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Abstract—Information Retrieval (IR) techniques have gained
wide-spread acceptance as a method for automating traceabil-
ity recovery. These techniques recover links between software
artifacts based on their textual similarity, i.e., the higher the
similarity, the higher the likelihood that there is a link between
the two artifacts. A common problem with all IR-based tech-
niques is filtering out noise from the list of candidate links,
in order to improve the recovery accuracy. Indeed, software
artifacts may be related in many ways and the textual information
captures only one aspect of their relationships. In this paper
we propose to leverage code ownership information to capture
relationships between source code artifacts for improving the
recovery of traceability links between documentation and source
code. Specifically, we extract the author of each source code com-
ponent and for each author we identify the “context” she worked
on. Thus, for a given query from the external documentation we
compute the similarity between it and the context of the authors.
When retrieving classes that relate to a specific query using a
standard IR-based approach we reward all the classes developed
by the authors having their context most similar to the query, by
boosting their similarity to the query. The proposed approach,
named TYRION (TraceabilitY link Recovery using Information
retrieval and code OwNership), has been instantiated for the
recovery of traceability links between use cases and Java classes
of two software systems. The results indicate that code ownership
information can be used to improve the accuracy of an IR-based
traceability link recovery technique.

Index Terms—Traceability Link Recovery, Code Ownership,
Information Retrieval, Empirical Studies.

I. INTRODUCTION

Traceability links between software artifacts play a
paramount role in software comprehension, allowing to map
high-level documents to low-level artifacts [1], [2]. They are
also very useful during a variety of software engineering tasks,
such as, testing or bug location. In some cases, process re-
quirements (such as, regulatory requirements for safety critical
systems) require developers to create and maintain traceability
links throughout the life-cycle of the system. Unfortunately,
in most cases traceability links are often an after thought
and in such cases the traceability links need to be recovered
from existing artifacts. The recovery and management of
traceability links is largely a manual effort, which is person-
power intensive and error prone [3]. It comes as no surprise

that a lot of research has been conducted to automate at least
part of this work. Since most software artifacts are made of
or contain text data, most approaches proposed in the past
decade for traceability link recovery and management are
based on Information Retrieval (IR) [4] techniques. The idea
behind such approaches is that pairs of artifacts having high
textual similarity have a high probability to be related to each
other [2]. A traceability recovery process can be viewed as
a document retrieval task, where a source artifact is used as
“query” (e.g., a use case) and another set of artifacts (e.g.,
source code classes) form the document space and the ones
relevant to the query are retrieved by the IR tool. The pairs
between the query and the retrieved documents form the list
of candidate links. The software engineer analyzes such a list
and determines the correct as well as the incorrect links.

IR-based techniques work well when the text used in the
document space is consistent with the one used in the query
artifacts. In practice, there is often a mismatch between the
text used in artifacts at various abstraction levels, or in arti-
facts developed by different people, known as the vocabulary
mismatch problem [5]. In consequence, a common problem
with all IR-based techniques is filtering out candidate links
due to accidental high textual similarities. At the same time,
it is hard for such techniques to retrieve links affected by the
vocabulary mismatch. Also, some artifacts are by nature less
verbose (e.g., a requirement, an interface, or an abstract class)
and most IR techniques would return a very low similarity
value between them even if the two artifacts are related. As a
result, such correct links will appear in the lower part of the
list of candidate links. All these issues make the recovery of
correct links time-consuming and error-prone both at the top
of the candidate link list and especially at the bottom [6].

Several approaches have been proposed to overcome the
limitations of IR-based traceability link recovery techniques.
Some approaches focus on transformations at the vocabulary
level (e.g., [7], [8]), while others leverage relationships be-
tween source code-based artifacts, based on different types of
information (e.g., structural dependencies between source code
[9]). Following the same research direction, in this paper we
propose to leverage code ownership information for improving
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the accuracy of IR-based techniques during documentation-
to-source code traceability recovery tasks. Our conjecture
is that developers generally work on specific (as opposed
to opportunistic) and related functionalities during software
evolution. This means that the code (e.g., classes) authored
by a specific developer may be related to specific high-level
artifacts (e.g., use cases). In consequence, during the recovery
of traceability links between high level artifacts and source
code, the code documents developed by the same author can
be considered together and this cluster of document can be
used to improve low textual similarities to the query, caused by
vocabulary mismatch or poor verbosity. The idea to combine
code ownership and textual similarities between documents
was exploited in other software engineering context, i.e., bug
triage, while determining the developers who should fix a bug
[10], [11], [12]. In short, developer recommenders are based
on the idea that if a developer authored code that is textually
similar to a new bug report, she should likely be in charge
with the new bug report. We adopt here the reverse idea, if a
developer authored code that is linked to a high level artifact
(e.g., a use case), then other code developed by the developer
would likely relate to the same artifact.

