
Automatic Generation of Release Notes
Laura Moreno1, Gabriele Bavota2, Massimiliano Di Penta2,

Rocco Oliveto3, Andrian Marcus1, Gerardo Canfora2

1Wayne State University, Detroit, MI, USA
2University of Sannio, Benevento, Italy
3University of Molise, Pesche (IS), Italy

lmorenoc@wayne.edu, gbavota@unisannio.it, dipenta@unisannio.it,
rocco.oliveto@unimol.it, amarcus@wayne.edu, canfora@unisannio.it

ABSTRACT
This paper introduces ARENA (Automatic RElease Notes
generAtor), an approach for the automatic generation of
release notes. ARENA extracts changes from the source
code, summarizes them, and integrates them with informa-
tion from versioning systems and issue trackers. It was de-
signed based on the manual analysis of 1,000 existing release
notes. To evaluate the quality of the ARENA release notes,
we performed three empirical studies involving a total of
53 participants (45 professional developers and 8 students).
The results indicate that the ARENA release notes are very
good approximations of those produced by the developers
and often include important information that is missing in
the manually produced release notes.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation, Enhancement, Restruc-
turing, Reverse Engineering, and Reengineering

General Terms
Documentation

Keywords
Release notes, Software documentation, Software evolution

1. INTRODUCTION
When a new release of a software project is issued, de-

velopment teams produce a release note, usually included in
the release package, or uploaded on the project’s website. A
release note summarizes the main changes that occurred in
the software since the previous release, such as new features,
bug fixes, changes to licenses under which the project is re-
leased, and, especially when the software is a library used
by others, relevant changes at code level.

Producing release notes by hand can be an effort-prone
and daunting task. According to a survey that we conducted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

among open-source and professional developers (see Section
4.2), creating a release note is a difficult and effort-prone
activity that can take up to eight hours. Some issue track-
ers can generate simplified release notes (e.g., the Atlassian
OnDemand release note generator1), but such notes merely
list closed issues that developers have manually associated
to a release.

This paper proposes ARENA (Automatic RElease Notes
generAtor), an approach for the automatic generation of re-
lease notes. ARENA identifies changes occurred in the com-
mits performed between two releases of a software project,
such as structural changes to the code, upgrades of external
libraries used by the project, and changes in the licenses.
Then, ARENA summarizes the code changes through an
approach derived from code summarization [1, 2]. These
changes are linked to information that ARENA extracts
from commit notes and issue trackers, which is used to de-
scribe fixed bugs, new features, and open bugs related to the
previous release. Finally, the release note is organized into
categories and presented as a hierarchical HTML document,
where details on each item can be expanded or collapsed, as
needed. It is important to point out that (i) the approach
has been designed after manually analyzing 1,000 project re-
lease notes to identify what elements they typically contain;
and (ii) ARENA produces detailed release notes, mainly in-
tended to be used by developers and integrators.

From an engineering standpoint, ARENA leverages ex-
isting approaches for summarizing code and for linking code
changes to issues; yet, it is novel and unique for two reasons:
(i) it generates summaries and descriptions of code changes
at different levels of granularity than what was done in the
past; and (ii) it combines code analysis, summarization, and
mining approaches together to address the problem of re-
lease note generation, for the first time.

We performed three different empirical studies to evaluate
ARENA, having different objectives: (i) evaluating the com-
pleteness of ARENA release notes with respect to manually
created ones; (ii) collecting from developers (internal and
external to the projects from which release notes were gen-
erated) opinions about the importance of the additional in-
formation provided by ARENA release notes, which is miss-
ing in the existing ones; and (iii) doing an “in-field” study
with the project leader and developers of an existing soft-
ware system, to compare their release notes with the ones
generated by ARENA.

In summary, this paper makes the following contributions:

1. The ARENA approach to automatically generate re-
1http://tinyurl.com/atlassianRN

1

Table 1: Contents of the 1,000 release notes (CC =
Code Components).

Content Type #Rel. Notes %
Fixed Bugs 898 90%
New Features 455 46%
New CC 428 43%
Modified CC 401 40%
Modified Features 264 26%
Refactoring Operations 209 21%
Changes to Docum. 204 20%
Upgraded Library Dep. 158 16%
Deprecated CC 100 10%
Deleted CC 91 9%
Changes to Config. Files 84 8%
Changes to CC Visibility 70 7%
Changes to Test Suites 73 7%
Known Issues 64 6%
Replaced CC 48 5%
Architectural Changes 30 3%
Changes to Licenses 18 2%

lease notes.

2. Results of three empirical evaluations aimed at assess-
ing the quality of the generated release notes.

3. Results of a survey analyzing the content of 1,000 re-
lease notes from 58 industrial and open source projects.

4. Results of a survey with 22 developers on the difficulty
of creating release notes.

Replication package. A replication package is available
online2. It includes: (i) complete results of the survey; (ii)
code summarization templates used by ARENA; (iii) all the
HTML generated release notes; and (iv) material and work-
ing data sets of the three evaluation studies.

Paper structure. Section 2 reports results of our initial
survey to identify requirements for generating release notes
and Section 3 introduces ARENA. Section 4 presents the
three evaluation studies and their results, while threats to
their validity are discussed in Section 5. Section 6 explains
how this work relates to other research. Finally, Section 7
concludes the paper and outlines directions for future work.

