
Evaluating the Specificity of Text Retrieval Queries to Support
Software Engineering Tasks

Sonia Haiduc1, Gabriele Bavota2, Rocco Oliveto3, Andrian Marcus1, Andrea De Lucia2
1Computer Science Department, Wayne State University, Detroit, MI 48202, USA

2School of Science, University of Salerno, 84084 Fisciano (SA), Italy
3STAT Department, University of Molise, 86090 Pesche (IS), Italy

sonja@wayne.edu, gbavota@unisa.it, rocco.oliveto@unimol.it, amarcus@wayne.edu, adelucia@unisa.it

Abstract—Text retrieval approaches have been used to ad-
dress many software engineering tasks. In most cases, their
use involves issuing a textual query to retrieve a set of
relevant software artifacts from the system. The performance
of all these approaches depends on the quality of the given
query (i.e., its ability to describe the information need in
such a way that the relevant software artifacts are retrieved
during the search). Currently, the only way to tell that a
query failed to lead to the expected software artifacts is by
investing time and effort in analyzing the search results. In
addition, it is often very difficult to ascertain what part of the
query leads to poor results. We propose a novel pre-retrieval
metric, which reflects the quality of a query by measuring
the specificity of its terms. We exemplify the use of the new
specificity metric on the task of concept location in source
code. A preliminary empirical study shows that our metric is a
good effort predictor for text retrieval-based concept location,
outperforming existing techniques from the field of natural
language document retrieval.

Keywords-Text retrieval; Query specificity; Concept location.

I. PROBLEM DESCRIPTION

Many software artifacts created during software evo-
lution are written mostly in natural language text (e.g.,
requirements, design documents, user manuals, scenarios,
bug reports, developers’ messages, identifiers and comments
in source code). The information embedded in these arti-
facts plays an important role in understanding the software
system, as it encodes to a large degree the domain of
the software, the developers’ knowledge about the system,
design decisions, etc.

In order to leverage the information captured in these
artifacts, researchers have made use of text retrieval (TR)
techniques to support many software engineering (SE) tasks,
such as: requirements traceability, refactoring, concept loca-
tion, impact analysis, defect prediction, bug triage, reverse
engineering. The most common way to address these SE
tasks with the use of TR techniques is to rephrase the SE task
as an Information Retrieval (IR) problem. All such cases rely
on the formulation of a textual query by a human or extracted
automatically from an existing textual artifact. Many search
engines for software artifacts are built around TR methods.
Like any search engine, the performance of TR techniques

is strongly dependent on the query. When the query is well
formulated (i.e., it describes the information need following
a discourse similar to the one in the search space), TR works
well. However, when the query is ambiguous or too general,
TR performs poorly and the queries require rewriting.

Writing a good query is not an easy task for several
reasons. First, developers may not be familiar with the
vocabulary used to describe particular concepts in the search
space (i.e., the collection of software artifacts). For example,
when a developer wants to search the source code for the
implementation of a feature, she may be unfamiliar with
the identifiers used in the source code to refer to particular
aspects of the feature. Other factors inherently affect TR
techniques in other fields as well. For example, synonyms
and homonyms contribute to the ambiguity of a query.
Also, TR techniques do not use predefined vocabularies or
grammars, which makes them fast and robust, but also limits
their retrieval performance in such cases.

All TR techniques rely on computing rather complex
textual similarity measures between the queries and the
software artifacts. These are most often opaque to users
and in consequence it is hard for them to decide, even
after looking at the results of a query, which terms in the
query are good and which ones are not. In consequence,
the effort spent on investigating irrelevant results is often
daunting. This problem is not specific to software; it was
first encountered in the field of natural language document
retrieval [1]. Researchers in this field have addressed the
problem by proposing several techniques to measure various
aspects of the quality of queries: specificity, coherence,
conciseness, etc. These metrics can help users determine
which parts of the queries should be rewritten.

A. Solution and Motivation

Our long-term goal is to assist the TR query formulation
and selection process for SE tasks. One important step in
this direction is estimating the quality of a query (i.e.,
determining when a query would need reformulation). For
this, we draw inspiration from solutions proposed in the
natural language document retrieval field. However, TR in
SE is not quite the same as TR in natural language corpora,

especially when we are dealing with source code. The
rules of discourse and information needs of the users are
different in SE that in regular document retrieval tasks.
Among the existing aspects of query quality, specificity is
somewhat independent from the rules of discourse and hence
potentially most suited to be used with software artifacts.
Specificity measures how discriminative are the terms in the
query for describing the current information need. There are
two categories of measures: pre- and post-retrieval, based
on whether they are computed before or after the query is
run. We focused on pre-retrieval metrics as our goal is to
offer feedback to the developer about the query as soon as
possible. Among these measures, average inverse document
frequency, or avgIDF [2] performs the best on natural
language corpora, and it was found to have a relatively high
correlation with the retrieval performance. In order to assess
if avgIDF could be used o predict the quality of the retrieval
also on software data, we measured the correlation between
avgIDF and the retrieval effort on existing concept location
data. The weak correlation (see Section IV) indicates that
the metric does not work well on software data.