Specifically, we extract the author of each source code
artifact and for each author we define the context she worked
on (author’s context), i.e., all the code components authored
by the developer. Then, for a given query from the external
documentation (e.g., requirement or use case) we use an IR
tool to compute the similarity between the query and all the
authors’ contexts to identify the author having the most similar
context to the query. This author is probably the one that
mainly contributed to the implementation of the functionality
described by the query. Then, when retrieving classes that
relate to a specific query using a standard IR-based approach
we reward all the classes developed by the authors having their
context most similar to the query, by boosting their similarity
to the query. Our expectation is that code documents with low
verbosity and those with a problematic vocabulary will rise
in the ranked list of candidate links, improving their recovery
and thus making their identification less time-consuming.

The proposed approach, named TYRION (TraceabilitY link
Recovery using Information retrieval and code OwNership),
has been instantiated for the recovery of traceability links
between use cases and Java classes in the context of a case
study conducted on two software systems. The results indicate
that TYRION helps in improving the traceability recovery
accuracy when compared to a standard IR-based that exploits
only the textual similarity between software artifacts.

Structure of the paper. Section II presents background
information on an IR-based traceability recovery process and
discusses the related literature, while Section III presents
TYRION. Sections IV and V report the design and the
results, respectively, of an empirical study aimed at evaluating
TYRION. Finally, Section VII concludes the paper after a
discussion of the threats that could affect the validity of the
achieved results (Section VI).
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Fig. 1. An IR-based traceability recovery process

II. BACKGROUND AND RELATED WORK

This section overviews the phases of an IR-based traceabil-
ity recovery process and discusses the different approaches
proposed in the literature.

A. IR-based Traceability Recovery Process

An IR-based traceability recovery process follows the steps
depicted in Figure 1. The process starts by indexing the
artifacts in the artifact corpus through the extraction of terms
from their content. The indexing process of the artifacts and
the construction of the artifact corpus are preceded by a text
normalization phase aimed at (i) pruning out white spaces and
most non-textual tokens from the text (e.g., special symbols,
some numbers) and (ii) splitting source code identifiers com-
posed of two or more words into their constituent words, e.g.,
getName is split into get and name.

A stop word function and/or a stop word list are then applied
to discard common words (i.e., articles, adverbs, etc.) that
are not useful to characterize the semantic of a document’s
content. The stop word function prunes out all the words
having a length less than a fixed threshold, while the stop
word list is used to cut-off all the words contained in a given
list. Morphological analysis, such as stemming [13], could be
also performed aiming at removing suffixes of words to extract
their stems.

The output of the indexing process is represented by a
m × n matrix (called term-by-document matrix), where m
is the number of all terms that occur within the artifacts,
and n is the number of artifacts in the repository. A generic
entry wi,j of this matrix denotes a measure of the weight
(i.e., relevance) of the ith term in the jth document [4]. A
widely used weighting schema (also used in this paper) is the
tf-idf [4], which gives more importance to words having a high
frequency in a document (high tf ) and appearing in a small
number of documents, thus having a high discriminant power
(high idf ).

Once the artifacts are indexed, different IR methods can be
used to compare a set of source artifacts—used as “queries”
by the IR method (e.g., requirements)—against another set
of artifacts—considered as “documents” by the IR method
(e.g., source code files)—and rank the similarity of all possible
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pairs of artifacts (see Figure 1). Probabilistic models [2],
Vector Space Model (VSM) [4], and Latent Semantic Indexing
(LSI) [14] are the three most frequently used IR methods for
traceability recovery [15].

Once the list of candidate links has been generated, it
is provided to the software engineer for examination (see
Figure 1). The software engineer reviews the candidate links,
determines those that are correct links and discards the false
positives.

B. IR Methods for Traceability Recovery

Antoniol et al. [2] are the first to apply IR methods to
the problem of recovering traceability links between software
artifacts. They use both the probabilistic and vector space
models to trace source code onto software documentation.
The results of the experimentation show that the two methods
exhibit similar accuracy. Marcus and Maletic [16] use LSI to
recover traceability links between source code and documen-
tation. They perform case studies similar in design to those in
[2] and compare the accuracy of LSI with respect to the vector
space and probabilistic models. The results show that LSI
performs at least as well as the probabilistic and vector space
models combined with full parsing of the source code and
morphological analysis of the documentation. Abadi et al. [17]
compare several IR techniques to recover traceability links be-
tween code and documentation. They compare dimensionality
reduction methods (e.g., LSI), probabilistic and information
theoretic approaches, i.e., Jensen & Shannon (JS), and the
standard VSM. The results achieved show that the techniques
that provide the best results are VSM and JS. Recently, Latent
Dirichlet Allocation (LDA) and a combination of Relational
Topic Model (an extension of LDA) with other IR methods
have been proposed for traceability recovery [18], [19]. While
LDA provides performance comparable to that obtained by
IR methods [18], the combination of different techniques
outperforms stand-alone IR methods [19].