2. WHAT DO RELEASE NOTES CONTAIN?
To design ARENA, we performed an exploratory study

aimed at understanding the structure and content of exist-
ing release notes. We manually inspected 1,000 release notes
from 58 software projects to analyze and classify their con-
tent. The analyzed notes belong to 608 releases of 41 open-
source projects from the Apache ecosystem (e.g., Ant, log4j,
etc.), 382 releases of 14 open-source projects developed by
other communities (e.g., jEdit, Selenium, Firefox, etc.), and
ten releases of three industrial projects (i.e., iOS, Dropbox,
and Jama Contour). Different communities produce release
notes according to their own guidelines, as industry-wide
common standards do not exist.

Release notes are usually presented as a list of items, each
one describing some type of change. Table 1 reports the 17
types of changes we identified as usually included in release
notes, the number of release notes containing such infor-
mation, and the corresponding percentage. Note that Code
Components (denoted by CC in Table 1) may refer to classes,
methods, or instance variables.

Bug fixes stand out as the most frequent item included
in the release notes (in 898 release notes—90% of our sam-
ple). Typically, the information reported is a simple bullet

2http://tinyurl.com/qalutua

list containing, for each fixed bug, its ID and a very short
summary (often the bug’s title as stored in the bug tracking
system). For example, in the release note of Apache Lucene
4.0.0, the LUCENE-4310 bug fix is reported as follows:

LUCENE-4310: MappingCharFilter was failing to match
input strings containing non-BMP Unicode characters.

Other frequently reported changes in release notes are the
new features (46%) and new code components (43%). Often
these two types of changes are reported together, explaining
what new code components were added to implement the
new features.

Modified code components (i.e., classes, methods, fields,
parameters) are also frequently reported (40%). Note that
we include here all cases where the release notes report that a
code element has been changed, without specifying how. We
do not include here deprecated code components or changes
to code components’ visibility that are classified separately
(see Table 1).

Explanations of modified features are quite frequent in
release notes (26%) and are generally accompanied by the
code components that were added/modified/deleted to im-
plement the feature change. An example from the release
note of the Google Web Toolkit 2.3.0 (M1) is:

Updated GPE’s UIBinder editor (i.e., class UIBinder of
the Google Plug-in) to provide support for attribute auto-
completion based on getter/setters in the owner type.

Refactoring operations are also included in release notes
(21%), generally as simple statements specifying the im-
pacted code components, e.g., “Refactored the WebDriver-
Js”—from Selenium 2.20.0.

Changes in documentation are present in 20% of the ana-
lyzed release notes, although, more often than not, they are
rather poorly described with general sentences like “more
complete documentation has been added” or “documentation
improvements”. We also found: 158 release notes (16%) re-
porting upgrades in the libraries used by the project (e.g.,
“The Deb Ant Task now works with Ant 1.7”—from Jedit
4.3pre11); 100 (10%), reporting deprecated code compo-
nents (e.g.,“The requestAccessToAccountsWithType: method
of ACAccountStore is now deprecated”—from iOS 6.0); and
91 (9%), including deleted code components (e.g., “Removed
GWTShell, an obsolete way of starting dev mode”—from
Google Web Toolkit 2.5.1 (RC1)).

Other changes performed in the new release are less com-
mon in the analyzed release notes (see Table 1). We must
note that rarely summarized types of changes are not neces-
sarily less important than the frequently reported ones. It
may simply be the case that some types of changes occur less
frequently than others, hence they are reported less. For ex-
ample, changes to licenses are generally rare and thus, only
18 release notes (2%) contain this information. We do not
equate frequency with importance. Future work will answer
the importance question separately.

Based on the results of this survey and on our assessment
of what it can be automatically extracted from available
sources of information—i.e., release archives, versioning sys-
tems, and issue trackers—we have formulated requirements
for what ARENA should include in release notes: (i) a de-
scription of fixed bugs, new features, and improvement of
existing features, complemented with a description of what
was changed in the code; (ii) a summary of other source code

2

Change
Extractor

Issue
Tracker

Versioning
System

Select bundles for
releases rk-1 and rk

bundle rk-1 bundle rk

Code Change
Summarizer

Commits-
Issues Linker

Issue
Extractor

Information
Aggregator

HTML

Release
Note

Legend
Information Flow
Dependency

fine-grained
structural
changes linked
to commits

changes to
libraries

changes to
documentation

changes to
licenses

summarized
structural
changes linked
to commits

summarized
structural
changes linked
to issues

Figure 1: Overview of the ARENA approach.

changes, including deprecated methods/classes and refactor-
ing operations; (iii) changes to the libraries used by the sys-
tem; (iv) changes to licenses and documentation; and (v)
open issues. Note that in the current version of ARENA we
did not consider: (i) changes to configuration and build files,
because there is a plethora of different possible configuration
files; and (ii) changes to the high-level system architecture,
because existing architecture recovery approaches (e.g., [3,
4, 5]) might require manual effort to produce usable results.

