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Abstract—In past and recent years, the issues related to man-
aging technical debt received significant attention by researchers
from both industry and academia. There are several factors that
contribute to technical debt. One of these is represented by code
bad smells, i.e., symptoms of poor design and implementation
choices. While the repercussions of smells on code quality have
been empirically assessed, there is still only anecdotal evidence
on when and why bad smells are introduced. To fill this gap,
we conducted a large empirical study over the change history of
200 open source projects from different software ecosystems and
investigated when bad smells are introduced by developers, and
the circumstances and reasons behind their introduction. Our
study required the development of a strategy to identify smell-
introducing commits, the mining of over 0.5M commits, and the
manual analysis of 9,164 of them (i.e., those identified as smell-
introducing). Our findings mostly contradict common wisdom
stating that smells are being introduced during evolutionary
tasks. In the light of our results, we also call for the need to
develop a new generation of recommendation systems aimed at
properly planning smell refactoring activities.

I. INTRODUCTION

Technical debt is a metaphor introduced by Cunningham
to indicate “not quite right code which we postpone making
it right” [18]. The metaphor explains well the trade-offs
between delivering the most appropriate but still immature
product, in the shortest time possible [12], [18], [27], [?],
[40]. While the repercussions of “technical debt” on software
quality have been empirically proven, there is still noticeable
lack of empirical evidence related to how, when, and why
various forms of technical debt occur in software projects
[12]. This represents an obstacle for an effective and efficient
management of technical debt.

Bad code smells (shortly “code smells” or “smells”), i.e.,
symptoms of poor design and implementation choices [20],
represent one important factor contributing to technical debt,
and possibly affecting the maintainability of a software system
[27]. In the past and, most notably, in recent years, several
studies investigated the relevance that code smells have for
developers [35], [48], the extent to which code smells tend
to remain in a software system for long periods of time [3],
[15], [31], [39], as well as the side effects of code smells,
such as increase in change- and fault-proneness [25], [26] or
decrease of software understandability [1] and maintainabil-
ity [41], [47], [46]. The research community has been also
actively developing approaches and tools for detecting smells
[11], [33], [36], [42], [32], and, whenever possible, triggering
refactoring operations. Such tools rely on different types of
analysis techniques, such as constraint-based reasoning over

metric values [32], [33], static code analysis [42], or analysis
of software changes [36]. While these tools provide relatively
accurate and complete identification of a wide variety of
smells, most of them work by “taking a snapshot” of the
system or by looking at recent changes, hence providing a
snapshot-based recommendation to the developer. Hence, they
do not consider the circumstances that could have caused the
smell introduction. In order to better support developers in
planning actions to improve design and source code quality, it
is imperative to have a contextualized understanding of the cir-
cumstances under which particular smells occur. However, to
the best of our knowledge, there is no comprehensive empirical
investigation into when and why code smells are introduced
in software projects. Common wisdom suggests that urgent
maintenance activities and pressure to deliver features while
prioritizing time-to-market over code quality are often the
causes of such smells. Generally speaking, software evolution
has always been considered as one of the reasons behind
“software aging” [37] or “increasing complexity” [28][34][45].
Broadly speaking, smells can also manifest themselves not
only in the source code but also in software lexicons [29],
[4], and can even affect other types of artifacts, such as
spreadsheets [22], [23] or test cases [9].

In this paper we fill the void in terms of our understanding
of code smells, reporting the results of a large-scale empirical
study conducted on the evolution history of 200 open source
projects belonging to three software ecosystems, namely An-
droid, Apache and Eclipse. The study aimed at investigating
(i) when smells are introduced in software projects, and (ii)
why they are introduced, i.e., under what circumstances smell
introductions occur and who are the developers responsible
for introducing smells. To address these research questions,
we developed a metric-based methodology for analyzing the
evolution of code entities in change histories of software
projects to determine when code smells start manifesting
themselves and whether this happens suddenly (i.e., because
of a pressure to quickly introduce a change), or gradually (i.e.,
because of medium-to-long range design decisions). We mined
over 0.5M commits and we manually analyzed 9,164 of those
that were classified as smell-introducing. We are unaware of
any published technical debt, in general, and code smell study,
in particular, of comparable size. The results achieved allowed
us to report quantitative and qualitative evidence on when and
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TABLE I
CHARACTERISTICS OF ECOSYSTEMS UNDER ANALYSIS.

Ecosystem #Proj. #Classes KLOC #Commits #Issues Mean Story Min-Max
Length Story Length

Apache 100 4-5,052 1-1,031 207,997 3,486 6 1-15
Android 70 5-4,980 3-1,140 107,555 1,193 3 1-6
Eclipse 30 142-16,700 26-2,610 264,119 124 10 1-13
Overall 200 - - 579,671 4,803 6 1-15

why smells are introduced in projects as well as implications
of these results, often contradicting common wisdom.

II. STUDY DESIGN

The goal of the study is to analyze change history of
software projects, with the purpose of investigating when code
smells are introduced by developers, and the circumstances
and reasons behind smell appearances. More specifically, the
study aims at addressing the following two research questions:

• RQ1: When are code smells introduced? This research
question aims at investigating to what extent the common
wisdom suggesting that “code smells are introduced as
a consequence of continuous maintenance and evolution
activities” [20] applies. Specifically, we study “when”
code smells are introduced in software systems, to under-
stand whether smells are introduced as soon as a code en-
tity is created, whether smells are suddenly introduced in
the context of specific maintenance activities, or whether,
instead, smells appear “gradually” during software evolu-
tion. To this aim, we investigated the presence of possible
trends in the history of code artifacts that characterize the
introduction of specific types of smells.

• RQ2: Why are code smells introduced? The second
research question aims at empirically investigating un-
der which circumstances developers are more prone to
introducing code smells. We focus on factors that are
indicated as possible causes for code smell introduction
in the existing literature [20]: the commit goal (e.g., is
the developer implementing a new feature or fixing a
bug?), the project status (e.g., is the change performed in
proximity to a major release deadline?), and the developer
status (e.g., a newcomer or a senior project member?).

A. Context Selection

The context of the study consists of the change history of
200 projects belonging to three software ecosystems, namely
Android, Apache, and Eclipse. Table I reports for each of them
(i) the number of projects analyzed, (ii) size ranges in terms of
the number of classes and KLOC, (iii) the overall number of
commits and issues analyzed, and (iv) the average, minimum,
and maximum length of the projects’ story (in years) analyzed
in each ecosystem. All the analyzed projects are hosted in Git
repositories and have associated issue trackers. The Android
ecosystem contains a random selection of 70 open source apps
mined from the f-droid1 forge. The Apache ecosystem consists
of 100 Java projects randomly selected among those available2.
Finally, the Eclipse ecosystem consists of 30 projects randomly
mined from the list of GitHub repositories managed by the

1https://f-droid.org/
2https://projects.apache.org/indexes/quick.html

Eclipse Foundation3. The choice of the ecosystems to analyze
is not random, but rather driven by the motivation to consider
projects having (i) different sizes, e.g., Android apps are by
their nature smaller than projects in Apache’s and Eclipse’s
ecosystems, (ii) different architectures, e.g., we have Android
mobile apps, Apache libraries, and plug-in based architectures
in Eclipse projects, and (iii) different development bases, e.g.,
Android apps are often developed by small teams whereas sev-
eral Apache projects are carried out by dozens of developers
[7]. Also, we limited our study to 200 projects since, as it
will be shown later, the analysis we carried out is not only
computationally expensive, but also requires manual analysis
of thousands of data points. To sum up, we mined 579,671
commits and 4,803 issues.

