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Abstract—Code examples are small source code fragments

whose purpose is to illustrate how a programming language con-

struct, an API, or a specific function/method works. Since code

examples are not always available in the software documentation,

researchers have proposed techniques to automatically extract

them from existing software or to mine them from developer

discussions. In this paper we propose MUSE (Method USage

Examples), an approach for mining and ranking actual code

examples that show how to use a specific method. MUSE combines

static slicing (to simplify examples) with clone detection (to group

similar examples), and uses heuristics to select and rank the

best examples in terms of reusability, understandability, and

popularity. MUSE has been empirically evaluated using examples

mined from six libraries, by performing three studies involving a

total of 140 developers to: (i) evaluate the selection and ranking

heuristics, (ii) provide their perception on the usefulness of the

selected examples, and (iii) perform specific programming tasks

using the MUSE examples. The results indicate that MUSE selects

and ranks examples close to how humans do, most of the code

examples (82%) are perceived as useful, and they actually help

when performing programming tasks.

I. INTRODUCTION

Developers frequently need to use methods they are not fa-
miliar with or they do not remember how to use. To learn about
such methods, developers usually resort to reference manuals
(e.g., Javadoc), Questions and Answers (Q&A) forums (e.g.,
Stack Overflow), or other information sources. Often, these
resources provide little more than generic explanations of
the method usage syntax, or focus on the method’s technical
details. In such cases, developers could benefit from short code
fragments, i.e., code examples, presenting actual, practical uses
of the method. The goal of our work is to automatically
generate such code examples, given a specific method.

Our work adds to and complements existing approaches that
have been developed to obtain code examples of one sort or
another. Some of them focus on matching a query onto an
existing code base with the aim of identifying generic code
examples [1], [2], [3], [4]. Other approaches try to match
user queries or developer’s code context onto discussions
(containing examples) in Q&A forums [5]. Recently, a few
approaches have focused on providing abstract code examples
for a given API, either as-a-whole [6] or focusing on specific
methods [7], [8], [9]. Abstract code examples are fragments of
code showing usage patterns of a code element (e.g., an API or
one of its methods). Even when there are several ways of using
a code element, an abstract example presents a synthesized
and generic use of a code element. Conversely, concrete
code examples are working fragments of code showing actual,
existing usage scenarios of a code element.

Our conjecture is that providing developers with several

concrete method usages would augment abstract code exam-
ples and result in better understanding of the method usage.
For this reason, we focus on the still open problem of mining
relevant concrete code examples for a given method. Specif-
ically, we aim at answering the following question: “Given a
specific method needed to perform a task, what are the neces-
sary steps to use it?” For instance, once a developer has un-
derstood the purpose of an API and has gained an idea of what
the various methods do (e.g., through a reference manual), she
wants to know what are the typical invocation scenarios for
a given method, say copyInputStreamToFile. To this
aim, she needs to find one or more examples that have the
necessary steps to invoke this method, such as, invoking other
methods of the API or manipulating the method’s parameters.
Such a method usage example (see Fig. 1) shows that in order
to use the desired method (line 12) two arguments are required
(e.g., zip.getInputStream(entry) and file). The
inline comments (lines 8-11) provide information about each
argument: the former is an InputStream instance whose
content will be copied, and the latter is a non-directory File

instance where the content will be written to. The comments
also inform that neither of them should be null. In addition, the
usage example shows how all elements involved in the invoca-
tion are obtained (lines 1-7). For example, the InputStream
argument is obtained from a ZipFile object instantiated in
line 3 and given a ZipEntry object instantiated in line 6.

We propose MUSE (Method USage Examples), an ap-
proach that automatically finds, extracts, and documents con-
crete usage examples of a given method (like the one in
Fig. 1). MUSE employs state-of-the-art static analysis tech-
niques, which ensure its precision, usability, and set it apart
from existing work. It parses existing applications to collect
method usages and computes a static backward slice for each
usage statement to detect the sequence of relevant steps to
invoke the method and prune out code that is less relevant.
Since different applications might use the same method in a
similar way, MUSE identifies similar examples through clone
detection. The detected clones are used as a measure of

01 File source;
02 File target;
03 ZipFile zip=new ZipFile(source);
04 Enumeration<? extends ZipEntry> entries=zip.entries();
05 while(entries.hasMoreElements()) {
06  ZipEntry entry=entries.nextElement();
07  File file=new File(target,entry.getName());
08  //zip.getInputStream(entry)->the InputStream to copy bytes from, 
09  //must not be null
10  //file->the non-directory File to write bytes to (possibly 
11  //overwriting), must not be null
12  FileUtils.copyInputStreamToFile(zip.getInputStream(entry),file);
13 }

Fig. 1. Example generated by MUSE.



popularity of the code examples, which is in turn used to
rank the groups of similar examples (i.e., code clones). Finally,
MUSE selects one representative example for each group based
on its readability and estimated reusability effort (i.e., how
much code from the client applications needs to be imported
to reuse the example).

We implemented MUSE and evaluated it through three
empirical studies. The first study was aimed at assessing the
selection and ranking heuristics used by MUSE and involved
nine industrial developers. The results indicate that MUSE se-
lects and ranks examples much like human developers do.
In the second study, ten code examples were evaluated by
119 surveyed developers, out of which 15 were contributors
of the projects for which the examples were produced and
the remaining ones worked on projects relying on those
libraries. To the best of our knowledge, this is the largest study
evaluating the perceived usefulness of automatically generated
code examples (1,190 human judgments). The results indicate
that 82% of the evaluated code examples are perceived as
useful by the study participants.

We also performed an extrinsic evaluation aimed at inves-
tigating whether MUSE supports developers in their imple-
mentation tasks. This is another notable contribution of this
paper, as we involved twelve industrial developers to assess the
usefulness of automatically generated code examples during
software development. We considered a control group relying
on the Web to retrieve documentation and/or examples of the
methods to be used. The experiment revealed that the de-
velopers using MUSE’s examples achieved significantly more
complete implementations.