3. ARENA OVERVIEW
In a nutshell, ARENA works as depicted in Figure 1. The

process to generate release notes for a release rk is composed
of four main steps. First, the Change Extractor is used to
capture changes performed between releases rk−1 and rk. In
the second step, the Code Change Summarizer describes the
fine-grained changes captured by the Change Extractor, with
the goal of obtaining a higher-level view of what changed in
the code. In the third step, the Commit-Issue Linker uses
the Issue Extractor to mine information (e.g., fixed bugs,
new features, improvements, etc.) from the issue tracker of
the project to which rk belongs. Thus, each fixed bug, im-
plemented new feature, and improvement is linked to the
code changes performed between releases rk−1 and rk. The
summarized structural code changes represent what changed
in the new release, while the information extracted from the
issue tracker explains why the changes were performed. Fi-
nally, the extracted information is provided as input to the
Information Aggregator, in charge of organizing it as a hi-
erarchy and creating an HTML version of the release note
for rk, where each item can be expanded/collapsed to re-
veal/hide its details. An example of a release note generated
by ARENA can be found at http://tinyurl.com/oelwef4.

3.1 Code Changes Extraction
ARENA extracts code changes, as well as changes to other

entities, from two different sources: the versioning system
and the source archives of the releases to be compared.

Identification of the time interval to be analyzed.
ARENA aims at identifying the subset of commits that per-
tains to the release for which the release note needs to be
generated, say release rk. To identify changes between re-
lease rk−1 and rk, we consider all commits occurred—in the
main trunk of the versioning system—starting from the rk−1

release date tk−1, until the rk release date tk. The dates can
be approximate, as developers could start working on release

rk+1 even before tk, i.e., changes committed before tk could
belong to release rk+1 and not to release rk. In a real usage
scenario, a developer in charge of creating a release note us-
ing ARENA could simply provide the best time interval to
analyze or, even better, tag the commits in the versioning
system with the release number.

Analysis of Code Changes. Once the commits of in-
terest are identified, ARENA’s Change Extractor analyzes
them using a code analyzer developed in the context of the
Markos EU project3. The code analyzer parses the source
code using the srcML toolkit [6] and extracts a set of facts
concerning the files that have been added, removed, and
changed in each commit. Information about the commits
performed between release rk−1 and rk is extracted from
the versioning system (e.g., git, svn). Given the set of files
in a commit, the following kinds of changes are identified:

• Files added, removed, and moved between packages;

• Classed added, removed, renamed, or moved between
files. To detect moving and renaming, classes (and
methods) are encoded by a metric-based fingerprinting
[7, 8], which is used to trace the entities;

• Methods added, removed, renamed, or moved;

• Methods changed, i.e., changes in the signature, visi-
bility, source code, or set of thrown exceptions;

• Instance variables added, removed, and visibility changes;

• Deprecated classes and methods.

Generation of Textual Summaries from Code Ch-
anges. The fine-grained structural changes are provided to
the Code Change Summarizer to obtain a higher-level view
of what changed in the code (see Figure 1). To generate
this view, ARENA’s Code Change Summarizer follows three
steps: (i) it hierarchically organizes the code changes; (ii) it
selects the changes to be described; and (iii) it generates a
set of natural-language sentences for the selected changes.

In the first step, a hierarchy of changed artifacts is built by
considering the kind of artifact (i.e., files, classes, methods,
or instance variables) affected by each change. In Object-
Oriented (OO) software systems, files contain classes, which
in turn consist of methods and instance variables. There-
fore, changes are grouped based on these relationships, e.g.,
changed methods and instance variables that belong to the
same class are grouped under that class.

In the second step, ARENA analyzes the hierarchy in a
top-down fashion to prioritize and select the code changes
to be included in the summaries, in the following way:

1. If a file is associated to class-level changes, high pri-
ority is given to the class changes and low priority to
the file changes, since in OO programming languages
classes are the main decomposition unit, rather than
source files.

2. If the change associated to a class is its addition or
deletion, high priority is given to it and low prior-
ity to any other change in the class (e.g., the addi-
tion/deletion of its methods). Otherwise, changes on
the visibility or deprecation of the class become of high
priority. If the change associated to a class is its modi-
fication, high priority is given to the associated changes
at instance variable and method level.

3http://www.markosproject.eu

3

New class SearcherLifetimeManager implementing Closeable.
T h i s b o u n d a r y c l a s s c o m m u n i c a t e s m a i n l y w i t h
AlreadyClosedException, IndexSearcher, and IOException, and
consists mostly of mutator methods. It allows getting
record, handling release, acquiring searcher lifetime
manager, and closing searcher lifetime manager. This class
declares the helper classes SearcherTracker and PruneByAge.

Figure 2: Summary for the SearcherLifetimeMan-
ager class from Lucene 3.5.

3. If the change associated to an instance variable or
method is its addition, deletion, renaming, or depre-
cation, the change is given a high priority. Changes
to parameters, return types, or exceptions are given a
low priority.

Finally, the Code Change Summarizer generates a natural
language description of the selected changes, presented as a
list of paragraphs. For this, ARENA defines a set of tem-
plates according to the kind of artifact and kind of change
to be described. In this way, one sentence is generated for
each change. For example, a deleted file is reported as File
<file name> has been removed.

