactoring can be very challenging,
especially in large software systems. For this reason, a lot
of effort has been devoted to the definition of approaches
to support refactoring activities. These approaches can be
classified into two different categories: (i) approaches that
identify source code components which may require refac-
toring and (ii) approaches that (semi)automatically perform
refactoring operations2. These two categories of approaches
are complementary. In fact, the former approaches can
identify a source code component which requires refactoring
(e.g., a low cohesive class), but are not able to suggest
refactoring solutions to solve the problem (e.g., how to split
the low cohesive class in more meaningful, high cohesive
classes). On the other hand, the latter category of approaches
can be applied once a source code component which requires

1A complete refactoring catalog can be found at http://refactoring.com/.
2A survey of the two categories of approaches can be found in [4].

refactoring has been identified. This research is related
with the latter category of approaches. Among these, some
authors have defined approaches able to support different
refactoring operations. As instance, O’Keeffe et al. [5]
formulated the task of refactoring as a search problem in the
space of alternative designs resulting from different types of
refactoring operations. The search for the optimal design is
guided by a quality evaluation function based on structural
OO design metrics that reflects refactoring goals.

Other authors have focused their attention on the defini-
tion of approaches to support a specific refactoring operation
such as extract method refactoring [6], move method refac-
toring [7], and extract class refactoring [8].

For example, Fokaefs et al. [8] use a hierarchical cluster-
ing to support extract class refactoring (ECR), a technique
to split classes with many responsibilities and low cohe-
sion (known as Blobs) into different classes having higher
cohesion. Their approach analyses the structural relation-
ships existing between attributes and methods of a Blob.
A hierarchical clustering algorithm is then used to cluster
together attributes and methods having strong structural
dependencies, extracting them from the Blob class.

Several other refactoring operations have been automated
in literature and almost all of them exploit quality metrics
based on structural information extracted from source code
to suggest refactoring solutions. Recently, semantic metrics
have also been proposed [9]. These metrics use semantic
information retrieved from comments and identifiers and
seem to complement structural metrics [9]. Only in some
work on software re-modularization (see e.g., [10]) semantic
information has been taken into account.

The orthogonality between structural and semantic metrics
motivated us to propose an ECR approach that employs
both structural and semantic information to recommend
refactoring operations [4]. The proposed approach is based
on graph theory and is able to split a class with low
cohesion in two classes having a higher cohesion, using
a MaxFlow-MinCut algorithm. The empirical evaluation of
this approach showed that the combination of structural and
semantic measures strongly improve the meaningfulness of
the identified ECR operations with respect to the use of only
structural or semantic measures [4]. However, this approach
suffers of a strong limitation: it always split the original
class in two new classes while often the responsibilities



implemented in a Blob class need to be distributed among
more than two classes. Such a problem can be solved
using partitioning or hierarchical clustering algorithms (see
e.g., [8]). Unfortunately, such algorithms suffer of important
limitations as well. The former requires as input the number
of clusters, i.e., the number of classes to be extracted, while
the latter requires a threshold to cut the dendogram. Until
now, no heuristics have been derived to suggest good default
values for these parameters.

Even if our MaxFlow-MinCut approach suffers of the
discussed limitation, its empirical evaluation highlighted the
importance of combining structural and semantic informa-
tion during ECR [4]. This result motivates this research.
We conjecture that better refactoring solutions might be
identified exploiting semantic information embedded in the
source code, besides structural information. To verify our
conjecture we (i) further investigated about the usefulness
of combining structural and semantic information during
ECR proposing a new approach able to split the Blob class
in more than two classes, overcoming the limitation of the
MaxFlow-MinCut approach and (ii) have used a combination
of structural and semantic information to support another
refactoring operation, called Extract Package Refactoring
(EPR). The goal of EPR is to remove from OO software
systems promiscuous-low cohesive packages, decomposing
them into smaller and meaningful packages having higher
cohesion. Thus, EPR can be used to improve the subsystem
decomposition of OO software systems.

II. SUPPORTING EXTRACT CLASS REFACTORING

As the MaxFlow-MinCut approach, also our new ECR
approach is based on graph theory. In particular, it represents
the Blob to be refactored as a weighted graph, where each
node represents a method of the class and the weight of
an edge that connects two nodes (methods) represents the
likelihood that two methods should be in the same class
(i.e., the likelihood that they implement strictly related
responsibilities). This likelihood is computed as a hybrid
coupling measure between methods obtained by combining
three structural and semantic measures, i.e., Structural Simi-
larity between Methods (SSM) [11], Call-based Dependence
between Methods (CDM) [4], and Conceptual Similarity
between Methods (CSM) [9].