However, a recent empirical study highlighted that none of
these techniques sensibly outperforms the others [20]. For this
reason, most of the effort in the literature has been devoted
to the definition of enhancements to improve the accuracy of
the IR-based traceability methods and make the traceability
recovery process less time consuming and error prone. Some
improvements focus on the terms that are extracted from the
artifacts, and some pre-processing techniques. Capobianco et
al. have suggested that domain-specific terms (e.g., jargon)
best describe the concepts in the code. They propose to use
only the nouns from the software artifacts [21]. Other work
has also adapted the weights of the artifacts’ terms depending
on the length of the artifacts [22], a project glossary [8], or
external dictionaries [7]. Recently, smoothing filters have been
shown to improve the precision of IR-based traceability [23].

We share with all the aforementioned approaches the need
for improving—in various ways—results achieved by the
standard IR methods, and we show that code ownership
represents a valuable source of information to improve IR-
based traceability recovery. In addition, since TYRION uses

a different source of information as compared to all the
enhancing strategies described above, it might be used to
complement them.

An issue which hinders the performance of IR techniques
when applied to traceability recovery is the presence of vo-
cabulary mismatch between source and target artifacts. More
specifically, if the source artifacts are written using one set
of terms and the target artifacts are written using a com-
plementary set of terms, IR techniques will have difficulties
identifying links between the sets of artifacts. One way to
address this problem is to enhance the textual description of
software artifacts or to complement textual information with
other source of information. Following the former research di-
rection, one technique that attempts to alleviate the vocabulary
mismatch has been recently proposed [24], [25]. The proposed
approach uses search engines to identify a set of terms related
to the query and expand the query in an attempt to improve
recovery accuracy. Empirical studies indicate that using web
mining to enhance queries improves retrieval accuracy.

As for the latter direction, structural information has been
shown to augment IR-based methods for traceability. The
structural information generally refers to the relationships in
the software’s source code, such as function calls, inheritance,
or realization relationships [9]. These relationships are valu-
able for traceability recovery because the links among the
source code are reflected as links among high-level artifacts
(an idea known as software reflexion [26]). However, the
accuracy of such methods is highly dependent on the IR
methods. If the IR methods perform poorly, the combined
approaches may perform even worse. In order to mitigate such
a problem, Panichella et al. [27] proposed to use structural
information only when the traceability links from the IR
methods are verified by the software engineer and classified
as correct links. An empirical evaluation conducted on three
systems suggests that the supervised approach outperforms
both a pure IR-based method and the unsupervised approach.

We share with these approaches the need to complement IR
methods with other source of information in order to mitigate
the vocabulary mismatch. What sets our work apart from
previous approaches is that we use code ownership as a novel
source of information and empirically demonstrate that such
a source of information can be effectively used to improve
the accuracy of IR-based traceability recovery techniques.
Moreover, our approach is fully unsupervised.

III. THE PROPOSED APPROACH: TYRION

In a given software system, which is being developed
following any typical software development process, we can
conjecture that the ownership of the artifacts provides infor-
mation about the division of work in developers teams, in
general, and the division of requirements (or use cases) to
be implemented, in particular. Developers generally work on
specific and related functionalities [28]. This means that the
code (e.g., classes) authored by a specific developer is related
to specific high-level artifacts (e.g., use cases).
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In this paper, we propose to explore this information
by defining a traceability recovery method that combines
textual information with code ownership in order to im-
prove the accuracy of IR-based traceability recovery methods.
The proposed traceability recovery method, named TYRION
(TraceabilitY link Recovery using Information retrieval and
code OwNership), is based on the following steps:

• Step 1. Compute textual similarity between high-level
artifacts and source code. TYRION first computes the
textual similarity between all the possible pairs of a
set of high-level artifacts (e.g., use cases) and a set of
target artifacts (e.g., code classes). Such a step represents
the canonical IR-based traceability recovery process de-
scribed in Section II-A. It is worth noting that the set of
source artifacts could be also a singleton. In this case a
single high-level artifact is traced on source code artifacts.
The output of this step is a list of candidate links between
the source and target sets of artifacts.

• Step 2. Identify the author of each source code artifact.
In the second step, TYRION identifies the owner of each
source code artifact. Code ownership can be derived in
different way. The simplest way is to look at source code
comments. For instance, in software systems written in
Java the author of a class (or method) is usually specified
using the Javadoc tag @author. Other approaches derive
code ownership by analyzing the history of a software
system. For instance, the owner of a source code compo-
nent is the developer who performed the highest number
of changes (e.g., commits) on that component [29].

• Step 3. Define the author context. In this step, TYRION
estimates the context where the developer is work-
ing/worked on. This information is crucial to identify the
high-level artifacts related to a specific author. To define
the context of a developer, TYRION merges together
(in a single document) all the source code components
authored by that developer. Such a document (author’s
context) contains information (encapsulated in source
code comments and identifiers) about the system func-
tionalities implemented by the developer. Each author’s
context is then indexed in the corpus of high-level
and source code artifacts, following exactly the same
normalization phase. In this way the author context is
represented on the same term space of the high-level and
source code artifacts to be traced.