As stated above, the focus of OO systems is on classes.
Thus for added classes, ARENA provides more detailed sen-
tences than for other changes, by adapting JSummarizer [9],
a tool that automatically generates natural-language sum-
maries of classes. Each summary consists of four parts: a
general description based on the superclass and interfaces of
the class; a description of the role of the class within the sys-
tem; a description of the class behavior based on the most
relevant methods; and a list of the inner classes, if they exist.
We adapted JSummarizer, by modifying some of the original
templates and by improving the filtering process when se-
lecting the information to be included in the class summary.
Figure 2 shows part of an automatically generated summary
for the SearcherLifetimeManager class from Lucene 3.5.

Deleted classes are reported in a similar way to deleted
files. Changes regarding the visibility of a class are described
by providing the added or removed specifier, e.g., Class
<class name> is now <added specifier>. The description
for modified classes consists of sentences reporting added,
deleted or modified methods and instance variables. For ex-
ample, a change in a method’s name is reported as: Method
<old method name> was renamed as <new method name>.

The generated sentences are concatenated according to
the priority previously assigned to the changes. To avoid
text redundancies, ARENA groups similar changes in single
sentences, e.g., Methods <method name1>, . . . , and
<method namen> were removed from <class name>, rather
than list them one at a time.

Analysis of licensing changes. To identify license ch-
anges, ARENA’s Change Extractor analyzes the content
of the source distribution of rk−1 and rk, extracting all
source files (i.e.,.java) and all text files (i.e.,.txt). Then,
it uses the Ninka license classifier [10] to identify and clas-
sify licenses contained in such files. Ninka uses a pattern-
matching based approach to identify statements character-
izing the various licenses and, given any text file (including
source code files) as input, it outputs the license name (e.g.,
GPL) and its version (e.g., 2.0). Its precision is around 95%.

Identification of changes in documentation. This
analysis is done on the release archives of rk−1 and rk. Al-
though release archives can contain any kind of documen-

tation, we only focus on changes to documentation describ-
ing source code entities. ARENA identifies documentation
changes using the approach described below:

1. Identify text files, i.e.,.pdf, .txt, .rdf, .doc, .docx,
and .html, and extract the textual content from them
using the Apache Tika4 library.

2. If a text file (say doci) has been added in rk, then ver-
ify whether it contains references to a code file names,
class names, and method names. We use a pattern
matching approach, similar to the one proposed by
Bacchelli et al. [11]. If such entities are found in a
file, then check whether these files, classes, or methods
have been added, removed, or changed in the source
code, so that ARENA can generate an explanation of
why the documentation was added, e.g., if the added
text file contains a reference to class Cj added in rk,
ARENA describes the change as“The file doci has been
added to the documentation to reflect the addition of
class Cj”.

3. If a text file (say doci) has been removed in rk, then
check if it contains references to deleted methods/clas-
ses/code files. If that is the case, ARENA generates
an explanation “The file doci has been deleted from the
documentation due to the removal of <involved code
components> from the system”.

4. If a text file has been modified between rk−1 and rk,
we use a similar approach as above, however we search
for references to code entities only in the portions of
the text file that were changed.

Identification of changes in the used libraries. ARE-
NA’s Change Extractor analyzes whether: (i) rk uses new
libraries—specifically jars—compared to rk−1; (ii) libraries
are no longer required; and (iii) libraries have been upgraded
to new releases. The analysis is performed in two steps:

1. Parsing the files describing the inter-project depen-
dencies. In Java projects, these are usually property
files (libraries.properties or deps.properties) or
Maven dependency files (pom.xml). The information
from such files allows ARENA to detect the libraries
used in both releases rk and rk−1. For each library we
detect its name and used versions, e.g., ant, v. 1.7.1.

2. Identifying the set of jars contained in the two re-
lease archives and—by means of regular expression—
extracting their name and version from the jar names,
e.g.,ant_1.7.1.jar is mapped to library ant, v. 1.7.1.

With the list of libraries used in both releases, ARENA
verifies if: (i) new libraries have been added in rk; (ii) li-
braries are no longer used in rk; or (iii) new versions of
libraries previously used in rk−1 are used in rk.

Identification of refactoring operations. ARENA’s
Change Extractor also identifies refactorings performed be-
tween the releases rk−1 and rk, by using two complementary
sources of information:

1. Refactorings documented in the commit notes. Al-
though not all refactorings are documented, we claim
that the ones documented by developers are important

4http://tika.apache.org

4

and deserve to be included in the release notes. Such
refactorings are identified by matching regular expres-
sions in commit notes—e.g.,refact, renam—as done in
previous work [12, 13].

2. Class/method renaming and moving (those not already
identified by means of their commits using the above
heuristic). Such refactoring changes are identified by
means of fingerprinting analysis.

In principle, ARENA could describe other kinds of refac-
torings, which could be identified using tools like RefFinder
[14]. For the time being, we prefer to keep a light-weight ap-
proach, to avoid generating excessively verbose release notes.

3.2 Issues Extraction
We use the versioning system to extract various kinds of

changes to source code and other system entities, i.e., to
explain what in the system has been changed. In addition,
we rely on the issue tracker to extract change descriptions,
i.e., to explain why the system has been changed. To this
aim, the ARENA Issue Extractor (see Figure 1) extracts the
following type of issues from the issue tracker:

• Issues describing bug fixes: Issues with Type=“Bug”,
Status=“Resolved”or“Closed”, and Resolution=“Fixed”,
with a resolution date included in the [tk−1, tk] period.