SSM is a structural measure that analyses the instance
variables used in methods: the higher the number of instance
variables two methods share, the higher the likelihood that
two methods should be in the same class. CDM is another
structural measure that takes into account the calls performed
by the methods. In particular, if two methods exhibit high
calls interaction, they should be placed in the same class to
reduce coupling between classes. Finally, CSM is a measure
based on the semantic information captured in the code
by comments and identifiers. The higher the overlap of
terms between comments and identifiers of two methods, the

higher the likelihood that they implement similar responsi-
bilities (and thus should be placed in the same class).

Since all the exploited measures have values in [0, 1], we
compute the overall similarity between two methods mi and
mj (likelihood that they should be in the same class) as:

sim(mi,mj) = wSSM · SSM(mi,mj)+
wCDM · CDM(mi,mj) + wCSM · CSM(mi,mj)

where wSSM+wCDM+wCSM = 1 and their values express
the confidence (i.e., weight) in each measure.

Once the graph is built, the ECR process is performed in
two steps. After filtering out spurious relationships between
methods, the approach defines chains of strongly related
methods exploiting the transitive closure of the filtered
graph. The extracted chains are then refined by merging
trivial chains (i.e., chains with very few methods) with non-
trivial chains. Using the extracted chains of methods it is
possible to create new classes (one for each chain) having
higher cohesion than the original class. The attributes of
the original class are then distributed among the extracted
classes according to how they are used by the methods in
the new classes, i.e., each attribute is assigned to the new
class having the higher number of methods using it3.

It is worth noting that this approach (i) is able to split
a Blob class in more than two classes, overcoming the
limitation of the MaxFlow-MinCut approach, and (ii) on the
contrary of the approaches based on clustering algorithms
(see e.g., [8]) automatically identifies the appropriate number
of classes that should be extracted from a Blob class. More
details about this approach can be found in [12], [13].

A. Assessment of the Approach

The approach has been assessed on five open source sys-
tems, namely ArgoUML, Eclipse, GanttProject, JHotDraw,
and Xerces to (i) analyse the impact of the configuration pa-
rameters (i.e., different weights for the similarity measures,
and different values for threshold used to remove spurious
relationships) on its performances and (ii) verify if the
combination of structural and semantic measures improve
the meaningfulness of the identified ECR operations with
respect to the use of only structural or semantic measures.

To have a high number of classes to assess the proposed
approach, we artificially created Blob classes with more
responsibilities and low cohesion from classes of the original
systems. Specifically, for each system, we randomly created
groups of two or three high cohesive classes and merged
them to create artificial Blobs, i.e., we created a new class
containing all the methods (except the constructors) and
attributes of the classes to be merged. For each system we
created 50 artificial Blobs composed by merging two classes
and 50 by merging three classes.

3If a private field needs to be shared by two or more of the extracted
classes, the implementation of the needed getter and/or setter methods is
left to the developer.



Table I
FMavg ON ECLIPSE USING (I) ONLY STRUCTURAL MEASURES, (II)

ONLY SEMANTIC MEASURES, AND (III) A COMBINATION OF BOTH

Information exploited 2 Merged Classes 3 Merged Classes
Structural 0.73 0.61
Semantic 0.82 0.63

Combined 0.89 0.73

The proposed approach was then applied to split the artifi-
cial Blobs and to reconstruct the original classes. In essence,
given the observed quality of all the merged classes (very
high cohesion), we considered them as a golden standard.
Hence, to evaluate the results, the refactored classes were
compared with the original classes to count the number
of methods correctly and incorrectly moved in the split
classes. We used the F-measure (FM) [14] to quantify the
reconstruction accuracy.

To analyse the impact of the configuration parameters on
the performances of the proposed approach we refactored
the same set of artificial Blobs using different parameter
configurations. In particular, we varied each measure weight
starting at 0 and increasing it to 1 in steps of 0.1. In
this way it was also possible to verify if the combina-
tion of structural and semantic measures (obtained when
wSSM + wCDM 6= 0 and wCSM 6= 0) allows to obtain
better performances than those achieved exploiting only
structural (wSSM+wCDM = 1 and wCSM = 0) or semantic
(wSSM + wCDM = 0 and wCSM = 1) measures. We
also experimented different values for the threshold used
to remove spurious relationships among the methods of the
class to be refactored.