All the material used to run our three studies as well as the
raw results are publicly available in a comprehensive replica-
tion package [10] (all URLs last verified on 02/09/2015).

II. MUSE OVERVIEW

When a user needs method usage examples from a project
release of interest (Pi), she provides Pi’s source code and
Javadoc (if available), and a list of client projects using Pi

as library. With no other input required, MUSE proceeds as
follows:

• The Clients Downloader downloads the source code of
the client projects.

• The Example Extractor parses Pi’s source code to ex-
tract its public methods and analyzes each of the client
projects looking for calls to such methods. From each of
these calls, MUSE computes a backward slice, each one
representing a “raw” usage example.

• The Example Evaluator ranks the “raw” usage examples
and selects the most representative ones.

• The Example Injector adds informative comments to each
example. Also, for each method covered by at least one
code example, the Example Injector creates an HTML
page containing all the selected examples, as ranked by
the Example Evaluator, and injects such a page in the
official HTML Javadoc documentation.

A. Clients Download
For each client project of Pi to consider, the user provides

a link to a compressed file containing its source code. There is
no minimum number of clients required by MUSE. Clearly, the
more clients are given, the higher the likelihood of identifying
method usage examples. The generation of the list of possible
clients can be automated. In our studies, for example, we
used a script to automatically download the client projects
using the library of interest (i.e., Pi) from its Maven page. A
project Pi indexed in Maven includes in its Web page a list of
client projects using it (e.g., see the Maven page of Apache
commons-io 2.4 at http://tinyurl.com/lmgd9m3). We did
not integrate such a script in MUSE, since we are working
on a more general Web crawler able to collect client projects
without the Maven infrastructure.

Starting from the compressed file, the Clients Downloader
automatically retrieves the source code of each client and
builds it by using the Eclipse Java Development Tools (JDT),
in conjunction with the Maven Eclipse Plugin, when appropri-
ate (i.e., when the code of a client includes a pom.xml file).
Note that building the client projects is required, since the
static slicer used by MUSE during the examples extraction can
only be used on compilable code. The downloaded clients that
cannot be successfully built are discarded. Thus, the output of
this component is the set of built client projects.

B. Example Extraction, Selection, and Ranking
The Example Extractor parses the source code of the set of

built client projects and searches for invocations of Pi’s public
methods. Then, the Example Extractor uses the JDeodorant
Java static slicer [11] to compute an intra-procedural, back-
ward slice for each identified method invocation.

At this point, every method in Pi will have a number of
slices, each one representing a “raw” code example. If none
of the clients uses a given method, then no examples will be
extracted for it. There are cases, however, when the Example
Extractor finds many examples for a given method. On one
hand, having a large number of usage examples for a method
is desirable, as different examples might show alternative
usages of the method and some of them might be easier
to adapt than others to the developer’s task. On the other
hand, providing developers with a large set of code examples,
which might contain several similar elements, would result in
information overload. MUSE tries to avoid such a situation by
identifying groups of similar examples and reporting just one
representative example for each group. Also, MUSE provides
a ranking of the selected examples, indicating to the developer
those that are more likely to be useful. We describe in more
details how the ranking and selection are performed.

1) Ranking: The Example Evaluator relies on type-2
clone detection. Given a set of slices (i.e., “raw” examples)
E = {ex1, ex2, . . . , exn} extracted for a method mj 2 Pi,
the Example Evaluator uses the Simian clone detector [12] to
identify examples in E that are type-2 clones (i.e., identical
code fragments except for variations in comments, identifiers,
literals, types, and whitespace). We chose to use Simian since
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(i) it is able to detect type-1 and type-2 clones [13], (ii) it is
very efficient in terms of CPU and memory usage, and (iii) it
is freely available for research purposes [12]. While there are
techniques able to detect also type-3 (i.e., clones with added,
removed, and/or modified statements) [14] and type-4 (i.e.,
clones with similar semantics but different implementation)
clones [13], we are not interested in capturing them, since
they would likely represent different usage examples.

The output of Simian consists of all pairs of code examples
(exk, exl) 2 E ⇥E identified as type-2 clones. Based on this
information, the Example Evaluator collects the clones of each
code example exi 2 E and uses them to compute a ranking
score based on their “popularity” across the mined clients.
The conjecture, inspired by previous work by Keivanloo et
al. [1], is that code examples found several times in the
clients (i.e., having a high number of type-2 clones) represent
good usage patterns of the analyzed method. Thus, the more
type-2 clones a code example has, the higher the ranking
score assigned by MUSE to the code example is. However, the
Example Evaluator makes a distinction between clones found
in the same client and clones spread across different clients,
considering the latter as more important. Clones present within
the same client could be method usages implemented by the
same developer, possibly as result of copied and pasted source
code. Thus, they are considered less indicative of “popularity”
of a code example, compared to clones present in different
clients. Formalizing, the ranking score (rs) for a code example
exi is computed as follows:

rs(exi) = #clients2 +#clones+ 1�#clients (1)

where #clones represents the total number of exi’s clones
identified across the clients, the added unit represents exi

itself, and #clients represents the number of different client
projects in which exi and its clones were found. To better
understand how the ranking works, Fig. 2 shows the rs (see
the black rectangles) computed for three code examples, each
one having three clones in the clients. As it can be noticed,
the most important factor in the ranking is the #clients.