• Issues describing new features: Same as above, but
considering issues with Type= “New Feature”.

• Issues describing improvements: Same as for bug fixes,
but considering issues with Type= “Improvement”.

• Open issues. Any issue with Status=“Open” and open
date in the period [tk−1, tk].

Note that open issues are collected to present in the re-
lease note rk’s Known Issues. Based on the fields described
above, ARENA has been implemented for the Jira issue
tracker. However, it can be extended to other issue trackers
(e.g.,Bugzilla), using the appropriate, available fields. Note
that sometimes fields classifying issues as bug fix/new fea-
ture/enhancement are not fully reliable [15, 16].

3.3 Linking Issue Descriptions to Commits
To link issues to commits we use (and complement) two

existing approaches. The first one is the approach by Fischer
et al. [17], based on regular expressions matching the issue
ID in the commit note. The second one is a re-implementation
of the ReLink approach defined by Wu et al. [18], which
considers the following constraints: (i) matching the com-
mitter/authors with issue tracking contributor name/email;
(ii) the time interval between the commit and the last com-
ment posted by the same author/contributor on the issue
tracker must be less than 7 days; and (iii) Vector Space
Model (VSM) [19] cosine similarity between the commit note
and the last comment referred above greater than 0.7. This
threshold has been chosen by manually analyzing the map-
ping produced by the linking approach on two systems (i.e.,
Apache Commons Collections and JBoss-AS).

3.4 Generating the Release Note
ARENA’s Information Aggregator is in charge of building

the release note as an HTML document. The changes are
presented in a hierarchical structure consisting of the cate-
gories from the ARENA requirements defined in Section 2
and items summarizing each change.

Table 2: System releases used in each study.

Study Name Releases KLOC
of commits
before release

Apache Cayenne 3.0.2 248 5,118
Apache Cayenne 3.1B2 232 2,550
Apache Commons Codec 1.7 17 267

Study I Lucene 3.5.0 184 2,869
Jackson-Core 2.1.0 21 170
Jackson-Core 2.1.3 22 31
Janino 2.5.16 26 612
Janino 2.6.0 31 408

Study II
Apache Commons Collections 4.4.0ALPHA1 104 303
Lucene 4.0.0 192 758

Study III SMOS 2.0.0 23 109

4. EMPIRICAL EVALUATION
The goal of our empirical studies is to evaluate ARENA,

with the purpose of analyzing its capability to generate re-
lease notes. The quality focus is the completeness, correct-
ness and importance of the content of the generated release
notes with respect to original ones, and the perceived use-
fulness of the information contained in the ARENA release
notes. The perspective is of researchers, who want to eval-
uate the effectiveness of automatic approaches for the gen-
eration of release notes, and managers and developers, who
could consider using ARENA in their own company.

We aim at answering the following research questions:

RQ1—Completeness: How complete are the generated
release notes, compared with the original ones? In other
words, our first objective is to check whether ARENA is
missing information that is contained in manually-generated
release notes.

RQ2—Importance: How important is the content cap-
tured by the generated release notes, compared with the
original ones? The aim is assessing developers’ percep-
tion of the various kinds of items contained in manually
and automatically-generated release notes. We are inter-
ested in the usefulness of the additional details produced
by ARENA, which are missing in the original notes.

To address our research questions, we performed three
empirical studies having different settings and involving dif-
ferent kinds of participants. Study I aims at assessing the
completeness of the ARENA release notes with respect to
the original ones available on the system Web sites (RQ1).
To ensure a good generalizability of the findings, we con-
ducted this study on eight open source projects. In addi-
tion, since the goal of Study I does not require high expe-
rience and deep knowledge of the application domain (as it
will be clearer later), we involved mainly students. Study II
aims at evaluating the importance of the items present in the
ARENA release notes and missing in the original ones and
vice versa (RQ2). In this case, the task assigned to par-
ticipants is highly demanding. This is the reason why we
conducted the study only on two systems and we involved
experts—including original developers of the projects from
which the release notes were generated—since it was crucial
to have people with experience and knowledge of the sys-
tem. Finally, Study III is an in-field study addressing both
RQ1 and RQ2, where we asked the original developers of a
system, named SMOS, to evaluate a release note generated
by ARENA and to compare it with one produced by the
development team leader.

4.1 Study I—Completeness
The goal of this study is to assess the completeness of

ARENA release notes (RQ1) on several system releases,

5

Table 3: Evaluation provided by the study partici-
pants to the items in the original release notes.

System Release Absent
Less Same More

Details Details Details
Apache Cayenne 3.0.2 15% 5% 0% 80%
Apache Cayenne 3.1B2 16% 0% 0% 84%
Apache Comm. Codec 1.7 13% 5% 5% 77%
Apache Lucene 3.5.0 37% 39% 8% 16%
Jackson-Core 2.1.0 25% 8% 33% 33%
Jackson-Core 2.1.3 0% 0% 50% 50%
Janino 2.5.16 0% 6% 0% 94%
Janino 2.6.0 12% 38% 0% 50%
Average 14% 13% 12% 61%

hence assuring a good external validity, both in terms of
projects diversity and features to be included in the releases.
The context of Study I consists of: objects, i.e., automatically
generated and original release notes from eight releases of
five open-source projects (see Table 2); and subjects eval-
uating the release notes, i.e., one B.Sc., five M.Sc., one
Ph.D. student, one faculty, and two industrial developers.
Before conducting the study, we profiled the participants
using a pre-study questionnaire, aimed at collecting infor-
mation about their programming and industrial experience.
To select releases to analyze, we used the following criterion.
A release rk was selected if: (i) the original rk release note
was available, and (ii) the release bundles for rk and rk−1

were available. Additionally, we made sure that items from
each change type (see Table 1—except for configuration file
and architectural changes) were present in at least one of
the eight release notes.