In consequence, we propose a new metric, called Query
Specificity Index (QSI), to automatically detect the speci-
ficity of queries for TR approaches in the context of SE
tasks. The metric is able to measure the expected specificity
of a query prior to the retrieval and relies on information
theory in order to determine the ability of a query to
discriminate between relevant and irrelevant artifacts. QSI
can be used in several ways in SE tasks. For example, when
dealing with user formulated queries, QSI can be used to
recommend the developer to reformulate the query before
spending time on investigating the retrieval results. Some
SE tasks rely on queries extracted from existing artifacts,
such as, traceability recovery. During this process a lot of
effort is spent on the manual validation of the retrieved links
and on providing feedback to the retrieval system. QSI can
be used to prioritize the links that should be investigated
first by the users.

In this paper we exemplify the use of QSI in the
context of concept location in source code and compare its
performance with avgIDF. Concept location is the process
of identifying where a code change is to start, in response
to a change request and many concept location techniques
use TR as the underlying mechanism for tool support. We
present a case study where QSI was used to estimate the
specificity of nearly one hundred queries used in concept
location. High correlation between QSI and the retrieval
effort indicate that QSI can be used for predicting the effort
spent on concept location and that it performs significantly
better on software data than avgIDF.

B. Related Work

To the best of our knowledge, no previous work addressed
the problem of measuring the query quality (in particular

specificity) in the context of SE tasks. Within SE, the work
most related to our approach deals with the manual or auto-
matic query reformulation and refinement [3], [4], [5], [6],
[7], [8], mostly based on relevance feedback mechanisms.
These approaches rely on repeated execution of queries and
analysis of the results at every run to provide feedback. In
contrast, our approach measures the specificity of the query
before its execution.

Regarding concept location, Marcus et al. [9] proposed
TR to support such a task. Many improvements have been
developed since then, as reported in a recent survey [10].
All these approaches share a common canonical process:
(i) the source code is converted to a text corpus; (ii) the
corpus is indexed with a TR technique; (iii) the user writes
a text query based on a change request; (iv) the TR engine
retrieves a ranked list of source code documents as results;
(v) the user inspects the results and, if needed, reformulates
the query and returns to step (iv). Our work focuses on step
(iii) of this process.

Several studies have investigated the results of formulat-
ing different queries for the same information need [11],
[12], which highlighted the strong dependence of the TR
performance on the query and motivate our work.

II. THE QUERY SPECIFICITY INDEX

We introduce a novel metric to determine the specificity of
queries before retrieval in the context of TR-based solutions
to SE tasks. The new metric, called Query Specificity Index
(QSI), is based on concepts from information theory. More
specifically, it uses the concept of information entropy [13]
to measure the specificity of a term in the query. Information
entropy measures the amount of uncertainty of a discrete
random variable [13]. In our case, the random variable is
represented by a term in the query, while the documents in
the corpus (i.e., software artifacts in our context) are the
possible states that the variable can assume (i.e., the term
does or does not occur in an artifact). This means that the
more scattered the term is in the corpus the higher its entropy
will be. Our conjecture is that a specific query should contain
terms that are not very scattered through the corpus, but that
are found in a high concentration in few documents (i.e.,
the relevant ones). We call such terms specific terms. While
avgIDF is also based on the principle that terms with a
low scattering are more specific, it overlooks one important
aspect: the concentration (i.e., the frequency of terms in the
documents where they appear). In consequence, it does not
make a distinction between terms that are found many times
in a few documents in the corpus and terms that are found
only once in few documents in the corpus. QSI addresses
this limitation by considering also the concentration of terms
in documents, along with their dispersion.