• Step 4. Integrate code ownership information with textual
information. TYRION integrates the textual similarity
between the source and target artifacts (computed us-
ing an IR technique) with code ownership information.
First, for each source artifact (i.e., high-level artifact)
TYRION identifies the author that most likely developed
the functionality described in the high-level artifact. This
information is derived by computing the textual similarity
between the high-level artifact (used again as query) and
the authors’ contexts. The developer with the context
most similar to the high-level artifact is the principal

contributor to the implementation of the functionality
described in the high-level artifact. Assuming that all the
classes authored by a developer are in some way related
to the high-level artifact, TYRION boosts the similarity
(adding a bonus β) between such classes and the high-
level artifact aiming at increasing the ranking of links
between artifacts with low verbosity and a problematic
vocabulary.

A crucial input for TYRION is the choice of the bonus β.
The simplest way to define the bonus is to fix it as a constant
value in the range of [0, 1], i.e., the theoretical range of values
of textual similarities. However, defining a bonus a priori is
quite difficult and rather subjective. The range of the ranked
list (measured as the difference between the max and min
similarity values) can differ significantly from one system to
another, or when tracing different types of artifacts. Indeed,
we may get a ranked list where all the similarity values are
concentrated in a small interval. On the other hand, we may
get a ranked list where the similarity values are spread over
the entire interval [0, 1]. In the former case, a small bonus
will have a large effect, while in the latter case a higher bonus
is required.

For this reason, we propose an adaptive bonus that is
proportional to the median half range of the similarity values
computed for each software artifact. More precisely, we set the
adaptive bonus as β = median{v1, . . . , vn} where a generic
vi value denotes the half range of the similarity values of the
i−th source artifact, i.e., vi = (maxi−mini)/2 where maxi
and mini are the maximum and minimum similarity values
between the i− th source artifact and the target artifacts.

Compared to a constant bonus, the adaptive bonus takes
into account ranked list range. In addition, the adaptive bonus
allows its use without the need to set any parameter, that is,
the bonus definition is completely automatic and data driven.

IV. EMPIRICAL EVALUATION

This section describes the design of the empirical study we
conducted to evaluate TYRION. The study was conducted
following the Goal-Question-Metric paradigm proposed by
Basili et al. [30]. Raw data and working data sets are available
for replication purposes1.

A. Definition and Context

The goal of the evaluation was to analyze whether the
accuracy of IR-based traceability recovery methods improves
when combining the textual similarity computed by the IR
method with code ownership information. The perspective is
of a researcher, who wants to assess to what extent code
ownership information complements textual information and
improves IR-based traceability recovery methods. The context
of our study is represented by two software systems, namely
eTour and SMOS. These systems have been developed by final
year Master’s students at the University of Salerno (Italy) and
have been used in previous empirical work on traceability link

1http://distat.unimol.it/reports/TYRION/
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TABLE I
CHARACTERISTICS OF THE SYSTEMS USED IN THE CASE STUDY.

System Description KLOC Source Artifact (#) Target Artifact (#) True link Language
eTour An electronic touristic guide developed by students 45 Use Cases (58) Classes (174) 366 English
SMOS A system used to monitor high school students 23 Use Cases (67) Classes (100) 1,044 Italian

recovery [21], [27], [23]. Table I shows some characteristics
of the two software systems. Other than software artifacts,
each repository also contains the traceability matrix built and
validated by the original developers. We consider such a
matrix as the “oracle” to evaluate the accuracy of the different
traceability link recovery methods. The natural language of
the artifacts is English for eTour and Italian for SMOS.

The choice of these two projects is justified by several fac-
tors. The most compelling factor is to have systems with code
ownership available and with traceability matrices validated
by developers. The two systems address problems in different
domains, with different vocabularies, hence the performance
of an IR-based traceability link recovery technique may vary
from a domain to another. Thus, the effect of code ownership
could be more or less evident on specific contexts.

B. Instantiating TYRION
In the context of our study TYRION has been instantiated

to identify links between use cases and Java classes. It is worth
noting that the use of classes as source code artifacts is widely
adopted in traceability [15], while method-level granularity is
much more exploited in feature location tasks [31]. Changing
the document granularity or the type of artifacts to use is an
implementation issue. TYRION would work the same way.