Design and Planning. We distributed the release notes
to the evaluators, in such a way that each release note was
evaluated by two participants. We provided each participant
with (i) a pre-study questionnaire; (ii) the generated release
note; and (iii) the original release note.

Participants were asked to determine and indicate for each
item in the original release note whether: (i) the item ap-
pears in the generated release note with roughly the same
level of detail; (ii) the item appears in the generated release
note but with less details; (iii) the item appears in the gen-
erated release note and it has more details; or (iv) the item
does not appear in the generated release note. In order to
avoid bias in the evaluation, we did not refer to the release
notes as “original” or “generated”. Instead, we labeled them
as “Release note A” and “Release note B”.

When all the participants completed their evaluation, a
Ph.D. student from the University of Sannio analyzed them
to verify and arbiter some conflicts in the evaluation of the
items present in the original release notes. Out of 144 eval-
uated items, 43 (30%) exhibited some conflict between the
two evaluators. Only five of them (3%) showed strong con-
flict between the evaluators, e.g., “the item appears” vs. “the
item is missing”. The other 38 cases had slight deviations in
the evaluation, e.g., “the item appears with roughly the same
level of detail” vs. “the item appears but with less details”.

Participants’ background. Six out of ten evaluators
have experience in industry, ranging from one to five years
(median 1.5). They reported four to 20 years (median 5.0) of
programming experience, of which two to seven are in Java
(median 4.5). Seven out of the ten evaluators declared that
they routinely check release notes when using a new release.

Results. Table 3 summarizes the answers provided by
the evaluators when asking about the presence of items from
the original release notes in the release notes generated by
ARENA. On average, ARENA correctly captures, at dif-
ferent levels of detail, 86% of the items from the original

release, missing only 14%. In particular, ARENA provides
more details for 61% of the items present in the original re-
lease notes, the same level of details for 12%, and less details
for 13% of the items. The following is an exemplar situation
where an item in the generated release has more details than
in the original release. In the release note of Apache Com-
mons Codec 1.7, the item “CODEC-157 DigestUtils: Add
MD2 APIs” describes the implementation of new APIs. In
the ARENA release note, the same item is reported as:

CODEC-157 DigestUtils: Add MD2 APIs

New methods getMd2Digest(), md2(byte), md2
(InputStream), md2(String), md2Hex(byte), md2Hex
(InputStream), and md2Hex(String) in DigestUtils.

New methods testMd2Hex(), testMd2HexLength(), and
testMd2Length() in DigestUtilsTest.

ARENA reports the addition of new APIs to the Digest-

Utils class and it also explicitly includes: (i) which methods
are part of the new APIs; and (ii) the test methods added
in DigestUtilsTest to test the new APIs.

An outlier case is for Lucene 3.5.0, where ARENA missed
14 (37%) of the items present in the original release note.
Upon a closer inspection, we found that eight of the missed
items are bug reports fixed in a previous release, yet (for an
unknown reason) reported in the release note of Lucene 3.5.0
(e.g., issue LUCENE-3390). If we disregard such issues,
the percentage of missed items in this release drops to 20%,
almost in line with the other release notes.

We analyzed the items that ARENA missed in the other
release notes. We found that all the missed items are due
to a slight deviation between the time interval analyzed by
ARENA and the one comprising the changes considered in
the original release note. As explained in Section 3, we make
an assumption about the time period of analysis, going from
the rk−1 release date tk−1 until the rk release date tk. This
problem would not occur in a real usage scenario.

Summary of Study I (RQ1)—Completeness. The
ARENA release notes capture most of the items from the
original notes (86% on average)—many missed items can be
included by simply adjusting the considered time interval.

4.2 Study II—Importance
The goal of Study II is to evaluate the importance of the

captured and missed items in the ARENA release notes from
the perspective of external users/integrators as well as from
the perspective of internal developers. The context of this
study consists of: objects, i.e., automatically generated and
original release notes from one release of two open-source
projects (see Table 2); and subjects evaluating the release
notes, i.e., 38 professional and open-source developers, in-
cluding three developers of each object project. One release
of Apache Lucene and one release of Apache Commons Col-
lections were selected for the study. The conditions to select
the release notes were the same as of Study I.

Design and Planning. We performed Study II by using
an online survey. We emailed the survey to several open-
source developers registered in the Apache repositories and
professional developers from around the world. The ques-
tionnaire consisted of two parts on: (i) the participants’
background and their experience in using and creating re-
lease notes; and (ii) the evaluation of the ARENA release
notes and the original release notes for Apache Lucene 4.0.0
and for Apache Commons Collections 4.4.0ALPHA1.