The performed assessment allowed us to identify heuris-
tics to set all the parameters of the approach in order to
maximize its performances. Moreover, the obtained results
highlighted the key role played by the semantic measure
in the identification of the refactoring solutions. Table I
reports the average FM achieved by our approach on Eclipse
when refactoring artificial Blobs composed of two and three
merged classes using (i) only structural measures, (ii) only
the semantic measure, and (iii) the combination of structural
and semantic measures. As we can see, the combination
of structural and semantic measures strongly improves the
performances of our approach with respect to the use of only
structural or semantic measures (confirming the findings of
[4]). The results obtained on the other object systems are
consistent with those obtained on Eclipse.

See [13] for details about the performed assessment.

B. Evaluation

The proposed approach, once identified its best configu-
ration of parameters, has been used to split 17 real Blobs of
two open source systems, namely Xerces and GanttProject.
Then, we measured the improvement provided in terms of
quality metrics. Our approach provided an average increment
of class cohesion for the refactored classes of about 90%
against the 75% obtained by MaxFlow-MinCut approach.

Moreover, we performed an user study to analyse if the
refactoring operations proposed by our approach are mean-
ingful from a developer’s point of view. We involved a
total of 50 master students that evaluated three different
refactoring operations for each of the Blobs used in the
experimentation: (i) the refactoring suggested by the tran-
sitive closure approach, (ii) the refactoring suggested by the
MaxFlow-MinCut approach, and (iii) a random refactoring.
The latter option was considered only to verify whether
participants seriously considered the assignment. For each
of the proposed refactoring the students had to express their
level of agreement to the claim “The proposed refactoring
results in a better division of responsibilities” proposing a
score using a Likert scale: 1: Strongly disagree; 2: Disagree;
3: Neutral; 4: Agree; 5: Fully agree.

The transitive closure approach was considered the one
providing the most meaningful refactorings with an average
score of 4.3 against 3.3 of the MaxFlow-MinCut approach
and 1.4 of the random splitting. For details see [13].

III. SUPPORTING EXTRACT PACKAGE REFACTORING

Changing the level of granularity form class to package it
is possible to support EPR. Our EPR approach takes as input
a package identified by the developer as a candidate for re-
modularization. Then, a measure reflecting a relationship be-
tween the classes of the package is computed. The measured
values between classes are stored in a n× n matrix, called
class-by-class matrix, where n is the number of classes in the
package under analysis. A generic entry mi,j of the class-
by-class matrix represents the likelihood that class ci and
class cj should be in the same package. This likelihood
is estimated by combining two structural and semantic
measures, i.e., information-flow-based coupling (ICP) [15]
and Conceptual Coupling Between Classes (CCBC) [16].
The ICP measures the calls interaction among the classes
of the system: the higher the ICP between two classes ci
and cj , the higher their coupling, the higher the likelihood
that ci and cj should be placed in the same package in
order to reduce coupling among the packages of the system.
Concerning the CCBC, it measures the semantic coupling
among two classes of the system: the higher the overlap
of terms between comments and identifiers of two classes
ci and cj , the higher the likelihood that these two classes
implement similar responsibilities (and thus should be placed
in the same package). Once the class-by-class matrix is
computed, spurious relationships among the classes are
removed using a threshold and the transitive closure of the
class-by-class matrix is exploited to identify the packages
that should be extracted from the promiscuous package.
Further details about the approach can be found in [17].

A. Evaluation

Also in this case we firstly assessed the performances of
the proposed approach in an artificial scenario to identify the



best configuration of parameters for our approach (i.e., the
weights to assign to the exploited metrics, and the threshold
used to remove spurious relationships). In particular, we
selected high cohesive packages from three OO systems
and merged them in order to create promiscuous packages
in the systems. Then, the proposed approach was applied
to reconstruct the original packages. The reconstruction
accuracy was once again measured using the F-measure.

The results of the assessment highlighted the importance
of the semantic information also to support EPR. In particu-
lar, exploiting only structural information, our approach was
able to achieve an average reconstruction accuracy of about
35%, while using the combination of structural and semantic
information the accuracy reached was of 78% on average.