Based on their ranking score, the code examples are listed
in descending order to form a ranked list, where each item
consists of a group of code examples Gi, represented by a
code example and followed by its clones. Referring back to
the scenario depicted in Fig. 2, Example 3 (and its clones)
would be ranked in the first position, Example 2 in the second
position, and Example 1 in the third position. This ranking
is used by MUSE to present the code examples of a method
to the developer: the higher the ranking is, the higher the
estimated usefulness of a code example is. Note that the

ranking depends on the choice of clients. Some potentially
useful examples might be ranked low if the client applications
rarely use such examples and, vice versa, a given example may
not be particularly useful outside the set of chosen examples.

2) Selection: As mentioned before, each item in the ranked
list consists of a group Gi of similar code examples (i.e., type-
2 code clones). We conjecture that showing to the developer
a set of type-2 clone examples would result in information
overload. Hence, MUSE shows the developer just one repre-
sentative example for each group, i.e., the code example in Gi

easier to read and reuse.
MUSE uses the readability metric proposed by Buse and

Weimer [15] to evaluate the readability of a given example.
This metric combines a set of low-level code features (e.g.,
identifiers length, number of loops, etc.) and has been shown
to be 80% effective in predicting developers’ readability
judgments. We used the authors’ implementation of such a
metric, which is available at http://tinyurl.com/kzw43n6. Given
a source code fragment (a code example in our case), the
readability metric takes values between 0 (lowest readability)
and 1 (maximum readability).

Regarding the ease of reuse, given a code example exi, we
define and measure its reusability as follows:

reuse(exi) =

⇢ #JavaObjectTypes
#ObjectTypes if #ObjectTypes > 0

1.0 otherwise

where #JavaObjectTypes is the number of object types
used by exi and belonging to the Java framework, and
#ObjectTypes is the total number of different object types
used by exi. The reuse metric is in the range [0, 1], where 0
indicates that all object types in the code example are “custom
objects” (low reusability), and 1 indicates that all object types
in the code example belong to the Java framework or that no
object types are present in the code example (high reusability).
The intuition behind this metric is that reusing a code example
that makes use of custom object types requires importing those
objects into the code under development, which implies an
extra task during reuse. Thus, the higher the number of custom
object types used by a code example is, the lower its reuse
value is, hence it is more difficult to reuse the example.

Since the readability and reuse metrics are defined in the
range [0, 1], we linearly combine them to obtain the following
selection score (ss):

ss(exi) = 0.5⇥ readability(exi) + 0.5⇥ reuse(exi) (2)

indicating the overall score of the code example exi. Note that
we are assigning the same “importance” to both metrics when
computing the overall selection score, as we do not prefer
readability over easiness of reuse or vice versa. Clearly, the
weights can vary, if needed.

MUSE selects from each group Gi of type-2 clone examples
in the ranked list the one having the highest ss value. Thus,
after the selection process, each method in Pi is associated
with a list of ranked and diverse code examples.



C. Example Documentation and Injection
The ranked list of representative code examples for each

method is provided to the Example Injector. This component
extracts information from the Javadoc documentation of each
method mj 2 Pi and includes it in the code examples.
Currently, MUSE extracts the textual descriptions of mj’s
parameters (identified with the tag @param) and includes
them as inline comments to explain the arguments passed
to mj invocation right where it occurs. The generated ex-
amples look like the one shown in Fig. 1 (at page 1) for
the copyInputStreamToFile method of the Apache

commons-io project. Finally, every ranked list of repre-
sentative code examples is presented as an HTML page,
which is injected into the official Javadoc documentation
(if provided by the user). An example of a Javadoc page
augmented by MUSE with the generated examples can be found
at http://tinyurl.com/msvvusw (check the orange links).

III. STUDY I: VALIDATION OF RANKING AND SELECTION

Study I is a survey with software developers, with the goal
of evaluating MUSE’s example ranking and selection.

A. Research Questions and Context Selection
This study aims at providing a human assessment of the

ranking and selection heuristics. Thus, we formulate the fol-
lowing research questions:

RQ1: Does MUSE’s example ranking reflect develop-
ers’ judgment of code examples representing groups of
clones?
RQ2: Does MUSE’s example selection reflect developers’
judgment of similar code examples?

The study was conducted through an online survey. We
invited 20 industrial developers from our professional net-
works. Each participant completed a pre-questionnaire, and
then performed the evaluation of both the ranking and the
selection of code examples for six randomly selected methods
(i.e., one from each object system).

The pre-questionnaire aims at assessing the participants’
experience and expertise. It consists of the following questions:

• For how many years have you developed software? Any
numeric value equal or higher than zero was accepted.

• Do you have any industrial experience as software de-
veloper? If yes, how long? Any numeric value equal or
higher than zero was accepted.

• How often do you make use of third party libraries in
your software projects? Possible answers fall in a four-
point Likert scale [16]: Never; Rarely – I use third party
libraries in less than 33% of my projects; Occasionally –
I use third party libraries in more than 33% but less than
66% of my projects; and Frequently – I use third party
libraries in more than 66% of my projects.

• How often do you use code examples found on the
Internet to check how to use the API of a library?
Possible answers adopt a four-point Likert scale similar
to previous one: Never; Rarely – I use code examples for

TABLE I
APACHE LIBRARIES USED IN THE EMPIRICAL STUDIES.

Library #Public #Clients #Methods with Mean #Examples
(version) Methods Examples per method
commons-io (2.4) 979 87 94 4.96
commons-lang3 (3.1) 1,900 54 86 3.87
httpclient (4.1.2) 1,369 14 82 4.84
poi (3.9) 18,239 22 293 4.67
tika (1.4) 1,610 12 63 3.35
xerces2-j (2.9.1) 6,645 10 50 8.28

less than 33% of the APIs I use; Occasionally – I use
code examples for more than 33% but less than 66% of
the APIs I use; and Frequently – I use code examples for
more than 66% of the APIs I use.