The evaluation of each release note was divided in two

6

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

H
ow

 m
uc

h
tim

e
do

es
 it

 ta
ke

 to
 c

re
at

e
a

re
le

as
e

no
te

?

Less than
one hour

Between one
and four hours

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

H
ow

 d
iff

ic
ul

t i
s

it
to

 c
re

at
e

a
re

le
as

e
no

te
?

How much time does
it take to create a release note?

How difficult is it to create
a release note?

Between four
and eight hours

More than
eight hours

Very
easy

Easy

Difficult

Very
difficult

Do you use any supporting tool when creating release notes?

YES 6/22 (27%)
4: Git log -- 2: Issue Tracker NO 16/22 (73%)

Figure 3: Difficulty in creating release notes.

stages. In the first one, participants were asked to indi-
cate for several kinds of items (e.g., Major Changes) of the
original release note that were missing in the generated re-
lease note whether each one was: (i) not at all important;
(ii) unimportant; (iii) important; or (iv) very important. A
similar process was followed in the second stage, but this
time for assessing the importance of some kinds of items
of the release note generated by ARENA that were miss-
ing in the original release note. In both stages, we pointed
out to developers that some items present in a release note
and (apparently) missing in the other one might simply be
represented in different ways. In the case of Lucene 4.0.0,
for example, the items under the Improvements category in
the ARENA release note are listed under the Optimizations
category in the original release note.

Participants’ background. 31 out of 38 evaluators are
professional developers, who reported experience in software
development ranging from two to 30 years (median 8). The
other seven participants are open-source developers, ranging
from seven to 25 years of experience in software development
(median 13). Three of the participants are developers of
Apache Commons Collections, while other three are devel-
opers of Apache Lucene. Also, 26 out of the 38 evaluators
declared that they use release notes frequently (i.e., more
than once a month) or occasionally (i.e., once a month),
mainly to check for bug fixes and new features in a software
system. 16 developers declared that they check in the re-
lease notes of their project’s dependencies for compatibility
issues and changes that might arise from the new releases.

Creating release notes. Only six evaluators (16%) re-
ported never having created release notes. Of the other 32
participants, 22 (58%) reported having created release notes
many times (i.e., more than eight times), eight (21%) re-
ported having done it a few times (i.e., three to eight times),
and two (5%) declared having created a release note once or
twice. Our survey was designed to ask only developers hav-
ing a high experience in creating release notes (i.e., the 22
cited above) details about their experience when creating re-
lease notes. Figure 3 presents the participants’ answers on
the time and difficulty of creating release notes. Specifically,
64% of the evaluators (i.e., 14 of them) considered this task
as difficult or very difficult, while 36% rated it as easy or very
easy (median=difficult). The participants reported a me-
dian of between four and eight hours to create release notes.
One of the participants explained that the time needed to
create a release note depends on the release, claiming that
he worked in the past on “a major release of a software com-
pany product for which the creation of the release note took

three days of work.” Finally, only seven evaluators (31%)
declared using a supporting tool, such as, issue trackers or
version control systems, when creating release notes. Note
that ARENA is the only existing automated tool specially
designed to support the generation of release notes. Fur-
thermore, ARENA is able to shorten the time devoted to
this task, as less than five minutes are needed to generate a
release note for a medium-sized system.

We also asked the 22 participants with high experience in
creating release notes about the kind of content that they
usually include in these documents (see Figure 4). New Fea-
tures and Bug Fixes are, by far, the most common items in
the release notes: most of the participants reported includ-
ing them often (21 and 20 evaluators, respectively). En-
hanced Features are also frequently included in the release
notes (often by 11 participants and sometimes by ten). Both
results confirm the findings of our survey on 1,000 existing
release notes presented in Section 2. Other frequently in-
cluded items are Deleted and Deprecated Code Components,
Changes to Licenses, Library Upgrades, and Known Issues
(median=often), while“sometimes”developers include items
related to Added, Replaced or Modified Code Components;
and Refactoring Operations. On the other hand, evaluators
rarely include changes to Configuration Files, Documenta-
tion, Architecture, and Test Suites in the release notes.

Results. Going to the core of this study, the answers
provided by the 38 developers on the importance of differ-
ent kinds of content from the original and the generated
release notes are summarized in Figures 5 and 6 for Com-
mons Collections and Lucene, respectively. Among the items
present in the original release notes and missed by ARENA,
the ones considered important/very important by developers
are: Major Changes from Commons Collections, summariz-
ing the most important changes in the new release; API
Changes, Backward Compatibility, and Optimizations from
Lucene. The Major Changes section is not present in the
ARENA release notes and our future efforts will be oriented
to implement an automatic prioritization of changes in the
new release, which will allow ARENA to select the most
important ones to define the Major Changes category. On
the other hand, the information present in API Changes,
Backward Compatibility, and Optimizations in the original
release notes is present in the ARENA release notes, but sim-
ply organized differently. For example, the removal of the
SortedVIntList class is reported in the original release notes
in the Backward Compatibility category, while ARENA puts
it under Deleted Code Components. Thus, ARENA is not
missing any important information here. As for the other
items present in the original release notes and not in the
ones generated by ARENA, they are generally classified as
unimportant/not important (see Figures 5 and 6).