As for the indexing of software artifacts, we applied both a
stop word function (with threshold equal to three) and a stop
word list. The stop word list we used includes the standard
natural language stop words, the Java keywords (e.g., String,
int, public), and some terms identified manually looking at
the software artifacts (e.g., terms occurring in the artifacts’
templates). Also, while sophisticated methods for identifier
splitting have been proposed in the literature (e.g., [32], [33]),
we use here simple conventions (i.e., camel case and under
score separator) to split identifiers. This choice is due to
the programming language of the object systems, i.e., Java.
As indicated by a recent study, in Java systems camel case
convection is widely adopted and the use of a sophisticated
identified splitting is not needed [32]. We also used stemming
and in particular the Porter stemmer [13]. We chose Lucene
for the IR engine. Lucene combines a Boolean model (BM) [4]
with VSM. Specifically, the boolean model is used to perform
a preliminary filtering of the results and only the documents
“approved” by BM are scored by VSM. The weighting schema
adopted in the VSM is the tf-idf. Note that the use of the code
ownership to complement textual similarity is independent
of the IR method and can be integrated in any IR-based
traceability recovery tool.

Finally, TYRION needs to identify owners for each Java
class of the object systems. Since these systems are written
in Java and they do not have version history data, we extract
code ownership by analyzing the Javadoc comments.

C. Research Questions

In the context of our study, we formulated the following
research question:

RQ1: Can code ownership information be used to
complement textual information and improve IR-
based traceability recovery methods. Specifically,
does TYRION obtain better precision and recall than
a standard IR-based traceability recovery?

In order to respond to this research question, we compared the
accuracy of a Lucene-based traceability recovery method with
and without the use of code ownership information. Thus, the
two methods compared in our study are: (1) a Lucene-based
traceability recovery method (which we call the baseline) and
(2) TYRION (i.e., Lucene augmented with code ownership
information). We provided to the two traceability recovery
methods identical term-by-document matrices in order to elim-
inate any bias towards either IR method.

We applied both techniques on a massive traceability link
recovery task [15], where a set of source artifacts is traced on
a set of target artifacts. In the context of our study, we traced
all the use cases on all the classes of the two objects systems.
Thus, we obtained four (two systems x two recovery methods)
different ranked lists of candidate links.

Once obtained a list of candidate links, we used a tool that
takes as input such a list and classifies each link as correct
link or false positive, simulating the work behavior of the
software engineer when she classifies the proposed links. Such
a classification of the candidate links is performed on the basis
of the original traceability matrix provided by the developers.
For each ranked list analyzed, the classification process starts
from the top of the ranked list and stops when all correct links
are recovered.

D. Metrics

To evaluate the different traceability recovery methods, we
use two well-known IR metrics [4]:

recall =
|correct ∩ retrieved|

|correct|
%

precision =
|correct ∩ retrieved|

|retrieved|
%

where correct represents the set of correct links and retrieved
is the set of all links retrieved by the traceability recovery
technique (correct or otherwise).

A common way to evaluate the performance of retrieval
methods consists of comparing the precision values obtained
at different recall levels. This result is a set of recall/precision
points which are displayed in precision/recall graphs.

We confirmed our results by using a test for statistical
significance. We used this test to verify that the number of false
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positives retrieved by one method is statistically significantly
lower than the number of false positives retrieved by another
method. The dependent variable of our study is represented
by the number of false positives retrieved by the traceability
recovery method for each correct link identified. Since the
number of correct links is the same for each traceability
recovery activity (i.e., the data were paired), we used the
Wilcoxon Rank Sum test [34] to test the following null
hypothesis:

There is no statistically significant difference be-
tween the number of false positives retrieved by the
baseline and TYRION

Basically, we pairwise compare the difference between the
number of false positives one has to analyze—for each true
positive link—when using code ownership information and
when not. We use a one-tailed test as we are interested to
test whether TYRION introduces significant reduction in the
number of false positives. Results are interpreted as statis-
tically significant at α = 5%. We apply a non-parametric
statistical procedure (Wilcoxon Rank Sum test) because, after
using a normality test (Shapiro-Wilk) on all data sets involved
in the study, such a test indicated a significant deviation from
normality (p-value<0.01).

We also estimated the magnitude of the difference between
the false positives. We used the Cliff’s Delta (or d) [35], a
non-parametric effect size measure for ordinal data. The effect
size is considered small for d < 0.33, medium for 0.33 ≤
d < 0.474 and large for d ≥ 0.474 [35]. We chose the Cliff’s
Delta d effect size because it is appropriate for our variables
and given the different levels (small, medium, large) defined
for it, it is quite easy to be interpreted.

We are aware that with our statistical analysis we are
considering only precision at various levels of recall. However
this is a quite consolidated practice in IR, e.g., there exist a
metric obtained by averaging precision across different levels
of recall [4], and such a metric has been used in previous
traceability recovery work [24], [25].

V. ANALYSIS OF THE RESULTS

This section discusses the results of our empirical study,
aimed at answering the research question stated in Section
IV-C. Specifically, we first quantitatively discuss the results
and then we qualitative analyze them.

A. Quantitative Analysis

Figure 2 reports the precision/recall curves obtained by
Lucene, i.e., the baseline approach (gray line), and by
TYRION (black line) on eTour (a) and SMOS (b). In addition,
Table II reports the improvement of precision and the reduction
of retrieved false positives provided by TYRION (with respect
to the baseline approach) at different levels of recall.