We focus our study on the following types of smells:
1) Blob Class: a large class with different responsibilities

that monopolizes most of the system’s processing [13];
2) Class Data Should be Private: a class exposing its

attributes, violating the information hiding principle [20];
3) Complex Class: a class having a high cyclomatic com-

plexity [13];
4) Functional Decomposition: a class where inheritance and

polymorphism are poorly used, declaring many private
fields and implementing few methods [13];

5) Spaghetti Code: a class without structure that declares
long methods without parameters [13].

While several other smells exist in literature [13], [20], we
need to limit our analysis to a subset due to computational
constraints. However, we carefully keep a mix of smells
related to complex/large code components (e.g., Blob Class,
Complex Class) as well as smells related to the lack of
adoption of good Object-Oriented coding practices (e.g., Class
Data Should be Private, Functional Decomposition). Thus, the
smells considered are representative of the categories of smells
investigated in previous studies (see Section V).

B. Data Extraction and Analysis

This subsection describes the data extraction and analysis
process that we followed to answer our research questions.

1) When are code smells introduced?: To answer RQ1

we firstly clone the 200 Git repositories. Then, we analyze
each repository ri using a tool that we developed (named
as HistoryMiner), with the purpose of identifying smell-
introducing commits. Our tool mines the entire change history
of ri, checks out each commit in chronological order, and runs
an implementation of the DECOR smell detector based on the
original rules defined by Moha et al. [33]. DECOR identifies
smells using detection rules based on the values of internal
quality metrics4. The choice of using DECOR is driven by the
fact that (i) it is a state-of-the-art smell detector having a high
accuracy in detecting smells [33]; and (ii) it applies simple
detection rules that allow it to be very efficient. Note that we

3https://github.com/eclipse
4An example of detection rule exploited to identify Blob classes can be

found at http://tinyurl.com/paf9gp6.



TABLE II
QUALITY METRICS MEASURED IN THE CONTEXT OF RQ1 .

Metric Description
Lines of Code (LOC) The number of lines of code excluding white spaces and comments
Weighted Methods per Class (WMC) [16] The complexity of a class as the sum of the McCabe’s cyclomatic complexity of its methods
Response for a Class (RFC) [16] The number of distinct methods and constructors invoked by a class
Coupling Between Object (CBO) [16] The number of classes to which a class is coupled
Lack of COhesion of Methods (LCOM) [16] The higher the pairs of methods in a class sharing at least a field, the higher its cohesion
Number of Attributes (NOA) The number of attributes in a class
Number of Methods (NOM) The number of methods in a class

ran DECOR on all source code files contained in ri only for
the first commit of ri. In the subsequent commits DECOR has
been executed only on code files added or modified in each
specific commit to save computational time. As an output, our
tool produces, for each source code file fj ∈ ri the list of
commits in which fj has been involved, specifying if fj has
been added, deleted, or modified and if fj was affected, in
that specific commit, by one of the five considered smells.

Starting from the data generated by the HistoryMiner
we compute, for each type of smell (smellk) and for each
source code file (fj), the number of commits performed on
fj since the first commit involving fj and adding the file to
the repository, up to the commit in which DECOR detects
that fj as affected by smellk. Clearly, such numbers are only
computed for files identified as affected by the specific smellk.

When analyzing the number of commits needed for a
smell to affect a code component, we can fall into two
possible scenarios. In the first scenario (the least expected
according to the “software aging” theory [37]) smell instances
are introduced during the creation of source code artifacts,
i.e., in the first commit involving a source code file. In the
second scenario, smell instances are introduced after several
commits and, thus as result of multiple maintenance activities.
For the latter scenario, besides running the DECOR smell
detector for the project snapshot related to each commit, the
HistoryMiner also computes, for each snapshot and for
each source code artifact, a set of quality metrics (see Table II).
As done for DECOR, quality metrics are computed for all code
artifacts only during the first commit, and updated at each
subsequent commit for added and modified files. The purpose
of this analysis is to understand whether the trend followed by
such metrics differ between files affected by a specific type
of smell and files not affected by such a smell. For example,
we expect that classes becoming Blobs will exhibit a higher
growth rate than classes that are not going to become Blobs.

In order to analyze the evolution of the quality metrics,
we need to identify the function that best approximates the
data distribution, i.e., the values of the considered metrics
computed in a sequence of commits. We found that the best
model is the linear function (more details are available in
our technical report [43]). Having identified the model to
be used, we compute, for each file fj ∈ ri, the regression
line of its quality metric values. If file fj is affected by a
specific smellk, we compute the regression line considering
the quality metric values computed for each commit involving
fj from the first commit (i.e., where the file was added to
the versioning system) to the commit where the instance of

smellk was detected in fj . Instead, if fj is not affected by
any smell, we consider only the first nth commits involving
the file fj , where n is the average number of commits required
by smellk to affect code instances. Then, for each metric
reported in Table II, we compare the distributions of regression
line slopes for cleanly and smelly files. The comparison is
performed using a two-tailed Mann-Whitney U test [17]. The
results are intended as statistically significant at α = 0.05.
We also estimate the magnitude of the observed differences
using the Cliff’s Delta (or d), a non-parametric effect size
measure [21] for ordinal data. We follow the guidelines in [21]
to interpret the effect size values: small for d < 0.33 (positive
as well as negative values), medium for 0.33 ≤ d < 0.474
and large for d ≥ 0.474.

Overall, the data extraction for RQ1 (i.e., the smells de-
tection and metric computation at each commit for the 200
systems) took eight weeks on a Linux server having 7 quad-
core 2.67 GHz CPU (28 cores) and 24 Gb of RAM.

2) Why are code smells introduced?: One challenge arising
when answering RQ2 is represented by the identification of the
specific commit (or also possibly a set of commits) where the
smell has been introduced (from now on referred to as a smell-
introducing commit). Such information is crucial to explain
under which circumstances these commits were performed. A
trivial solution would have been to use the results of our RQ1

and consider the commit cs in which DECOR detects for the
first time a smell instance smellk in a source code file fj as a
commit-introducing smell in fj . However, while this solution
would work for smell instances that are introduced in the first
commit involving fj (there is no doubt on the commit that
introduced the smell), it would not work for smell instances
that are the consequence of several changes, performed in n
different commits involving fj . In such a circumstance, on one
hand, we cannot simply assume that the first commit in which
DECOR identifies the smell is the one introducing that smell,
because the smell appearance might be the result of several
small changes performed across the n commits. On the other
hand, we cannot assume that all n commits performed on fj
are those (gradually) introducing the smell, since just some of
them might have pushed fj toward a smelly direction. Thus, to
identify the smell-introducing commits for a file fj affected by
an instance of a smell (smellk), we use the following heuristic:

• if smellk has been introduced in the commit c1 where
fj has been added to the repository, then c1 is the smell-
introducing commit;

• else given C = {c1, c2, . . . , cn} the set of commits
involving fj and leading to the detection of smellk in



TABLE III
TAGS ASSIGNED TO THE SMELL-INTRODUCING COMMITS.