The objects of this study are: (i) the libraries for which
MUSE mines examples, and (ii) the clients from which ex-
amples are extracted. In terms of libraries, we considered six
open-source Apache projects, including two generic, widely-
adopted libraries (commons-io and commons-lang3) and
four libraries that serve to more specific tasks (httpclient,
poi, tika, and xerces2-j). The characteristics of the
projects are reported in Table I, including the number of clients
MUSE used in each case, the number of methods for which
MUSE found examples, and the mean number of examples
found for each method.

B. Study Design and Analysis Method
In order to evaluate the ranking and the selection of code

examples, we adopted the following generic procedure. Sup-
pose that we have extracted the code examples e1, . . . , e7,
and that they were grouped in the following clone groups:
G1 = {e1, e2}, G2 = {e3, e4}, and G3 = {e5, e6, e7}.
Assume also that, for each clone group, MUSE selected (based
on their readability and reusability) e1, e4, and e6, respectively,
as the representative examples. Finally, assume that MUSE has
ranked these examples as follows: (1) e6, (2) e1, and (3) e4.

We asked the participants to perform two tasks to assess
both ranking and selection. First, we showed each participant
the representative examples (in our case e6, e1, and e4) ordered
randomly. For each example, the participants were asked to
assign a score using a Likert scale: 1=Not useful at all;
2=Slightly useful 3=Useful; and 4=Very useful. The expectation
here is that the higher the representative example is in the rank,
the greater the score provided by the developer to that example
should be.

After that, for one (randomly selected) clone group among
G1, G2, and G3, say G3, we showed the examples belonging
to that group (in this case e5, e6, and e7) in a random
order. Just as before, we asked the participants to evaluate
each example using the 1–4 Likert scale. In this case, the
expectation is that the score provided by the developer to the
example selected as representative should be greater than the
score provided to the other examples in the clone group.

To address RQ1, we compute and report the Spearman’s
rank correlation between the participants’ evaluation (in Likert
scale) and the example ranking (according to equation 1)
for each evaluated example. Our expectation is that, if our
ranking heuristic is adequate, then the evaluation should be
negatively correlated with the ranking. We report descriptive
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statistics showing the evaluation distribution for examples
having different ranking. To address RQ2, we compare the
rating of each example we selected (e.g., e5 for clone group
G3) against the rating provided to all other examples using the
Mann-Whitney test [17]. Our expectation is that, if the selec-
tion heuristic is adequate, then the evaluation of the example
selected by the heuristic (according to equation 2) should be
significantly higher than of all the other examples. The results
are considered as statistically significant at ↵ = 0.05.

C. Analysis of the Results
Nine participants completed the survey. They declared, on

average, 6.9 years of development experience (median=7) and
4.1 years of industrial experience (median=4). All claimed to
frequently using third-party libraries in their projects, and eight
of them (89%) reported also frequently using code examples
found on the Web to check how to use APIs.

By analyzing the ranking results (RQ1), we obtained a
(statistically significant, p-value < 0.001) Spearman rank
correlation with ⇢ = �0.24. As expected, the correlation
is negative, although small. The congruence between the
participants’ assessment and MUSE’s ranking is, however,
confirmed by the ratings assigned by participants to the code
examples having different rankings. In particular, the top-1
code examples received a 3.1 score, on average, followed by
those in 2nd and 3rd position (2.5), and to those in position
4th, 5th, and 6th (2.3). Note that none of the methods of
this evaluation had more than six different code examples.
In summary, we can answer RQ1 by stating that the MUSE’s
ranking heuristic properly reflects the developers’ evaluation.

Turning to RQ2, the results of the Mann-Whitney test did
not show a statistically significant difference between the
ratings assigned by participants to the examples selected as
representative and those assigned to all other examples (p-
value=0.26). Looking into the data we noticed that, for some
of the methods of this study, the code examples showed to
the participants were extremely similar, thus pushing par-
ticipants to assign flat ratings to the presented examples
(e.g., assign useful to all clones). However, looking at the
ratings distributions shown in Fig. 3 for selected and not
selected code examples, it is clear that the selected examples
were generally preferred by participants, thus supporting our
selection heuristic. We can therefore answer RQ2 by saying
that the selected examples are considered more useful by the
developers than the not selected ones.

IV. STUDY II: PERCEIVED USEFULNESS OF EXAMPLES

Study II is a survey with software developers, with the
goal of investigating their perceived usefulness of the code

examples generated by MUSE. The context consists of (i)
objects, i.e., code examples extracted by MUSE for methods of
six open source systems, and (ii) participants, i.e., 119 open
source and professional developers providing their opinions on
MUSE’s code examples.

A. Research Question and Context
We aim at investigating whether developers consider the

generated code examples useful for understanding the usage of
methods. Thus, we formulate the following research question:

RQ3: Are MUSE’s usage examples considered useful by
developers?

We answer this research question by asking open-source and
professional developers to assess, through an online question-
naire, their perceived usefulness of MUSE’s usage examples.
The objects (i.e., code examples) of our study are generated
by MUSE for the same six systems adopted in Study I.
In particular, we randomly selected ten methods from each
system for which MUSE generated at least one usage example.
We asked the study participants to evaluate the usefulness of
the top ranked examples (i.e., the best ones as selected by
MUSE’s Examples Evaluator) for each of the selected methods
via an online survey described below.

As participants of this study, we targeted (i) developers of
the six object systems (referred to as library developers) and
(ii) developers of open-source projects using any of the object
systems as libraries (referred to as client developers). The list
of library developers was extracted from the official Apache
committers’ page (http://tinyurl.com/4bg8yw4), which reports
the committers for each Apache project. While such a page
only reports the committers’ id (a sort of nickname), their
email can be obtained by adding @apache.org to the com-
mitter’s id. In total, we identified 100 library developers. The
process for extracting the client developers’ emails required
building an ad-hoc crawler for visiting the Maven page of each
identified client project and looking for a “Developers” table
(see e.g., http://tinyurl.com/lmgd9m3). Using such a crawler,
we identified 609 client developers. Our choice of participants
was driven by the goal of evaluating the usefulness of the
method usage examples from the perspective of developers
familiar with the libraries. We consider the library developers
and the client developers uniquely qualified to assess the
difficulties encountered in understanding the usage of the
methods, hence also able to assess whether MUSE’s examples
can help in such a process.