Formally, the entropy of a term t is computed as
entropyt =

∑
d∈Dt

p(d) · logµp(d), where Dt is the set
of documents containing the term t, µ is the number of

window full screen

F11 option screen

Class C1

window (2)
screen (1)
option (1)

Class C2
window (1)

F11 (2)
option (3)
screen (1)

full (1)

Class C3

screen (2)

window (2)

Class C4

window (1)

screen (1)

Class C5

full (2)

Class C6

full (2)

window (2)

Q1

Document corpus

Q2

entropy(window) = 0.87
entropy(full) = 0.59
entropy(screen) = 0.74

QSIQ1 = 0.26 }

entropy(F11) = 0.00
entropy(option) = 0.31
entropy(screen) = 0.74

QSIQ2 = 0.69 }

1. C6
2. C3
 ...
6. C2

Ranked List Q1

1. C2
2. C1
 ...

Ranked List Q2

Queries

Figure 1. QSI for two different queries.

documents in the corpus, and p(d) represents the probability
that the random variable (term) t is in the state (document)
d. Such a probability is computed as the ratio between the
number of occurrences of the term t in the document d over
the total number of occurrences of the term t in all the
documents in the corpus. The entropy has a value in the
interval of [0, 1]. The higher the value, the less the term
is discriminating. We thus compute the QSI based on the
entropy of its terms as QSIq = 1−median{entropyt | t ∈
q}. We chose to use the median over the average because
the median is less impacted by skewed distributions of
values, caused by a few non-specific terms that may occur in
otherwise highly specific queries. Hence, we avoid situations
where a few terms have a strong impact on the QSI .

In the rest of the paper we use and discuss QSI in the
context of concept location (CL) in source code. Figure 1
shows an example of computing the QSI of two different
queries formulated for locating the code related to a change
request. The software is composed of six classes (C1–
C6) and each is converted to a document in the corpus.
The change request is actually a bug report: The window
containing the user interface does not scale to full screen
when pushing the F11 button on the keyboard. The goal
of CL in this example is to identify the class containing
the bug (in this particular example is C2). Figure 1 shows
the two queries (i.e., Q1 and Q2) as well as the document
corpus. The figure also lists the terms used in the two queries
that occur in each of the classes (the number of occurrences
appears in parenthesis). As we can see, query Q1 contains

Table I
PRELIMINARY EVALUATION: LINEAR CORRELATION ANALYSIS

System Version #Methods #Queries Correlation
avgIDF QSI

Adempiere 3.1.0 28,354 34 -0.17 -0.72
ATunes 1.10.0 3,480 30 -0.52 -0.43
JEdit 4.2 5,532 30 -0.16 -0.47
Overall - 37,366 94 -0.07 -0.53

terms having very high entropy. All the terms from Q1

appear in several classes of the system and thus they do
not help much in discriminating between the documents.
For this reason the query specificity of Q1 is not high
(QSIQ1 = 0.26). As we can see, when executing Q1, the
relevant class (C2) is the sixth class in the ranked list. Thus,
the developer would need to investigate six classes in order
to locate the faulty one. Conversely, the terms in Q2 are
well focused on a particular document in the corpus (C2),
thus exhibit a low entropy and consequently a high QSI
(QSIQ2 = 0.69). With such a query the relevant class is
the first class in the ranked list, indicating a minimum effort
spent on CL. Note that low entropy does not necessarily
imply that the documents that the query is focused on are
the relevant ones.

III. PRELIMINARY EVALUATION

Our goal is to assess if query specificity metrics can be
used as indicators of the effort spent on TR - based CL
(which we consider as a measure of retrieval quality). We use
a metric that approximates this effort as the number of re-
trieved results (i.e., source code documents) that a developer
needs to examine before finding the first relevant document
to the change (we assume the developer is examining the
results in the order provided by the TR engine). This effort
measure is commonly used in the existing research that
empirically evaluates CL techniques [10]. We measure the
correlation between the avgIDF and QSI , on one hand,
and the CL effort measure, on the other hand.

We use change data from three open source systems,
namely Adempiere1 3.1.0, ATunes2 1.10.0, and JEdit3 4.2.
For each object system, we selected a set of change requests
from its issue tracking system corresponding to bugs present
in the investigated version of the software, but fixed in a
later version. We determined the set of methods that were
modified in order to fix each bug, which we used then as
the golden set for CL. We will refer to these methods as the
changed methods. For each change request, we created two
queries, extracted from the online issue tracking systems: the
first query was composed from the title of the change request
(i.e., short description) and the second query composed from
the long description of the change request. Table I reports
the number of queries used for each system.

1http://www.adempiere.com/
2http://www.atunes.org/
3http://jedit.org/

We used TR in a rather standard way in this study. We
built the source code document corpus considering every
method in the system as a separate document. For each
method we extracted the text found in its identifiers and
comments in the source code. We then normalized the text
using identifier splitting, stop words removal (i.e., we re-
moved common English words and programming keywords)
and stemming. The same normalization techniques were
applied on the extracted queries. The corpus was indexed
by with Lucene4, a popular implementation of the Vector
Space Model.