Tag Description Values
COMMIT GOAL TAGS

Bug fixing The commit aimed at fixing a bug [true,false]
Enhancement The commit aimed at implementing an enhancement in the system [true,false]
New feature The commit aimed at implementing a new feature in the system [true,false]
Refactoring The commit aimed at performing refactoring operations [true,false]

PROJECT STATUS TAGS
Working on release The commit was performed [value] before the issuing of a major release [one day, one week, one month, more than one month]
Project startup The commit was performed [value] after the starting of the project [one week, one month, one year, more than one year]

DEVELOPER STATUS TAGS
Workload The developer had a [value] workload when the commit has been performed [low,medium,high]
Ownership The developer was the owner of the file in which the commit introduced the smell [true,false]
Newcomer The developer was a newcomer when the commit was performed [true,false]
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Fig. 1. Example of smell-introducing commit identification.

cn we use the results of RQ1 to select the set of quality
metrics M allowing to discriminate between the groups
of files that are affected and not affected in their history
by smellk. These metrics are those for which we found
statistically significant difference between the slope of the
regression lines for the two groups of files accompanied
by at least a medium effect size. Let s be the slope of
the regression line for the metric m ∈ M built when
considering all commits leading fj to become affected
by a smell and si the slope of the regression line for
the metric m built when considering just two subsequent
commits, i.e., ci−1 and ci for each i ∈ [2, ..., n]. A commit
ci ∈ C is considered as a smell-introducing commit if
|si| > |s|, i.e., the commit ci significantly contributes to
the increment (or decrement) of the metric m.

Fig. 1 reports an example aimed at illustrating the smell-
introducing commit identification for a file fj . Suppose that
fj has been involved in eight commits (from c1 to c8), and
that in c8 a Blob instance has been identified by DECOR in
fj . Also, suppose that the results of our RQ1 showed that
the LOC metric is the only one “characterizing” the Blob
introduction, i.e., the slope of the LOC regression line for
Blobs is significantly different than the one of the regression
line built for classes which are not affected by the Blob smell.
The black line in Fig. 1 represents the LOC regression line
computed among all the involved commits, having a slope of
1.3. The gray lines represent the regression lines between pairs
of commits (ci−1, ci), where ci is not classified as a smell-
introducing commit (their slope is lower than 1.3). Finally, the
red-dashed lines represent the regression lines between pairs of
commits (ci−1, ci), where ci is classified as a smell-introducing
commit (their slope is higher than 1.3). Thus, the smell-

introducing commits in the example depicted in Fig. 1 are:
c3, c5, and c7. Overall, we obtained 9,164 smell-introducing
commits in the 200 systems, that we used to answer RQ2.

After having identified smell-introducing commits, with the
purpose of understanding why a smell was introduced in a
project, we classify them by assigning to each commit one
or more tags among those reported in Table III. The first set
of tags (i.e., commit goal tags) aims at explaining what the
developer was doing when introducing the smell. To assign
such tags we firstly download the issues for all 200 projects
from their JIRA or BUGZILLA issue trackers. Then, we check
whether any of the 9,164 smell-introducing commits were
related to any of the collected issues. To link issues to commits
we used (and complemented) two existing approaches. The
first one is the regular expression-based approach by Fischer et
al. [19] matching the issue ID in the commit note. The second
one is a re-implementation of the ReLink approach proposed
by Wu et al. [44], which considers the following constraints:
(i) matching the committer/authors with issue tracking con-
tributor name/email; (ii) the time interval between the commit
and the last comment posted by the same author/contributor
on the issue tracker must be less than seven days; and (iii)
Vector Space Model (VSM) [6] cosine similarity between the
commit note and the last comment referred above greater than
0.7. RELINK has been shown to accurately link issues and
commits (89% for precision and 78% for recall) [44]. When
it was possible to identify a link between one of the smell-
introducing commits and an issue, and the issue type was
one of the goal-tags in our design (i.e., bug, enhancement,
or new feature), such tag was automatically assigned to the
commit and its correctness was double checked by one of the
authors, which verified the correctness of the issue category
(e.g., that an issue classified as bug actually was a bug). This
happens in 471 cases, i.e., for a small percentage (5%) of
the commits, which is not surprising and in agreement with
previous findings [5]. In the remaining 8,693 cases, two of
the authors manually analyzed the commits, assigning one
or more of the goal-tags by relying on the analysis of the
commit message and of the unix diff between the commit
under analysis and its predecessor.

Concerning the project-status tags (see Table III), the Work-
ing on release tag can assume as possible values one day,
one week, one month, or more than one month before issuing



of a major release. The aim of such a tag is to indicate
whether, when introducing the smell, the developer was close
to a project’s deadline. We just consider major releases since
those are the ones generally representing a real deadline for
developers, while minor releases are sometimes issued just due
to a single bug fix. To assign such tags, one of the authors
identified the dates in which the major releases were issued
by exploiting the GIT tags (often used to tag releases), and the
commit messages left by developers. Concerning the Project
startup tag, it can assume as values one week, one month, one
year, or more than one year after the project’s start date. This
tag can be easily assigned by comparing the commit date with
the date in which the project started (i.e., the date of the first
commit). This tag can be useful to verify whether during the
project’s startup, when the project design might not be fully
clear, developers are more prone to introducing smells. Note
that the Project startup tag can be affected by the presence of
projects migrated to git and with a partially available history.
For this reason we check whether the first release tagged in
the versioning system were either 0.1 or 1.0 (note that this
might be an approximation since projects starting from 1.0
could have a previous 0.x history). Based on this analysis, we
exclude from the Project startup analysis 31 projects, for a
total of 552 smell-introducing commits.

Finally, we assign developer-status tags to smell-introducing
commits. The Workload tag measures how busy a developer
was when introducing the bad smell. In particular, we measure
the Workload of each developer involved in a project using
time windows of one month, starting from the date in which
the developer joined the project (i.e., performed the first
commit). The Workload of a developer during one month is
measured in terms of the number of commits she performed
in that month. We are aware that such a measure (i) is
approximated because different commits can require different
amount of work; and (ii) a developer could also work on
other projects. When analyzing a smell-introducing commit
performed by a developer d during a month m, we compute
the workload distribution for all developers of the project at
m. Then, given Q1 and Q3, the first and the third quartile
of such distribution, respectively, we assign: low as Workload
tag if the developer performing the commit had a workload
less than Q1, medium if Q1 ≤ workload < Q3, high if the
workload was higher than Q3.

The Ownership tag is assigned if the developer performing
the smell-introducing commit is the owner of the file on which
the smell has been detected. As defined by Bird et al. [10],
a file owner is a developer responsible for more than 75% of
the commits performed on the file. Lastly, the Newcomer tag
is assigned if the smell-introducing commit falls among the
first 3 commits in the project for the developer performing it.