From the analysis of Figure 2 and Table II it is evident
that TYRION provides significant improvements in terms of
precision when the recall is between 30% and 70%. At these
recall values we observe an improvement of precision ranging
from 7% to 17% on eTour and from 10% to 26% on SMOS.

TABLE III
WILCOXON TEST (P-VALUE), DESCRIPTIVE STATISTICS OF DIFFERENCES

BETWEEN FALSE POSITIVES (FP), AND CLIFF’S EFFECT SIZE (d).

Data set p-value TYRION$FP - baseline$FP
dmean median st. dev.

eTour <0.0001 -267 -194 271 0.12
SMOS <0.0001 -586 -629 447 0.22

The largest improvement of precision (+26%) represents the
maximum benefit provided by TYRION in our study and it
was reached on SMOS when the recall is 50%.

Such an improvement mirrors a considerable reduction of
retrieved false positives going from a modest 8% (on eTour
at 20% recall) up to 209% (on SMOS at 50% recall). Such
a result indicates a notable improvement for the end user.
For example, the end user of a traceability recovery tool
built around the baseline approach should discard 1,384 false
positives on SMOS to retrieve 522 correct links (that is, 50%
of recall). On the other hand, by using TYRION, the number
of false positives to discard in order to reach 50% recall falls
to 447 (-209%), saving a lot of effort to the end user.

Overall, we can observe that TYRION always provides
better performances than the baseline approach, except at
recall 100%, where the two techniques are almost equivalent.
This result confirms that when the goal is to recover all correct
links there is an upper bound to the performance improvements
that is very difficult to overcome [36], [37].

These findings are also supported by our statistical analysis.
Table III reports results of the Wilcoxon test (p-value) together
with the descriptive statistics of the false positive differences
and Cliff’s d effect size. The Wilcoxon test indicates that the
number of false positives retrieved by TYRION is significantly
lower than the number of false positives retrieved by the
baseline method. On average, by considering all possible levels
of recall (i.e., the recall is computed each time a correct
link is retrieved), TYRION retrieves 194 and 629 fewer false
positives on eTour and on SMOS, respectively, when compared
to the baseline approach.

Despite this result, the d effect size is small on both systems.
This is likely due to the very high number of recall levels
considered (i.e., one for each correct link, leading to 1,044
levels on SMOS, and 366 levels on eTour). At many recall
levels, especially when the recall is particularly low (<10%)
or particularly high (> 90%), the performance of TYRION
is comparable to that of the baseline method. Indeed, by
only considering the levels of recall where TYRION shows
substantial improvements (i.e., between 20% and 80% - see
Figure 2), the effect size becomes medium on eTour (0.33)
and large on SMOS (0.59).

Overall, the results indicate a practical evidence of the
improvement obtained by considering code ownership when
retrieving traceability links. Such an improvement is particu-
larly evident when the recall is between 20% and 80%.
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Fig. 2. Precision/Recall curves achieved on the eTour (a) and the SMOS (b) repository.

TABLE II
PERCENTAGE OF PRECISION IMPROVEMENT AND REDUCTION OF NUMBER OF FALSE POSITIVES AT DIFFERENT LEVEL OF RECALL.

Data set Rec(20%) Rec(40%) Rec(60%) Rec(80%) Rec(100%)
Prec FP Prec FP Prec FP Prec FP Prec FP

eTour +2% -8% +17% -51% +11% -46% +3% -26% 0% 0%
SMOS +7% -34% +22% -151% +23% -184% +5% -31% 0% -1%
Overall +5% -21% +20% -101% +17% -135% +4% -29% 0% 0%

B. Qualitative Analysis

In addition to the quantitative analysis, we also performed a
qualitative analysis of the results in order to better understand
where did TYRION’s benefits came from. Specifically, we
compared the ranked lists of eTour and SMOS retrieved by
using the baseline and TYRION.

Figure 3(a) shows—through a relation diagram—the posi-
tive effect of TYRION on the eTour ranked list of suggested
links, while Figure 3(b) reports the same information for
the SMOS system. The relation diagrams show the precision
which each correct link is recovered with. It can be noticed that
the higher the precision, the higher the position in the ranked
list of the correct link. Thus, the relation diagram visually
indicates the effect of TYRION on the list of candidate links.

As we can see, TYRION tends to increase the rank of
correct links facilitating their identification. Also, in the middle
part of the ranked lists (for both eTour - Figure 3(a) and SMOS
- Figure 3(b)) it is possible to observe a very stable trend in
the increase of the correct links ranks, while in the bottom part
of the ranked lists, even if some improvements are visible, not
all correct links are pushed up.