Each developer received an email with: (i) instructions on
how to participate in our study, and (ii) a link to the survey
for the specific object system for which the participant is a
library or client developer.

B. Study Design and Analysis Method
The survey is composed of two parts. The first one aims at

gathering information about the developers’ background, and
contains the same questions as the Study I pre-questionnaire
(see Section III-B), with the addition of the following ques-
tion: Have you contributed to Pi’s implementation?, a yes/no
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question aimed at verifying if the developer was a contributor
(i.e., library developer) to Pi.

The second part of the survey consists of the evaluation
of ten code examples covering ten different API methods of
each object library. For each code example to evaluate, we
showed to the participants the full path of the method that
the code example refers to, i.e.,package.class.method-
(parameters) and the best code example generated by
MUSE (as selected by the Example Evaluator). Then, we
asked the participants “How useful is the code example in
understanding the usage of the aforementioned method?” This
question was answered by providing a score on a four-point
Likert scale: Not useful at all; Slightly useful; Useful, and Very
useful. Also, the participants had the opportunity to justify
their score in a free-text form shown for each evaluated code
example, and they were encouraged to leave any additional
comment about the evaluated code examples.

The survey of each object system was hosted on a Web ap-
plication (http://www.qualtrics.com/) that allows participants
to complete the questionnaire in multiple rounds (e.g., an-
swering a few questions on one day, and the others later).
The developers had 15 days to respond. At the end of this
period, we collected 119 complete questionnaires distributed
among the object systems as reported in the top part of Fig. 4.

We analyze the results using box plots. Then, we rely
on developers’ comments to qualitatively discuss MUSE’s
strengths and weaknesses highlighted by the evaluation.

C. Analysis of the Results

We first analyze the developers’ background, summarized
in Fig. 4. The 119 developers involved in our study have,
on average, 13 years of developing experience (median=10).
The 95 (80%) developers with industrial experience spent,
on average, 9 years in industry (median=8)—see box plots
in the left-bottom corner of Fig. 4. Almost all developers
(113 out of 119—95%) frequently use third-party libraries in
their projects, while 76 (64%) frequently use code examples to
check how to use the API of a library, and just four developers
(3%) rarely (3) or never (1) use them—see box plots in the
right-bottom corner of Fig. 4. Fifteen of 119 developers (13%)
have contributed to the development of the object systems.
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Fig. 5. Study II: Answers to the question “How useful is the code example
in understanding the usage of the aforementioned method?”

To answer RQ3, Fig. 5 aggregates the answers provided
by developers when evaluating the usefulness of the ten code
examples (numbered with IDs from 1 to 10) showed for each
system. A global view across the 60 assessed examples shows
that 82% of them (49 examples) have been appreciated by
developers as very useful (13%) or useful (69%) (median
scores). Only 11 (18%) of the code examples generated by
MUSE and evaluated by participants were found slightly useful
(median score). None of the 60 examples were considered as
not useful at all (median). Also, the perceived usefulness of
MUSE’s code examples seems to be independent from (i) the
system on which it is applied, and (ii) the number of client
projects parsed to extract such examples (see Table I for details



about the number of analyzed clients for each system).
We also analyzed the participants’ rationale justifying their

scores. Positive scores were seldom justified by developers
and mostly included exclamations like “Nice!”, “This is a very
good one!”, or “Excellent example!” We also received positive
feedback about the feature that generates documentation and
inserts it in the code examples, e.g., “You have an immediate
example of how to use the API and a description of the
parameters: this way you don’t have to endlessly switch
between code and docs.”

The most frequent reason for negative scores was the
unnecessary complexity of some of the examples. This
happens when the examples generated by MUSE include code
statements that, even if needed to invoke the method and
thus included in the slicing step, do not directly relate to the
method usage. An instance of such a case is the third code
example in the commons-io survey, which received several
low scores (median=slightly useful) . This code example refers
to the copyDirectory(File,File,FileFilter)

method in the FileUtils class. Such a method copies the
contents of an existing directory into a target directory by
applying an optional filtering (e.g., only copying files having
a specific extension). The generated code example consists
of 44 lines of code, out of which the first 38 are aimed
at instantiating objects used later to create the two Files
representing the existing and the target directories. Thus,
just the last six lines of the example were strictly related
to the method invocation. This aspect has been highlighted
in several developers’ comments, e.g., “The example should
contain only the lines after 38; otherwise the code will seem
too complex (event if it is not; like in this case).”

Developers also pointed out that they would have
expected a description of the returned value in some
of the examples. For instance, several developers
pointed out this issue for the code example related to
the getLevenshteinDistance(CharSequence,

CharSequence) method of the commons-lang’s
StringUtils class, e.g., “It would be fantastic to also
report the output of the API invocation when possible.” This
feature is not currently implemented by MUSE, but we plan
to integrate it in the future.

Another situation highlighted in some comments was the
lack of alternative usage scenarios for a given method. Our
design choice for this study was to limit the time needed
to complete the survey as much as possible, thus favoring
a high response rate. For this reason, we asked developers
to evaluate only one of the code examples generated by
MUSE (the top-ranked one) for each method. Therefore, while
we did not show alternative usage scenarios, it is possible that
by presenting MUSE’s entire ranked list of examples for each
method, this issue would have not being reported.