After assigning all the described tags to each of the 9,164
smell-introducing commits, we analyze the results by reporting
descriptive statistics of the number of commits to which
each tag type have been assigned. Also, we discuss several
qualitative examples helping to explain our findings.
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Fig. 2. Number of commits required by a smell to manifest itself.

III. ANALYSIS OF THE RESULTS

This section reports the analysis of the results achieved
aiming at answering our two research questions.

A. When are code smells introduced?

Fig. 2 shows the distribution of the number of commits
required by each type of smell to manifest itself. The results
are grouped by ecosystems; also, we report the Overall results
(all ecosystems together). As we can observe in Fig. 2, in
almost all the cases the median number of commits needed
by a smell to affect code components is zero, except for
Blob on Android (median=3) and Complex Class on Eclipse
(median=1). In other words, most of the smell instances (at
least half of them) are introduced when a code entity is added
to the versioning system. This is quite a surprising finding,
considering the common wisdom that smells are generally the
result of continuous maintenance activities [20].

However, the analysis of the box plots also reveals (i) the
presence of several outliers; and that (ii) for some smells, in
particular Blob and Complex Class, the distribution is quite
skewed. This means that besides smell instances introduced
in the first commit, there are also several smell instances that
are introduced as a result of several changes performed on the
file during its evolution. In order to better understand such
phenomenon, we analyzed how the values of some quality
metrics change during the evolution of such files.

Table IV presents the descriptive statistics (mean and me-
dian) of the slope of the regression line computed, for each
metric, for both smelly and clean files. Also, Table IV reports
the results of the Mann-Whitney test and Cliff’s d effect
size (Large, Medium, or Small) obtained when analyzing the
difference between the slope of regression lines for clean and
smelly files. Column cmp of Table IV shows a ↑ (↓) if for the
metric m there is a statistically significant difference in the
m’s slope between the two groups of files, with the smelly
ones exhibiting a higher (lower) slope; a ”−” is shown when
the difference is not statistically significant.

The analysis of the results reveals that for all the smells, but
Functional Decomposition, the files affected by smells show a
higher slope than clean files. This suggests that the files that
will be affected by a smell exhibit a steeper growth in terms of



TABLE IV
RQ1 : SLOPE AFFECTED vs SLOPE NOT AFFECTED - MANN-WHITNEY TEST (ADJ. P-VALUE) AND CLIFF’S DELTA (d).

Ecosys. Smell Affected LOC LCOM WMC RFC CBO NOM NOA
mean med cmp mean med cmp mean med cmp mean med cmp mean med cmp mean med cmp mean med cmp

NO 0.68 0 0.55 0 0.17 0 0.13 0 0.15 0 0.07 0 0.09 0
YES 32.90 12.51 13.80 2.61 3.78 1.81 5.39 3.47 1.34 0.69 1.15 0.57 0.49 0.13
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01Blob

Cliff’s d 0.65 (L)
↑

0.38 (M)
↑

0.53 (L)
↑

0.64 (L)
↑

0.66 (L)
↑

0.51 (L)
↑

0.56 (L)
↑

NO 0.42 0 0.12 0 0.12 0 0.05 0 0.09 0 0.05 0 0.06 0
YES 4.43 1.68 0.83 0 0.33 0 0.27 0 0.36 0.18 0.17 0 2.60 0.69
p-value <0.01 0.26 0.88 0.86 <0.01 0.71 <0.01CDSP

Cliff’s d 0.45 (M)
↑

0.06 (N)

—

-0.01 (N)

—

-0.01 (N)

—

0.26 (S)
↑

0.02 (N)

—

0.78 (L)
↑

NO 0.67 0 0.48 0 0.19 0 0.14 0 0.15 0 0.08 0 0.09 0
YES 7.71 6.81 11.16 4.12 2.61 2.20 2.42 1.01 0.33 0.28 0.67 0.50 0.18 0.10
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01CC

Cliff’s d 0.63 (L)
↑

0.45 (M)
↑

0.76 (L)
↑

0.64 (L)
↑

0.32 (S)
↑

0.67 (L)
↑

0.39 (M)
↑

NO 0.99 0 0.62 0 0.29 0 0.31 0 0.40 0 0.11 0 0.11 0
YES -10.56 -1.00 -2.65 0 -2.74 -0.60 -3.49 0 0.78 0.49 -1.13 -0.30 -0.91 0
p-value <0.01 <0.01 <0.01 0.02 0.09 <0.01 0.01FD

Cliff’s d -0.55 (L)
↓

-0.49 (L)
↓

-0.59 (L)
↓

-0.42 (M)
↓

0.32 (S)

—

-0.76 (L)
↓

-0.45 (M)
↓

NO 1.42 0 0.96 0 0.31 0 0.42 0 0.29 0 0.11 0 0.13 0
YES 144.2 31.0 69.17 100.00 10.17 10.00 6.33 5.00 0.67 1.00 3 3 0.16 0
p-value <0.01 <0.01 <0.01 <0.01 0.50 <0.01 0.04

Android

SC

Cliff’s d 0.99 (L)
↑

0.98 (L)
↑

0.99 (L)
↑

0.95 (L)
↑

0.22 (S)

—

0.99 (L)
↑

0.68 (L)
↑

NO 0.40 0 0.42 0 0.13 0 0.13 0 0.05 0 0.05 0 0.03 0
YES 91.82 33.58 384.70 12.40 17.79 4.92 27.61 7.09 2.17 0.50 7.64 1.72 0.77 0.05
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01Blob

Cliff’s d 0.92 (L)
↑

0.52 (L)
↑

0.77 (L)
↑

0.74 (L)
↑

0.44 (M)
↑

0.82 (L)
↑

0.22 (S)
↑

NO 0.43 0 0.54 0 0.12 0 0.12 0 0.10 0 0.05 0 0.03 0
YES 8.69 2.03 2.44 0 0.61 0 0.59 0 0.55 0.06 0.23 0 3.28 1.07
p-value <0.01 0.28 0.46 0.45 <0.01 0.37 <0.01CDSP

Cliff’s d 0.63 (L)
↑

-0.04 (N)

—

-0.03 (N)

—

0.03 (N)

—

0.25 (S)
↑

-0.03 (N)

—

0.86 (L)
↑

NO 0.36 0 0.47 0 0.12 0 0.13 0 0.09 0 0.05 0 0.04 0
YES 121.80 25.86 886.50 152.40 31.87 10.36 39.81 7.21 3.45 0.53 13.99 3.56 0.17 0
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02CC

Cliff’s d 0.81 (L)
↑

0.70 (L)
↑

0.83 (L)
↑

0.74 (L)
↑

0.53 (L)
↑

0.82 (L)
↑

0.23 (S)
↑

NO 0.52 0 0.812 0 0.16 0 0.14 0 0.10 0 0.07 0 0.030 0
YES -13.78 -3.32 -5.98 -0.30 -6.16 -1.00 -4.81 -0.52 -0.28 0 -2.82 -0.53 -0.40 0
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01FD

Cliff’s d -0.72 (L)
↓

-0.46 (M)
↓

-0.66 (L)
↓

-0.49 (L)
↓

-0.14 (N)
↓

-0.67 (L)
↓

-0.35 (M)
↓

NO 0.54 0 0.11 0 0.11 0 0.12 0 0.14 0 0.04 0 0.04 0
YES 273.00 129.90 232.30 4.50 7.09 6.50 10.81 10.15 0.96 0.92 3.41 3.00 2.29 2.08
p-value <0.01 0.52 <0.01 <0.01 0.12 <0.01 0.02