Some interesting correct links for which TYRION provides
a strong rank improvement in the eTour system are those
related to the advertisement management subsystem. This
subsystem provides features to allow the restaurants registered
to the system to insert advertisements. Such advertisements

are shown to the tourists when they are near by them. This
subsystem has been mainly implemented by the developer
Fabio P. As a result, all use cases describing the features of this
subsystem exhibit their maximum similarity with the context
of this developer. By using this information, TYRION is able
to retrieve in the top part of the ranked list several correct
links related the advertisement management, by improving
their position in the ranked list as compared to the baseline
approach. This is particularly evident in Figure 3(a) from the
analysis of the three links pushed up from a precision of 80%,
67%, and 50%, respectively, to a precision of 100%. Those
three correct links relate the use cases Insert new banner,
Update existing banner, and Delete existing banner to the
class AdvertisementManagement, and they are retrieved
by TYRION in position one, two, and three of the ranked list,
respectively.

We also noticed several improvements in the ranking of
correct links having interfaces as target artifact. For example,
the rank of the link between the use case Update existing
banner and the interface IAdvertisementManagement
improved by 2,259 positions, the one between Update existing
tourist and IDBtourist improved by 997, between Insert
new tourist and IDBtourist by 984, between Insert new
Restaurant and IRestaurantManagement by 856, and so
on. This result is likely due to the fact that interfaces are
usually not verbose and thus the standard IR-method returns
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Fig. 3. Effect of TYRION on the ranking of correct links in the list of candidate links for eTour (a) and SMOS (b).

a very low similarity value for them even for the use cases
they are related to. On the other side, TYRION exploits the
knowledge about the authors of those interfaces to increase
the similarity between them and the use cases more related to
the authors’ contexts.

Concerning the SMOS dataset (see Figure 3(b)), we also
observed several improvements in the ranking of correct
links when using TYRION. Interesting are the cases involv-
ing the set of classes implementing features related to the
management of users. All the links related to those classes
showed very strong improvements in their ranking. For ex-
ample, the classes related to the use case Delete user are
User, UserListItem, ServletShowUserForm, and
ServletDeleteUser. All these classes are implemented
by the same developer, i.e., Vincenzo N. He is also the
one having the most similar context to the use case Delete
user. Using such information, TYRION is able to increase
the ranking of ServletShowUserForm, User, and UserListItem
by 4,704 positions, and the ranking of ServletDeleteUser by
4,690 positions. It is worth noting that such an improvement
probably makes the recovery of such links feasible for the
software engineer, otherwise it is likely that these links are at
the bottom part of the ranked list and are excluded from the
analysis by the software engineer [38].

C. Summary of the Results

The quantitative and qualitative analysis of the results
highlights the positive influence of considering code ownership
when retrieving traceability links between high-level documen-
tation and source code. In particular, TYRION (as instantiated
in our study) exhibits much better performance than a standard
Lucene-based approach, allowing improvements of precision

up to 26% with a reduction of false positive links to analyze
up to 209%. While in the top-part and in the very bottom part
of the ranked list the accuracy of TYRION is comparable with
the Lucene-based approach, TYRION produces significant im-
provements in terms of precision for recall levels between 20%
and 80%. Specifically, TYRION proves to be very effective in
increasing the rank of correct links involving artifacts that are
not verbose, e.g., interfaces.

The results allow us to answer positively our research ques-
tion. In particular, code ownership information represents a
useful source of information and it can be used to complement
textual information in order to improve IR-based traceability
recovery methods. Specifically, in the context of our study,
TYRION provides more accurate list of candidate links than a
standard IR-based traceability recovery technique.

VI. THREATS TO VALIDITY

This section discusses the threats that might affect the
validity of our results. A relevant external threat is related to
the repositories used in the empirical study. They are software
systems implemented by final year Master’s students at the
University of Salerno (Italy), thus they are hardly comparable
to real industrial projects. However, they are comparable to
repositories used by other researchers [2], [39], [40] and one
of them, i.e., eTour, has been used as benchmark repositories
in the 2011 edition of the traceability recovery challenge or-
ganized at TEFSE2. Nevertheless, we are planning to replicate
the experiment using other artifact repositories in order to
corroborate our findings.

Concerning the internal validity, several factors may affect
our results. First, choosing the right values for the similarity

2http://www.cs.wm.edu/semeru/tefse2011/Challenge.htm
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bonus is a critical issue. We proposed to use an adaptive
bonus that is proportional to the size of the ranked list.
We are aware that other heuristics might be used to define
the bonus. However, we decided to use the adaptive bonus
since it frees the software engineer from tuning parameters
required by other heuristics (e.g., fixed bonus). Future work
will be devoted to define different strategies and compare them
through a rigorous empirical analysis.

The approach proposed in this paper (TYRION) exploits
code ownership information. In our experiment we derived
such information using comments in the source code. Specif-
ically, we identified the Javadoc tag @author in order to
identify who is the author of the class. The identification
of code ownership could be based also on other sources of
information, such as, commits in the version control system
[29]. Unfortunately, our object systems do not have a version
control repository, thus the only way to derive code ownership
is the one used in our experimentation. Future work will be
devoted to replicate the experiment on other systems having
version control information. This will also allow us to define
other heuristics to identify code ownership and analyze how
such heuristics affect the accuracy of TYRION.