The open comments at the end of the questionnaire con-
firmed MUSE’s usefulness. There were enthusiastic comments,
such as, “The purpose of this work seems to be appealing”,
“Overall good; sometimes too complex; but if they are auto-
matically generated is interesting”, or “I would say 80% of

them is useful. Some contain statements that are not needed
to use the method.” There were also constructive suggestions,
helpful to plan our future work, e.g.: “The code examples that
are most useful at the method level are unit tests. They express
the behavior and usage of the code through example inputs and
outputs”, “The comments with argument descriptions are very
useful; however API examples need to be focused on use of
the API call and not incorporate extra code.”

In conclusion, we answer RQ3 stating that 82% of MUSE’s
code examples have been considered either useful (69%)
or very useful (13%) by developers with consistent results
achieved across the six object systems.

V. STUDY III: EXTRINSIC EVALUATION

Study III is a controlled experiment with the goal of evaluat-
ing how useful are MUSE’s code examples to developers during
a programming task. The quality focus is the completeness of
the task a developer can perform in a limited time frame,
e.g., because of a hard deadline. The context consists of 12
industrial developers as participants and of development tasks
performed by using APIs of specific libraries as objects.

A. Research Questions and Context
We aim at addressing the following research question:

RQ4: Do MUSE’s examples help developers to complete
their programming tasks?

To answer RQ4 we asked the twelve developers to perform two
programming tasks involving the use of specific libraries, one
with the availability of MUSE’s code examples, and another
one without the examples. The two tasks are:
T1: Create a Java program that, given the URL of a PDF

document available on the Internet, downloads the PDF
and prints in the console all its metadata and textual con-
tent. The task consisted of three subtasks: (i) download
the PDF using the httpclient library; (ii) extract the
PDF metadata using the tika library; and (iii) extract
the PDF textual content using the tika library.

T2: For this task we created a directory containing (in dif-
ferent subdirectories) files having different extensions,
including .csv, storing portions of the OpenFlights Air-
ports database1. Then, we asked participants to create a
Java program that, given the local path of the directory
described above: (i) creates an output directory D and an
output .csv file F ; (ii) retrieves all .csv files related to the
airports database by using the commons-io library; (iii)
checks the completeness of the data reported in each .csv
file by verifying that its rows (each one containing data
about one airport) contain the correct number of columns
by using the commons-lang3 library; (iv) copies the
“correct” files into D by using the commons-io library;
and (v) prints in F the 100 first rows of each “correct”
file by using the commons-lang library.

Each task involved at least two libraries for which MUSE gen-
erated code examples, as described in the previous studies.

1http://openflights.org/data.html



Note that while (part of) the implementation of both tasks is
possible using alternate libraries (or none), we required the
participants to use specific libraries in each step. Otherwise,
it would not have been possible to observe the usefulness of
the MUSE’s examples when using the libraries.

In order to assess the quality of the implementations and
answer RQ4, we measure the task completeness as the depen-
dent variable in our experiment, as done in previous similar
studies (see e.g., [5]). For a given task Ti with subtasks Ti,j , we
define the completeness of Ti as the sum of the completeness
of its subtasks Ti,j . The completeness score of the subtasks
is proportional to its difficulty and complexity: T1,1 = 50;
T1,2 = 30; T1,3 = 20; T2,1 = 5; T2,2 = 25; T2,3 = 30;
T2,4 = 15, T2,5 = 25. If a subtask Ti,j is implemented
correctly, then it receives its maximum score, otherwise it
receives 0 (zero). Hence, the completeness score for a task Ti

ranges from 0 to 100. Since this is difficult to automatically
evaluate, we asked two independent developers to serve as
evaluators and measure the completeness by performing code
reviews on each task implemented by each participant. The
evaluators did not know the goal of the study, nor which tasks
were performed with or without MUSE’s code examples. The
evaluators compared the tasks independently and conducted a
discussion when their scores diverged. This happened on 7 out
of the 24 evaluated tasks (i.e., 2 tasks for each of the 12 partic-
ipants) and in each case the evaluators reached an agreement
quickly, by performing an additional code inspection.

The main factor and independent variable of this study is
the availability of the code examples generated by MUSE.
Specifically, such a factor has two values: i.e., code examples
available (CE) or not (NCE). Participants were allowed to
use any resource they want to complete the tasks, including
material available on the Internet (note that in both treatments
we provided the official Javadoc documentation of the libraries
to use, augmented in CE with the code examples generated by
MUSE). This was done to simulate a real development context.
Also, note that while other techniques have been proposed in
the literature to generated code examples (e.g., [7], [8], [6]),
we chose to use as control group (i.e., NCE) the current state
of the practice. Indeed, the wide availability of Q&A websites
(e.g., Stack Overflow), forums, and dedicated websites from
which developers can grab code examples, makes the Internet
the most natural benchmark for our approach.

Factors that could influence the results are: (i) the (possible)
different difficulty of the two tasks; (ii) the different level of
fatigue in the two sessions; (iii) the participants’ development
experience; and (iv) their knowledge of the libraries.

B. Study Design and Analysis Method
The study design—shown in Table II—is a classical paired

design for experiments with one factor and two treatments.
The design is conceived in such a way that: (i) each par-
ticipant worked with both CE and NCE; (ii) each participant
performed different tasks (T1 and T2) across the two sessions;
(iii) different participants worked with CE and NCE in
different ordering, as well as on the two different tasks T1

TABLE II
STUDY III: DESIGN.

Session Group A Group B Group C Group D
1 T1-NCE T1-CE T2-NCE T2-CE
2 T2-CE T2-NCE T1-CE T1-NCE

and T2. Overall, this means partitioning participants into four
groups, receiving different treatments in the two lab sessions.