Apache

SC

Cliff’s d 0.94 (L)
↑

0.17 (S)

—

0.91 (L)
↑

0.95 (L)
↑

0.44 (M)

—

0.94 (L)
↑

0.63 (L)
↑

NO 0.02 0 0.02 0 -0.01 0 -0.03 0 0.13 0 -0.01 0 0.01 0
YES 69.51 28.15 1208.00 14.71 17.10 2.92 18.15 2.44 0.58 0.01 7.11 1.09 3.11 0.09
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01Blob

Cliff’s d 0.86 (L)
↑

0.54 (L)
↑

0.76 (L)
↑

0.65 (L)
↑

0.20 (S)
↑

0.75 (L)
↑

0.50 (L)
↑

NO 0.01 0 0.34 0 <-0.01 0 -0.02 0 0.13 0 <-0.01 0 0.01 0
YES 12.58 2.50 749.1 0 2.77 0 0.70 0 0.37 0 2.10 0 4.01 1
p-value <0.01 <0.01 <0.01 <0.01 0.53 <0.01 <0.01CDSP

Cliff’s d 0.65 (L)
↑

0.13 (N)
↑

0.16 (S)
↑

0.12 (N)
↑

0.03 (N)

—

0.18 (S)
↑

0.90 (L)
↑

NO 0.02 0 0.21 0 -0.01 0 -0.05 0 0.11 0 -0.01 0 0.02 0
YES 57.72 18.00 2349.00 141.70 19.86 4.86 10.46 0.82 0.68 0.01 10.23 1.94 3.10 <0.01
p-value <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01CC

Cliff’s d 0.82 (L)
↑

0.75 (L)
↑

0.84 (L)
↑

0.54 (L)
↑

0.15 (S)
↑

0.83 (L)
↑

0.42 (M)
↑

NO -0.02 0 0.67 0 -0.02 0 -0.02 0 0.13 0 -0.01 0 0.02 0
YES -15.09 -5.40 -5.23 -0.95 -5.15 -1.71 -4.06 -0.60 -0.16 0.16 -2.39 -0.60 -0.35 0
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.88FD

Cliff’s d -0.72 (L)
↓

-0.61 (L)
↓

-0.71 (L)
↓

-0.51 (L)
↓

0.23 (S)
↑

-0.74 (L)
↓

-0.01 (N)

—

NO 0.07 0 1.19 0 0.02 0 -0.06 0 0.15 0 -0.01 0 0.02 0
YES 114.40 42.74 698.4 137.3 16.65 4.03 9.47 0.03 1.37 0 6.44 2.39 9.30 1.17
p-value <0.01 <0.01 <0.01 <0.01 0.97 <0.01 <0.01

Eclipse

SC

Cliff’s d 0.92 (L)
↑

0.52 (L)
↑

0.61 (L)
↑

0.44 (M)
↑

0.01 (N)

—

0.51 (L)
↑

0.65 (L)
↑

NO 0.25 0 0.25 0 0.07 0 0.06 0 0.09 0 0.02 0 0.02 0
YES 73.76 29.14 849.90 9.57 16.26 3.30 20.17 3.04 1.15 0.20 6.81 1.12 2.15 0.08
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01Blob

Cliff’s d 0.87 (L)
↑

0.52 (L)
↑

0.74 (L)
↑

0.67 (L)
↑

0.32 (S)
↑

0.75 (L)
↑

0.42 (M)
↑

NO 0.26 0 0.43 0 0.07 0 0.06 0 0.11 0 0.03 0 0.02 0
YES 9.36 2.10 290.50 0 1.39 0 0.57 0 0.44 0 0.94 0 3.42 1.00
p-value <0.01 0.3 0.04 0.02 <0.01 0.01 <0.01CDSP

Cliff’s d 0.61 (L)
↑

0.05 (N)

—

0.05 (N)
↑

0.05 (N)
↑

0.17 (S)
↑

0.06 (N)
↑

0.87 (L)
↑

NO 0.21 0 0.34 0 0.06 0 0.04 0 0.10 0 0.02 0 0.03 0
YES 63.00 12.60 1573.00 46.81 19.36 3.81 15.68 1.93 1.25 0.18 9.29 1.40 1.88 0.01
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01CC

Cliff’s d 0.79 (L)
↑

0.69 (L)
↑

0.82 (L)
↑

0.61 (L)
↑

0.30 (S)
↑

0.81 (L)
↑

0.39 (M)
↑

NO 0.29 0 0.75 0 0.08 0 0.07 0 0.12 0 0.03 0 0.02 0
YES -14.09 -4.00 -5.59 -0.50 -5.67 -1.37 -4.50 -0.54 -0.19 0 -2.60 -0.57 -0.40 0
p-value <0.01 <0.01 <0.01 <0.01 0.75 <0.01 <0.01FD

Cliff’s d -0.71 (L)
↓

-0.51 (L)
↓

-0.67 (L)
↓

-0.49 (L)
↓

0.01 (N)

—

-0.69 (L)
↓

-0.22 (S)
↓

NO 0.17 0 1.02 0 0.04 0 -0.02 0 0.15 0 0.01 0 0.03 0
YES 134.00 36.29 597.0 100.0 15.09 6.34 9.36 1.00 1.27 0 5.84 3.00 7.80 0.57
p-value <0.01 <0.01 <0.01 <0.01 0.49 <0.01 <0.01

Overall

SC

Cliff’s d 0.93 (L)
↑

0.52 (L)
↑

0.66 (L)
↑

0.52 (L)
↑

0.06 (N)

—

0.59 (L)
↑

0.67 (L)
↑

metric values than files that are not becoming smelly. In other
words, when a smell is going to appear, its operational indica-
tors (metric value increases) occur very fast, and not gradually.
For example, considering the Apache ecosystem, we can see
a clear difference between the growth of LOC in Blob and
clean classes. Indeed, this latter have a mean growth in terms
of LOC characterized by a slope of 0.40, while the slope for
Blobs is, on average, 91.82. To make clear the interpretation
of such data, let us suppose we plot both regression lines on
the Cartesian plane. The regression line for Blobs will have
an inclination of 89.38◦, indicating an abrupt growth of LOC,
while the inclination of the regression line for clean classes
will be 21.8◦, indicating less steep increase of LOC. The
same happens when considering the LCOM cohesion metric

(the higher the LCOM, the lower the class cohesion). For the
overall dataset, the slope for classes that will become Blobs is
849.90 as compared to the 0.25 of clean classes. Thus, while
the cohesion of classes generally decreases over time, classes
destined to become Blobs exhibit cohesion metric loss orders
of magnitude faster than clean classes. In general, the results in
Table IV show strong differences in the metrics’ slope between
clean and smelly files, indicating that it could be possible to
create recommenders warning developers when the changes
performed on a specific code component show a dangerous
trend that could lead to the introduction of a bad smell.

The Functional Decomposition (FD) smell deserves a sep-
arate discussion. As we can see in Table IV, the slope of the
regression line for files affected by such a smell is negative.