We also analysed the proposed re-modularization opera-
tions from a functional point of view. In particular, an user
study was conducted on the same three OO systems. For
two of them we were able to involve the original developers
in the judgment of the re-modularizations proposed by
our approach on the object systems. We asked subjects to
evaluate a total of 21 proposed re-modularizations. Among
those, the developers marked as non meaningful only 2
re-modularizations, highlighting the goodness of the EPR
operations suggested by our approach. For all the details
about the experimentation see [17].

IV. CONCLUSION AND FUTURE WORK

This research investigates the usefulness of combining
structural and semantic information to support refactoring
activities. Until now we have exploited structural and seman-
tic information to support two refactoring operations, namely
ECR and EPR. The two approaches have been deeply
evaluated showing the benefits provided by the semantic
information in the identification of refactoring solutions.

Future work will be devoted to the definition of ap-
proaches able to support other refactoring operations, like
Move Method [18] and Move Class [19]. We are also ex-
perimenting other algorithms based on Game Theory [20] to
support refactoring activities. Finally, we are implementing
our approaches as an Eclipse plug-in.

ACKNOWLEDGMENT

The author would like to thank his advisor Prof. Andrea
De Lucia and his co-advisor Prof. Rocco Oliveto for their
support and encouragement. The author would also like to
thank Prof. Andrian Marcus for his precious contribution to
this research.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[2] T. Mens and T. Tourwe, “A survey of software refactoring,”
IEEE TSE, vol. 30, no. 2, pp. 126–139, 2004.

[3] V. R. Basili, L. Briand, and W. L. Melo, “A validation of
object-oriented design metrics as quality indicators,” IEEE
TSE, vol. 22, no. 10, pp. 751–761, 1995.

[4] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract
class refactoring opportunities using structural and semantic
cohesion measures,” Journal of Systems and Software, vol. 84,
pp. 397–414, March 2011.

[5] M. O’Keeffe and M. O’Cinneide, “Search-based software
maintenance,” CSMR, 2006, pp. 249–260.

[6] K. Maruyama and K. Shima, “Automatic method refactoring
using weighted dependence graphs,” ICSE, 1999, pp. 236–
245.

[7] O. Seng, J. Stammel, and D. Burkhart, “Search-based deter-
mination of refactorings for improving the class structure of
object-oriented systems,” GECCO, 2006, pp. 1909–1916.

[8] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing object-oriented class modules using an ag-
glomerative clustering technique,” ICSM, 2009, pp. 93–101.

[9] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the con-
ceptual cohesion of classes for fault prediction in object-
oriented systems,” IEEE TSE, vol. 34, pp. 287–300, 2008.

[10] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering:
Identifying topics in source code,” Information and Software
Technology, vol. 49, no. 3, pp. 230–243, 2007.

[11] G. Gui and P. D. Scott, “Coupling and cohesion measures for
evaluation of component reusability,” MSR, 2006, pp. 18–21.

[12] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “A two-
step technique for extract class refactoring,” ASE, 2010, pp.
151–154.

[13] ——, “Automating extract class refactoring. Technical Re-
port. www.sesa.dmi.unisa.it/tr/trECR11.pdf.”

[14] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

[15] Y. Lee, B. Liang, S. Wu, and F. Wang, “Measuring the
coupling and cohesion of an object-oriented program based
on information flow,” International Conference on Software
Quality, 1995, pp. 81–90.

[16] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy,
“Using information retrieval based coupling measures for
impact analysis,” Empirical Software Engineering, vol. 14,
no. 1, pp. 5–32, 2009.

[17] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Software
re-modularization based on structural and semantic metrics,”
WCRE, 2010, pp. 195–204.

[18] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, and A. D.
Lucia, “Identifying method friendships to remove the feature
envy bad smell (nier track),” ICSE, 2011, pp. 820–823.

[19] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D.
Lucia, “Improving software modularization via automated
analysis of latent topics and dependencies. Technical Report.
www.sesa.dmi.unisa.it/tr/trMC11.pdf.”

[20] G. Bavota, R. Oliveto, A. D. Lucia, G. Antoniol, and Y.-
G. Guéhéneuc, “Playing with refactoring: Identifying extract
class opportunities through game theory,” ICSM, 2010.