First, we conducted a pre-experiment briefing where we il-
lustrated in detail the experiment procedure. We made sure not
to reveal the study research questions. After that, participants
filled-in a pre-questionnaire including all questions present in
the pre-questionnaire of Study I (see Section III-A), plus a
question requiring a self-assessment of their knowledge of the
four libraries used in the two tasks on a four-point Likert scale
going from 1=No knowledge to 4=High knowledge. Then, the
participants had to perform the study in two sessions of 60
minutes each. In other words, participants had a maximum
of 60 minutes to complete each of the required tasks. Each
participant received the instructions for the task to perform in
the first session. After 60 minutes, each participant provided
the implemented code for the required task. A 30-minutes
break was given before starting the second session to avoid
fatigue effects. During the break participants did not have the
chance to exchange information among them. After the break,
each participant received the instructions for the second task
and, 60 minutes later, they provided the implemented code for
the required task. Finally, once the study was completed, we
asked participants to also evaluate the usefulness of the code
examples by providing (and justifying) a score on a four-point
Likert scale: Not useful at all, Slightly useful, Useful, and Very
useful.

As for the analysis method, we present box plots of the
completeness achieved by participants with the two treatments
(i.e., CE and NCE). Also, we statistically compare the two
distributions of completeness by using the Mann-Whitney test
[17]. The results are intended as statistically significant at
↵ = 0.05. We also estimate the magnitude of the difference be-
tween the two different distributions by using the Cliff’s Delta
(or d), a non-parametric effect size measure [18] for ordinal
data. We followed the guidelines by Grissom and Kim [18] to
interpret the effect size values: small for d < 0.33 (positive as
well as negative values), medium for 0.33  d < 0.474, and
large for d � 0.474.

Finally, to check the influence of the various co-factors (i.e.,
task, lab session, development experience, industrial experi-
ence, and knowledge of the used libraries) from a statistical
standpoint, and their interaction with the main factor treatment,
we use the permutation test [19], a non-parametric alternative
to Analysis of Variance (ANOVA).

C. Analysis of the Results

The pre-questionnaires provided the following information
about the background of the participants involved in our study:
on average, they have five years of development experience
(median=4.5) out of which two have been spent in industry
(median=2). The majority of developers (70%) often or very
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Fig. 6. RQ4: Completeness achieved by participants.

often use third-party libraries in their projects and very often
(83%) use code examples found on the Internet to understand
how to use APIs. Their knowledge of the four object libraries
required for the two tasks is generally limited (i.e., median=1.5
for commons-io, median=1 for commons-lang, median=2
for httpclient, and median=1 for tika).

Fig. 6 reports the box plots of completeness achieved
by participants with (CE) and without (NCE) MUSE’s code
examples. Results are shown when considering both tasks
as a single dataset (overall), and separately. On average,
participants achieved 53% completeness in NCE against the
73% in CE. Such a difference is statistically significant (p-
value=0.03) with a medium effect size (d=0.472).

As it can be noticed from Fig. 6, the difference in complete-
ness in favor of the CE treatment is present in both tasks.
The difference is 8% in task T1 (i.e., 76% vs 68%), while
it grows up to 33% in task T2 (i.e., 71% vs 38%). Only
the participants’ completeness in task T2 has a significant
difference between the two treatments (p-value=0.02) with a
large effect size (d=0.611). Such a difference can be justified
by considering that task T2 required to use more methods from
the object libraries than task T1.

When asking in the post-questionnaire about the usefulness
of the code examples, nine participants (75%) rated them as
useful, two (17%) as slightly useful, and one (8%) as not useful
at all. The latter justified his answer by explaining that “while
the examples can help in understanding the method usage, I
still prefer surfing on the Internet for more rich discussions
on how to use methods.”

Finally, the statistical analysis of the co-factors’ influence
has highlighted that only the knowledge of the used libraries
has a significant effect on the completeness (p-value=0.006),
although it does not interact with the main factor. In other
words, people with higher knowledge of the used libraries
perform better, independently of the availability of the code
examples generated by MUSE.

Summarizing, our experiment allows us to answer RQ4 by
stating that the use of MUSE’s code examples increased the
developers’ work quality (i.e., completeness) by up to +20%.

VI. THREATS TO VALIDITY

Threats to construct validity concern the measurements
performed to address our research questions. Both Study I
and II rely on a subjective assessment through a Likert
scale [16]. Study III aims at overcoming this limitation by
assessing the examples’ usefulness in an actual development
task. Concerning study factors that can influence our results
(internal validity), we assessed and reported the participants’

background in all our studies. Furthermore, in Study III we
also analyzed whether this and other confounding factors, e.g.,
task ordering, could influence the results. Last, but not least,
in Study I and II we randomized the ordering in which the
examples were shown to the participants, to mitigate any sort
of learning or fatigue effect.

As detailed in the analysis method of the three studies, we
used appropriate statistical tests, correlation, and effect size
measures as needed to support our results and to mitigate
threats related to conclusion validity. Finally, it is possible
that the selected examples used in the studies are not fully
representative of the readability/reusability (in Study I) and
usefulness of the examples generated by MUSE (in Study II and
Study III). This may limit the generality of our results (external
validity). However, we tried to involve—at least in Study I
and II—a relatively large set of examples from six different
projects to mitigate this problem. Study III is smaller, but still
it involved examples generated for four different projects and,
as explained above, it assesses the examples’ usefulness better
than just a questionnaire.