This means that during the evolution of files affected by
Functional Decomposition we can observe a decrement (rather
than an increment) of the metric values. The rationale behind
such a result is intrinsic in the definition of this smell. Specif-
ically, one of the symptoms of such a smell is represented
by a class with a single action, such as a function. Thus,
the changes that could introduce a Functional Decomposition
might be the removal of responsibilities (i.e., methods). This
clearly results in the decrease of some metrics, such as NOM,
LOC and WMC. As an example, let us consider the class
DisplayKMeans of Apache Mahout. The class implemented
the K-means clustering algorithm in its original form. How-
ever, after three commits the only operation performed by the
class was the visualization of the clusters. Indeed, developers
moved the actual implementation of the clustering algorithm
in the class Job of the package kmeans, introducing a
Functional Decomposition in DisplayKMeans.

Overall, from the analysis of Table IV we can conclude that
(i) LOC characterizes the introduction of all the smells; (ii)
LCOM, WMC, RFC and NOM characterize all the smells but
Class Data Should be Private; (iii) CBO does not characterize
the introduction of any smell; and (iv) the only metrics
characterizing the introduction of Class Data Should be Private
are LOC and NOA.
Summary for RQ1. Most of the smell instances are introduced
when files are created. However, there are also cases, espe-
cially for Blob and Complex Class, where the smells manifest
themselves after several changes performed on the file. In these
cases, files that will become smelly exhibit specific trends for
some quality metric values that are significantly different than
those of clean files.

B. Why are code smells introduced?

To answer RQ2, we analyze the percentage of smell-
introducing commits classified according to the category of
tags, i.e.,commit goal, project status, and developer status.
Commit-Goal: Table V reports the percentage of smell-
introducing commits assigned to each tag of the category
commit-goal. Among the three different ecosystems analyzed,
results show that smell instances are mainly introduced when
developers perform enhancement operations on the system.
When considering the three ecosystems altogether, for all the
considered types of smells the percentage of smell-introducing
commits tagged as enhancement ranges between 60% and
66%. Note that by enhancement we mean changes applied
by developers on existing features aimed at improving them.
For example, a Functional Decomposition was introduced
in the class CreateProjectFromArchetypeMojo of
Apache Maven when the developer performed the “first pass
at implementing the feature of being able to specify additional
goals that can be run after the creation of a project from an
archetype” (as reported in the commit log).

Note that when considering both enhancement or new fea-
ture the percentage of smell-introducing commits exceeds, on
average, 80%. This indicates, as expected, that the most smell-
prone activities are performed by developers when adding

TABLE V
RQ2 : COMMIT-GOAL TAGS TO SMELL-INTRODUCING COMMITS. BF: BUG

FIXING; E: ENHANCEMENT; NF: NEW FEATURE; R: REFACTORING.
Smell Android Apache Eclipse Overall

BF E NF R BF E NF R BF E NF R BF E NF R
Blob 15 59 23 3 5 83 10 2 19 55 19 7 14 65 17 4
CDSP 11 52 30 7 6 63 30 1 14 64 18 4 10 60 26 4
CC 0 44 56 0 3 89 8 0 17 52 24 7 13 66 16 5
FD 8 48 39 5 16 67 14 3 18 52 24 6 16 60 20 4
SC 0 0 100 0 0 81 4 15 8 61 22 9 6 66 17 11

new features or improving existing features. However, there
is also a non-negligible number of smell-introducing commits
tagged as bug fixing (between 6% and 16%). This means that
also during corrective maintenance developers might introduce
a smell, especially when the bug fixing is complex and
requires changes to several code entities. For example, the
class SecuredModel of Apache Jena builds the security
model when a semantic Web operation is requested by the
user. In order to fix a bug that did not allow the user to perform
a safe authentication, the developer had to update the model,
implementing more security controls. This required changing
several methods present in the class (10 out of 34). Such
changes increase the whole complexity of the class (the WMC
metric increased from 29 to 73) making SecuredModel a
Complex Class.

Another interesting observation from the results reported
in Table V is related to the number of smell-introducing
commits tagged as refactoring (between 4% and 11%). While
refactoring is the principal treatment to remove smells, we
found 394 cases in which developers introduced new smells
when performing refactoring operations. For example, the
class EC2ImageExtension of Apache jClouds implements
the ImageExtension interface, which provides the meth-
ods for creating an image. During the evolution, developers
added methods for building a new image template as well as
a method for managing image layout options (e.g., its align-
ment) in the EC2ImageExtension class. Subsequently, a
developer performed an Extract Class refactoring operation
aimed at reorganizing the responsibility of the class. Indeed,
the developer split the original class into two new classes,
i.e., ImageTemplateImpl and CreateImageOptions.
However, the developer also introduced a Functional Decom-
position in the class CreateImageOptions since such a
class, after the refactoring, contains just one method, i.e., the
one in charge of managing the image options. This result
sheds light on the dark side of refactoring; besides the risk of
introducing faults [8], when performing refactoring operations,
there is also the risk of introducing design problems.

Looking into the ecosystems, the general trend discussed
so far holds for Apache and Eclipse. Regarding Android, we
notice something different for Complex Class and Spaghetti
Code smells. In these cases, the smell-introducing commits are
mainly due to the introduction of new features. Such a differ-
ence could be due to the particular development model used
for Android apps. Specifically, we manually analyzed the in-
stances of smells identified in the 70 Android apps, and we ob-
served that in the majority of cases classes affected by a smell
are those extending the Android Activity class, i.e., a class
extended by developers to provide features to the app’s users.



TABLE VI
RQ2 : PROJECT-STATUS TAGS TO SMELL-INTRODUCING COMMITS.

Ecosystem Smell
Working on Release Project Startup
One One One More One One One MoreDay Week Month Week Month Year

Blob 7 54 35 4 6 3 35 56
CDSP 14 20 62 4 7 17 33 43

Android CC 0 6 94 0 0 12 65 23
FD 1 29 59 11 0 4 71 25
SC 0 0 100 0 0 0 0 100
Blob 19 37 43 1 3 7 54 36
CDSP 10 41 46 3 3 8 45 44

Apache CC 12 30 57 1 2 14 46 38
FD 5 14 74 7 3 8 43 46
SC 21 18 58 3 3 7 15 75
Blob 19 37 43 1 3 20 32 45
CDSP 10 41 46 3 6 12 39 43

Eclipse CC 12 30 57 1 2 12 42 44
FD 5 14 73 8 2 5 35 58
SC 21 18 58 3 1 5 19 75
Blob 15 33 50 2 5 14 38 43
CDSP 10 29 58 3 6 12 39 43

Overall CC 18 28 53 1 4 13 42 41
FD 7 22 66 5 3 7 42 48
SC 16 20 58 6 2 6 17 75

Specifically, we observed that quite often developers introduce
a Complex Class or a Spaghetti Code smell when adding a new
feature to their apps by extending the Activity class. For
example, the class ArticleViewActivity of the Aard5

app became a Complex Class after the addition of several new
features (spread across 50 commits after its creation), such as
the management of page buttons and online visualization of
the article. All these changes contributed to increase the slope
of the regression line for the RFC metric of a factor of 3.91
and for WMC of a factor of 2.78.
Project status: Table VI reports the percentage of smell-
introducing commits assigned to each tag of the category
project-status. As expected, most of the smells are introduced
the last month before issuing a release. Indeed, the percentage
of smells introduced more than one month prior to issuing
a release is really low (ranging between 0% and 11%). This
consideration holds for all the ecosystems and for all the bad
smells analyzed, thus confirming the common wisdom that the
deadline pressure—assuming that release dates are planned—
can be one of the main causes for smell introduction.