Concerning the threats to the construct validity, we adopted
two widely used metrics for assessing IR techniques, namely
recall and precision. Moreover, the number of false positives
retrieved by a traceability recovery tool for each correct link
retrieved reflects well its retrieval accuracy.

Finally, as for the conclusion validity attention was paid to
not violate assumptions made by statistical tests. Whenever
conditions necessary to use parametric statistics did not hold,
we used non-parametric tests, in particular the Wilcoxon test
for paired analysis. In addition, we used the Wilcoxon test
to compare the cumulative number of false positives for
each correct links. Alternatively, we could have evaluated the
cumulative number of correct links and false positives for
each retrieved link. This allows to compare the precision of
two methods for the same level of recall, thus using a single
dependent variable for the statistical analysis. However, this
type of analysis would have required the use of two different
dependent variables, thus making the statistical analysis more
complex. Moreover, the analysis of the precision/recall curves
did not give contrasting results.

VII. CONCLUSION AND FUTURE WORK

Maintaining a list of up-to-date traceability links inevitably
becomes an overwhelming, error-prone task. Semi-automated
tools for traceability recovery offer an opportunity to reduce
this manual effort and increase productivity. Promising results
have been achieved using IR methods to identify candidate
links between software artifacts on the basis of their textual
similarity. However, IR-based techniques are able to correctly
identify relationships between software artifacts when devel-
opers consistently use terms in those artifacts. Unfortunately,
in practice, there is often a mismatch between the terms used
in artifacts at various abstraction levels, or in artifacts devel-
oped by different people, known as the vocabulary mismatch

problem. Also, some artifacts are by nature poor verbose. This
inhibits IR techniques to discriminate between relevant and
irrelevant artifacts, in such cases.

Several approaches have been proposed to mitigate such
issues. A common solution is represented by the integration
of other source of information (such as dependencies between
source code components) with textual information aiming at
improving the accuracy of IR-based methods.

Following the same direction, in this paper we have pro-
posed to leverage code ownership information for improving
the recovery of traceability links between documentation and
source code. The proposed approach, TYRION, extracts the
author of each source code element and for each author
identifies the topic on what she worked on. Thus, for a given
query from the external documentation TYRION computes
the similarity between it and the topic of each author. When
retrieving classes that relate to a specific artifact, TYRION
uses the author-to-query similarity to increase the textual
similarity between the query and all the classes developed by
the authors of the classes.

TYRION has been instantiated for the recovery of traceabil-
ity links between use cases and Java classes of two software
systems. In the context of our study, TYRION provides more
accurate list of candidate links than a standard IR-based trace-
ability recovery technique. It proves to be especially effective
for retrieving code artifacts that are naturally not verbose,
such as, interfaces. These results indicate that code ownership
information represents a useful source of information and it
can be used to complement textual information aiming at
improving IR-based traceability recovery methods.

Future work will be devoted to further experiment and
assess the proposed traceability recovery method. Replication
in different contexts and with different objects is the only way
to corroborate our findings. Moreover, there are a number of
directions to improve the accuracy of the proposed method.
One direction aims at considering a more sophisticated ap-
proach to extract code ownership (for instance, by mining
version control systems). We also plan to explicitly consider
the case where more than one developer contributed to the
implementation of a source code component. To this aim,
the analysis of the developer communication network could
provide important insights in identifying latent relationships
between artifacts.

A second direction is related to the identification of author
context. We plan to use more sophisticated analysis, such as
LDA, in order to derive a set of “topics” (instead of a single
document) related to the developer and improve the identi-
fication of the contributors to the implementation of specific
functionalities. Finally, we plan to investigate other approaches
for combining code ownership with textual information.
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an identifier splitting approach using speech recognition techniques,”
Journal of Software Maintenance and Evolution: Research and Practice,
p. in press, 2011.

[33] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source
code vocabulary,” in Proceedings of the 27th IEEE International Con-
ference on Software Maintenance. Williamsburg, VA, USA: IEEE CS
Press, 2011, pp. 113 –122.

[34] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley, 1998.
[35] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical

approach, 2nd ed. Lawrence Earlbaum Associates, 2005.
[36] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and

user feedbacks: a silver bullet for traceability recovery,” in Proceedings
of 22nd IEEE International Conference on Software Maintenance, 2006,
pp. 299–309.

[37] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 4, p. 13, 2007.

[38] A. De Lucia, R. Oliveto, and G. Tortora, “Assessing IR-based traceability
recovery tools through controlled experiments,” Empirical Software
Engineering, vol. 14, no. 1, pp. 57–93, 2009.

[39] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods.” IEEE
Transactions on Software Engineering, vol. 32, no. 1, pp. 4–19, 2006.

[40] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of 25th
International Conference on Software Engineering, 2003, pp. 125–135.

132