VII. RELATED WORK

API usage examples are a common output of code search
approaches based on text matching. Chatterjee et al. [3] and
Keivanloo et al. [1], for instance, use textual similarity to
return a ranked list of abstract examples relevant to a natural
language (NL) query formulated by the user and expressing
her task at hand. Similar to MUSE, Chatterjee et al.’s approach
(SNIFF) documents, clusters and ranks the extracted code
snippets. The clustering and ranking criteria, however, are
based on the textual content and the frequency of the ex-
tracted patterns within the data set, respectively. Keivanloo et
al.’s approach combines textual similarity and clone detection
techniques to find relevant code examples, and ranks them
according to (i) their textual similarity to the query and (ii)
the completeness and popularity of their encoded patterns.
In a similar token, but generating a ranked list of concrete
API usage examples, the Structural Semantic Indexing (SSI)
proposed by Bajracharya et al. [2] combines heuristics based
on structural and textual aspects of the code, based on the
assumption that code entities containing similar API usages are
also similar from a functional point of view. Other tools, such
as Strathcona [4] and Prompter [5], automatically generate
queries from the developer’s code context. In Strathcona
[4], the code snippets relevant to such queries are identified
through six structural heuristics based on inheritance links,
method calls, and used types. The resulting examples are
ranked according to their frequency in the final set. Prompter
[5] matches the generated query with Stack Overflow entries,
to automatically push discussions relevant to the developers’
task at hand. Unlike MUSE, task-based code search techniques
rely heavily on textual analysis to extract, cluster and rank
code elements. Our approach builds code snippets based on
static program analysis (specifically code slicing). Moreover,
task-based API usage examples are not attached to a single
API—they show how different APIs can be used for the same



goal (i.e., the task at hand). MUSE’s examples are meant
to help developers to reuse a particular method, once they
know it might help with the task at hand. In other words,
we envision MUSE to be used by developers for getting more
precise information about the methods they want to use, after
using one of the tools mentioned above.

More related to our approach is the research on extraction
of code examples showing the usage of specific APIs. MAPO,
proposed by Xie and Pei [7] and extended by Zhong et al. [9],
sets the foundations on mining abstract usage examples of a
given API method. MAPO analyzes code snippets retrieved by
code search engines to extract all the call sequences involving
the desired API method. A subset of sequences covering
all method calls is identified and then clustered into similar
usage scenarios, according to heuristics based on method
names, class names, and called API methods composing each
sequence. For each cluster, MAPO identifies usage patterns
based on frequent call sequences, and, finally, it ranks the
patterns based on their similarity with the developer’s code
context. MUSE builds on the same idea of extracting examples
for a specific method but it differs from MAPO in several
ways: (i) to find the usage of a method, MUSE considers
its complete signature, whereas MAPO uses only the method
name, which can lead to mismatch between methods with the
same name but different signatures (i.e., polymorphic meth-
ods); (ii) MUSE uses slicing for locating the statements asso-
ciated to the analyzed usage, as opposed to control-flow based
heuristics; (iii) for clustering similar examples, MUSE applies
widely-used clone detection techniques, while MAPO uses
similarity heuristics; (iv) MUSE’s ranking is independent of the
developers’ context and considers the readability and easiness
of reuse of the examples, instead of the similarity measures
used by MAPO, which depend on the development context;
and finally, (v) MUSE’s output is a list of concrete usage
examples patterns, as opposed to abstract examples that do
not explicitly offer control flow and instantiation steps.

UP-Miner [8] is a variation of MAPO that removes the
redundancy in the resulting example list. To this end, UP-
Miner clusters the extracted method sequences based on n-
grams and discovers a pattern for each cluster by applying a
frequent sequence mining algorithm. As these patterns might
be similar, UP-Miner executes another clustering round on
them. The resulting patterns are ranked according to their
frequency and presented as probabilistic graphs. Similar to
MAPO, but different from MUSE, UP-Miner produces abstract
examples. Moreover, MUSE makes use of clone detection
techniques to cluster similar code examples, instead of the
probabilistic language model used by UP-Miner.

Other approaches focus on generating code examples for an
entire API or a set of APIs. Acharya et al. [20] detect patterns
on the conjunct usage of different APIs by mining frequent
partial orders from common API usage scenarios. Given a set
of APIs, inter-procedural static traces are produced to construct
and cluster partial orders from API sequential patterns, which
are in turn mined to extract ordering rules between APIs.
Differently from MUSE, this approach considers how a set of

APIs is usually combined across different systems.
More recently, Buse and Weimer [6] proposed to generate

documented abstract API usages by extracting and synthe-
sizing code examples of a particular API data type. Their
approach mines examples by identifying and ordering (i) code
instantiations of the given data type, and (ii) the statements rel-
evant to those instantiations as defined by previously extracted
path predicates, computed from intra-procedural static traces.
The examples are then clustered based on their statement
ordering and data type usage. For each cluster, an abstract
example (i.e., a usage pattern) is formed by merging its code
examples, and finally documented according to predefined
heuristics that depend on the kind of statement and most
frequent names in the mined code. As with the code search
approaches, MUSE could be used to complement these abstract
API usage patterns with specifics on the methods of interest.

Also related to our work is the study conducted by Ying and
Robillard [21] aimed at investigating how humans produce
code examples, summarizing them from existing code. One
of their findings is that developers rarely copy the code
verbatim, rather they try to abstract the relevant parts. MUSE’s
main innovation is the use of code slicing, which aims at
removing unnecessary code from the examples, emulating
the developers’ behavior highlighted by Ying and Robillard’s
study.

VIII. CONCLUSION AND FUTURE WORK

MUSE extracts and documents code examples from the
code of applications that make use of the specific method.
Among related approaches, MUSE is novel as it extracts
concrete method usage examples (as opposed to abstract
usage patterns) by using static code slicing, and documents
them with comments that help to understand the method’s
parameters. MUSE has been empirically evaluated through
three different empirical studies, involving in total 140 open-
source and professional developers and conducted on six Java
libraries. The first study (a survey) showed that MUSE ranks
and selects code examples close to how developers do. The
second (also a survey) revealed that 82% of MUSE’s examples
are perceived as useful or very useful by developers. The
third study (a controlled experiment) showed that developers
improve the quality of their implementations when using
MUSE’s examples. Future work will focus on improving: (i)
the examples’ documentation, e.g., by commenting the output
of the method invocation; and (ii) the filtering of less important
statements.
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