Considering the project startup tag, the results are quite
unexpected. Indeed, a high number of smell instances are
introduced few months after the project startup. This is particu-
larly true for Blob, Class Data Should Be Private, and Complex
Class, where more than half of the instances are introduced
in the first year of system’s lifecycle. Instead, Functional
Decomposition, and especially Spaghetti Code, seem to be
the types of smells that take more time to manifest themselves
with more than 75% of Spaghetti Code instances introduced
after the first year. This result contradicts, at least in part,
the common wisdom that smells are introduced after several
continuous maintenance activities and, thus, are more pertinent
to advanced phases of the development process [20], [37].
Developer status: Finally, Table VII reports the percentage
of smell-introducing commits assigned to each tag of the
category developer-status. From the analysis of the results
it is evident that the developers’ workload negatively in-
fluences the quality of the source code produced. On the
overall dataset, at least in 55% of cases the developer who

5Aard is an offline Wikipedia reader.

TABLE VII
RQ2 : DEVELOPER-STATUS TAGS TO SMELL-INTRODUCING COMMITS.

Ecosystem Smell Workload Ownership Newcomer
High Medium Low True False True False

Blob 44 55 1 73 27 4 96
CDSP 79 10 11 81 19 11 89

Android CC 53 47 0 100 0 6 94
FD 68 29 3 100 0 8 92
SC 100 0 0 100 0 100 0
Blob 67 31 2 64 36 7 93
CDSP 68 26 6 53 47 14 86

Apache CC 80 20 0 40 60 6 94
FD 61 36 3 71 29 7 93
SC 79 21 0 100 0 40 60
Blob 62 32 6 65 35 1 99
CDSP 62 35 3 44 56 9 91

Eclipse CC 66 30 4 47 53 9 91
FD 65 30 5 58 42 11 89
SC 43 32 25 79 21 3 97
Blob 60 36 4 67 33 3 97
CDSP 68 25 7 56 44 11 89

Overall CC 69 28 3 45 55 3 97
FD 63 33 4 67 33 8 92
SC 55 28 17 79 21 15 85

introduces the smell has a high workload. For example, on
the InvokerMavenExecutor class in Apache Maven a
developer introduced a Blob smell while adding the command
line parsing to enable users alternate the settings. When
performing such a change, the developer had relatively high
workload while working on nine other different classes (in this
case, the workload was classified as high).

Developers who introduce a smell are not newcomers, while
often they are owners of smell-related files. This could look
like an unexpected result, as the owner of the file—one of
the most experienced developers of the file—is the one that
has the higher likelihood of introducing a smell. However, it
is clear that somebody that does many commits has a higher
chance of introducing smells. Also, as discussed by Zeller in
his book Why programs fail, more experienced developers tend
to perform more complex and critical tasks [49]. Thus, it is
likely that their commits are more prone to introducing design
problems.
Summary for RQ2. Smells are generally introduced by
developers when enhancing existing features or implementing
new ones. As expected, smells are generally introduced in
the last month before issuing a deadline, while there is a
considerable number of instances introduced in the first year
from the project startup. Finally, developers that introduce
smells are generally the owners of the file and they are more
prone to introducing smells when they have higher workloads.

IV. THREATS TO VALIDITY

The main threats related to the relationship between the-
ory and observation (construct validity) are due to impreci-
sions/errors in the measurements we performed. Above all,
we relied on DECOR rules to detect smells. Notice that our
re-implementation uses the exact rules defined by Moha et al.
[33], and has been already used in our previous work [36].
Nevertheless, we are aware that our results can be affected
by the presence of false positives and false negatives. Moha
et al. reported for DECOR a precision above 60% and a
recall of 100% on Xerces 2.7.0. As for the precision, other
than relying on Moha et al. assessment, we have manually
validated a subset of the 4,627 detected smell instances. This



manual validation has been performed by two authors inde-
pendently, and cases of disagreement were discussed. In total,
1,107 smells were validated, including 241 Blob instances,
317 Class Data Should Be Private, 166 Complex Class, 65
Spaghetti Code, and 318 Functional Decomposition. Such a
(stratified) sample is deemed to be statistically significant for a
95% confidence level and ±10% confidence interval [?]. The
results of the manual validation indicated a mean precision
of 73%, and specifically 79% for Blob, 62% for Class Data
Should Be Private, 74% for Complex Class, 82% for Spaghetti
Code, and 70% for Functional Decomposition. In addition,
we replicated all the analysis performed to answer our two
research questions by just considering the smell-introducing
commits (2,555) involving smell instances that have been
manually validated as true positives. The results achieved
in this analysis (available in our replication package [43])
are perfectly inline with those obtained in our paper on the
complete set of 9,164 smell-introducing commits, confirming
all our findings. Finally, we are aware that our study can
also suffer from presence of false negatives. However, (i) the
sample of investigated smell instances is pretty large (4,627
instances), and (ii) the DECOR’s claimed recall is very high.

As explained in Section II, the heuristic for excluding
projects with incomplete history from the Project startup
analysis may have failed to discard some projects. Also, we
excluded the first commit from a project’s history involving
Java files from the analysis of smell-introducing commits,
because such commits are likely to be imports from old ver-
sioning systems, and, therefore, we only focused our attention
(in terms of the first commit) on the addition of new files
during the observed history period. Concerning the tags used
to characterize smell-introducing changes, the commit clas-
sification was performed by two different authors and results
were compared and discussed in cases of inconsistencies. Also,
a second check was performed for those commits linked to
issues (only 471 out of 9,164 commits), to avoid problems
due to incorrect issue classification [2], [24].

The analysis of developer-related tags was performed using
the Git author information instead of relying on committers
(not all authors have commit privileges in open source projects,
hence observing committers would give an imprecise and par-
tial view of the reality). However, there is no guarantee that the
reported authorship is always accurate and complete. We are
aware that the Workload tag measures the developers’ activity
within a single project, while in principle one could be busy on
other projects or different other activities. One possibility to
mitigate such a threat could have been to measure the workload
of a developer within the entire ecosystem. However, in our
opinion, this would have introduced some bias, i.e., assigning
a high workload to developers working on several projects of
the same ecosystem and a low workload to those that, while
not working on other projects of the same ecosystem, could
have been busy on projects outside the ecosystem. It is also
important to point out that, in terms of relationship between
Workload tag and smell introduction, we obtained consistent
results across three ecosystems, which at least mitigates the

presence of a possible threat. Also, estimating the Workload
by just counting commits is an approximation. However, we
do not use the commit size because there might be a small
commit requiring a substantial effort as well.