The CL effort for a given query is the highest rank of any
of the changed methods in the ranked list of search results.
As mentioned before, this is a standard measure used when
evaluating CL techniques [10]. We computed the Pearson
product-Moment Correlation Coefficient (PMCC) [14] be-
tween the values obtained for avgIDF and QSI , respec-
tively, and the CL effort measure for each of the queries.
PMCC is a measure of correlation between two variables
X and Y defined in [−1, 1], where 1 represents a perfect
positive linear relationship, −1 represents a perfect negative
linear relationship, and some value between −1 and 1
indicates the degree of linear dependence between X and
Y . Cohen et al. [14] provided a set of guidelines for the
interpretation of the correlation coefficient. It is assumed
that there is no correlation when 0 ≤ ρ < 0.1, small
correlation when 0.1 ≤ ρ < 0.3, medium correlation when
0.3 ≤ ρ < 0.5, and strong correlation when 0.5 ≤ ρ ≤ 1.
Similar intervals also apply for negative correlations.

Table I reports the correlation values for each of the three
object systems. As it can be observed, QSI achieves a higher
correlation than avgIDF on two of the three object systems.
Only for ATunes the correlation obtained by avgIDF is
higher (-0.52 vs -0.43). However, when considering the
average over the entire set of queries, we can see that QSI
has a strong correlation with the CL effort (-0.53), whereas
avgIDF has no correlation.

IV. CONCLUSION AND FUTURE WORK

We found that avgIDF , one of the best query specificity
metrics used in natural language document retrieval, does
not work very well on software corpora. We conjectured
that accounting for term density, in addition to dispersion,
we can obtain a better specificity measure for software data.
We proposed the QSI , which uses information entropy
to counteract the weakness of avgIDF . The results of a
preliminary evaluation study showed that QSI correlates
highly with concept location effort when searching for
methods to change in response to bug reports.

The results are promising enough to warrant further work.
Our future work focuses on three directions. First, we will
investigate combinations of QSI with other query quality

4http://lucene.apache.org/

metrics with the goal of obtaining better correlations with
retrieval quality. Second, we will build recommenders (based
on QSI and other metrics), which will suggest users what
terms to change in their query, based on their quality, in
order to reduce concept location effort. Finally, we will use
these query quality metrics to support other SE tasks, such
as traceability link recovery.

REFERENCES

[1] D. Carmel and E. Yom-Tov, Estimating the Query Difficulty
for Information Retrieval. Morgan and Claypool Publishers,
2010.

[2] S. Cronen-Townsend, Y. Zhou, and B. Croft, “Predicting
query performance,” in Proc. of SIGIR, 2002, pp. 299–306.

[3] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental
approach and user feedbacks: a silver bullet for traceability
recovery,” in Proc. of ICSM, 2006, pp. 299–309.

[4] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Eme-
necker, “A machine learning approach for tracing regulatory
codes to product specific requirements,” in Proc. of ICSE,
2010, pp. 155–164.

[5] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use
of relevance feedback in ir-based concept location,” in Proc.
of ICSM, 2009, pp. 351–360.

[6] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards
mining replacement queries for hard-to-retrieve traces,” in
Proc. of ASE, 2010, pp. 245–254.

[7] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing
candidate link generation for requirements tracing: The study
of methods.” IEEE TSE, vol. 32, no. 1, pp. 4–19, 2006.

[8] M. Petrenko, V. Rajlich, and R. Vanciu, “Partial domain
comprehension in software evolution and maintenance,” in
Proc. of ICPC, 2008, pp. 13–22.

[9] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An
information retrieval approach to concept location in source
code,” in Proc. of WCRE, 2004, pp. 214–223.

[10] B. Dit, R. M., M. Gethers, and D. Poshy-
vanyk, “Feature location in source code: A
taxonomy and survey,” JSME, to appear,
2012. [Online] http://www.cs.wm.edu/˜denys/pubs/JSME-FL-
SurveyCRCV1.pdf

[11] J. Starke, C. Luce, and J. Sillito, “Searching and skimming:
An exploratory study,” in Proc. of ICSM, 2009, pp. 157–166.

[12] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature
location via information retrieval based filtering of a single
scenario execution trace,” in Proc. of ASE, 2007, pp.
234–243.

[13] T. M. Cover and J. A. Thomas, Elements of Information
Theory. Wiley-Interscience, 1991.

[14] J. Cohen, Statistical power analysis for the behavioral
sciences, 2nd ed. Lawrence Earlbaum Associates, 1988.