As for the threats that could have influenced the results
(internal validity), we performed the study by comparing
classes affected (and not) by a specific type of smell. However,
there can be also cases of classes affected by different types
of smells at the same time. Our investigation revealed that
such classes represent a minority (3% for Android, 5% for
Apache, and 9% for Eclipse), and, therefore, the interaction
between different types of smells is not particularly interesting
to investigate, given also the complexity it would have added
to the study design and to its presentation. Finally, while in
RQ2 we studied tags related to different aspects of a software
project lifetime—characterizing commits, developers, and the
project status itself—we are aware that there could be many
other factors that could have influenced the introduction of
smells. In any case, it is worth noting that it is beyond the
scope of this work to make any claims related to causation of
the relationship between the introduction of smells and product
or process factors characterizing a software project.

The main threats related to the relationship between the
treatment and the outcome (conclusion validity) are repre-
sented by the analysis method exploited in our study. In RQ1,
we used non-parametric tests (Mann-Whitney) and effect size
measures (Cliff’s Delta), as well as regression analysis. Results
of RQ2 are, instead, reported in terms of descriptive statistics
and analyzed from purely observational point of view.

Finally, regarding the generalization of our findings (exter-
nal validity) this is, to the best of our knowledge, the largest
study—in terms of number of projects (200)—concerning the
analysis of code smells and of their evolution. However, we
are aware that we limited our attention to only five types of
smells. As explained in Section II, this choice is justified by the
need for limiting the computation since we wanted to analyze
a large number of projects. Also, we tried to diversify the
types of smells including smells representing violations of OO
principles and “size-related” smells. Last, but not least, we
made sure to include smells—such as Complex Class, Blob,
and Spaghetti Code—that previous studies indicated to be
perceived by developers as severe problems [35]. Nevertheless,
further studies aiming at replicating our work on other smells,
with projects developed for other ecosystems and in other
programming languages, are desirable.

V. RELATED WORK

This section discusses work investigating the evolution of
code smells in software systems and their effect on mainte-
nance activities and on software quality. Khomh et al. [26],
[25] studied the relationship between the presence of code
smells and software change- and fault-proneness. They found
that classes affected by code smells tend to be significantly
more change- [25] and fault- prone [26] than other classes.
Empirical evidence demonstrating that some bad smells cor-
relate with higher fault-proneness has also been reported by Li



and Shatnawi [30]. Abbes et al. [1] conducted three controlled
experiments with the aim of investigating the impact of Blob
and Spaghetti Code smells on program comprehension. Their
results indicated that single occurrence of such smells does
not significantly decrease developer’s performance, while the
coexistence of multiple bad smell instances in the same class
significantly reduces developers’ performance during mainte-
nance tasks. Similar results were obtained by Yamashita and
Moonen [46] when studying the interaction of different code
smells. Their results indicate that the maintenance problems
are strictly related to the presence of more bad smells in the
same file. They also investigated the impact of bad smells on
maintainability characteristics [47]. As discussed in Section IV
we do not focus on smell co-occurrences because they happen
in a very small percentage (< 9%) of affected classes.
The controlled experiment conducted by Sjøberg et al. [41]
confirmed that smells do not always constitute a problem, and
that often class size impacts maintainability more than the
presence of smells. Other studies investigate the impact of
smells and their perception by surveying project developers.
Arcoverde et al. [3] investigated how developers react to the
presence of bad smells in their code. The results of their survey
indicate that code smells often remain in source code for a
long time and the main reason for postponing their removal
through refactoring activities is to avoid API modifications
[3]. A recent paper presented an empirical study aimed at
investigating the perception of 13 types of smells [35], by
showing to the participants code snippets containing (or not)
smells. The results of such a study show that smells related to
complex/long source code are generally perceived as harmful,
while the other types of smells are not perceived or perceived
only if the “intensity” of the problem is high. Yamashita and
Moonen [48] conducted a survey involving 85 professionals,
concerning the perceived severity of code smells and the need
to remove them. Their results indicated that 32% of developers
do not know (or know little) about code smells, and those who
are aware about the problem, pointed out that in many cases
smell removal was not a priority, because of time pressure
or lack of adequate tool support. In summary, although with
contrasting results, the studies discussed above provide a
general evidence that—at least in specific circumstances—
code smells have negative effects on software quality. Despite
that, however, developers seem reluctant to perform activities
aimed at their removal. Chatzigeorgiou and Manakos [15]
analyzed this phenomena and their results indicate that in most
cases, the design problems persist up to the latest examined
version accumulating even more as the project matures. Very
few bad smells are removed from the project, and in the vast
majority of these cases this was not due to specific refactoring
activities, but rather a side-effect of adaptive maintenance [15].
They also pointed out some findings consistent with our RQ1,
i.e., they indicated that a conspicuous percentage of smells
were introduced when the affected source code entity was
added in the system[15]. However, their study does not provide
quantitative data showing the magnitude of such phenomenon,
as we do. It is also important to point out that we performed

our analysis at commit-level (unlike to the related work that
conducted those studies at release level), which allowed us to
identify when bad smells appear in the source code. Finally,
our results are based on 200 analyzed systems instead of
two systems analyzed by the study that we mentioned earlier.
Peters and Zaidman [38] studied developers’ behavior in the
presence of smells, confirming that often, even if developers
are aware of the bad smells’ presence, they do not perform
refactoring activities.

VI. CONCLUSION AND LESSONS LEARNED

This paper presented a large-scale empirical study con-
ducted over the commit history of 200 open source projects
and aimed at understanding when and why bad code smells
are introduced. These results provide several valuable findings
for the research community:
Lesson 1. Most of times code artifacts are affected by bad
smells since their creation. This result contradicts the common
wisdom that bad smells are generally due to a negative
effect of software evolution. Also, this finding highlights that
the introduction of most smells can simply be avoided by
performing quality checks at commit time. In other words,
instead of running smell detector time-to-time on the entire
system, these tools could be used during commit activities (in
particular circumstances, such as before issuing a release) to
avoid or at least limit the introduction of bad code smells.
Lesson 2. Code artifacts becoming smelly as consequence
of maintenance and evolution activities are characterized by
peculiar metrics’ trends, different from those of clean artifacts.
This is in agreement with previous findings on the historical
evolution of code smells [31], [36], [39]. Also, such results
encourage the development of recommenders able of alerting
software developers when changes applied to code artifacts
result in worrisome metric trends, generally characterizing
artifacts that will be affected by a smell.
Lesson 3. While implementing new features and enhancing
existing ones are, as expected, the main activities during which
developers tend to introduce smells, we found almost 400
cases in which refactoring operations introduced smells. This
result is quite surprising, given that one of the goals behind
refactoring is the removal of bad smells [20]. This finding
highlights the need for techniques and tools aimed at assessing
the impact of refactoring operations on source code before
their actual application (e.g., see the recent work by Chaparro
et al. [14]).
Lesson 4. Newcomers are not necessary responsible for in-
troducing bad smalls, while developers with high workloads
and release pressure are more prone to introducing smell
instances. This result highlights that code inspection practices
should be strengthened when developers are working under
these stressful conditions.

These lessons learned represent the main input for our future
research agenda on the topic, mainly focused on designing and
developing a new generation of code quality-checkers, such as
those described in Lesson 2.
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