Regarding the contents included in the ARENA release
notes and missing or grouped in different categories in the
original release notes, most of them (nine of 11 different
kinds of content) were predominantly assessed as important
or very important (by 28 developers, in average). The Im-
provements category is considered important/very impor-
tant by 34 developers for Commons Collections and 33 for
Lucene, respectively. While the items contained in this cate-
gory are present in the Optimizations section of the Lucene
release note, they are absent in the Commons Collections
one. Important or very important were also considered the
categories covering Known Issues (by 32 developers) and

7

●●● ●●

●

●● ●

Fixed
bugs

New
features

Enhanced
features

New code
comp.

Modified
code comp.

Deprecated
code comp.

Deleted
code comp.

Replaced
code comp.

Changes vis.
 code comp.

Changes to
conf. files

Changes to
test suites

Refactoring
operations

Architectural
changes

Changes to
docum.

Changes to
licenses

Libraries
Upgrades

Known
Issues

1.
0

2.
0

3.
0

4.
0

What kind of content do you include in release notes?

Often

Sometimes

Rarely

Never

Figure 4: What kind of content do you include in release notes? (22 developers)

Figure 5: Importance reported by the evaluators for the content of Commons Collections release notes.

Deletion (29), Addition (28), Deprecation (29), and Visibil-
ity Changes (26) of Code Components. The evaluators (24
for Commons Collections and 19 for Lucene) also considered
important the fine-grained changes (i.e., changes at code
level) provided by ARENA when describing new features,
bug fixes and improvements, and the links to the change
requests (30) listed under such categories. Note that most
of the above categories are absent in the original release
notes. For instance, while in the original Lucene release
note one deleted class was listed under the Backward Com-
patibility section, ARENA highlights 76 classes that have
been deleted in the new release. Surprisingly, Refactoring
Operations were considered as unimportant in both release
notes (by 24 developers for Commons Collections and 25
for Lucene). This might be due to the level of details that
ARENA is currently able to provide in this matter (i.e., the
refactored source code files, without explaining what exactly
was done to them).

Evaluation made by the original developers. As
mentioned before, six (three each) of the original Lucene and
Commons Collections developers took part in our survey. In
the case of the contents explicitly provided by the original
release note of Commons Collections, its three developers
strongly agreed on the importance of the Major Changes
category and weakly agreed on the importance of showing
the author of the change (which was marked as important
by two developers and unimportant by the other one). In
contrast, having different categories describing new classes
and new methods (as opposed to ARENA’s single New Code
Components category) was ranked from very unimportant
to very important, not allowing us to draw any conclusion.
The three developers strongly agreed on the importance of
all the characteristics offered by the release note generated
by ARENA, except for the number of items in each cate-
gory (e.g., indicating the number of the added code compo-
nents near the New Code Components category), which was
considered unimportant by two of the developers and very
important by the other one.

In the case of Lucene, its three developers strongly agreed
on the importance of the API Changes and Backward Com-
patibility categories of the original release note and on the
unimportance of the authors of the changes. For the other
contents of the original release note, there was little agree-
ment. However, once again, the three developers strongly
agreed on the importance of all the contents included in the

ARENA release note, except for the Refactoring Operations
category, which was marked as important by two of the de-
velopers and as unimportant by the other one. Most of the
developers’ responses go in line with the responses of all the
other evaluators presented above.

Qualitative feedback. We also allowed developers to
comment on the ARENA release notes in a free text box at
the end of the survey. Evaluators provided positive feedback
about the release notes generated by ARENA. A represen-
tative one is: “In general, they are very readable. I think
they are aimed at engineers more than at non-engineers.
[...] for something that is consumed as an API, such as
an open source library or framework, I think these kind of
notes are ideal.” Another developer commented “If it’s fully
automated (I’m not sure) ARENA is a great tool.” Note that
some of the contents provided by the generated release notes
were considered unimportant in some cases. One of the rea-
sons behind such assessments was that “Every item needs
a description to be useful. For example, the Added Com-
ponents section needs a description of each component, and
the Modified Components section needs a description of what
is the meaning of the modification.” This happens for the
commits that cannot be linked to any bug fix, improvement,
or new feature request in the issue tracker system. Since
ARENA is meant to support the creation of release notes,
they can be augmented by the users according to their needs.

Summary of Study II (RQ2)—Importance. Most
information included in the ARENA release notes is con-
sidered important or very important by developers. Also,
most information considered as important in the original re-
lease notes is captured by ARENA (although sometimes in
a different fashion), with the exception of the Major changes
category that we plan to include by prioritizing changes.

4.3 Study III—“In-field” Evaluation
The goal of Study III is to allow project experts: (i) to

evaluate the generated release note on its own, including
their perceived usefulness; and (ii) to compare the gener-
ated release note with one produced manually by their team
leader. The context of this study consists of one release of
the SMOS system and five (out of seven) members of the
original development team of this system. SMOS is a soft-
ware developed for schools and supports the communications
between the school and the students’ parents. The first re-
lease of SMOS (i.e., SMOS 1.0) was developed in 2009 by

8

Figure 6: Importance reported by the evaluators for the content of Lucene release notes.

M.Sc. students at the University of Salerno during their in-
dustrial internship. Its code, composed by almost 23 KLOC,
is hosted in a Git repository and has been subject to several
changes over time. It led to the second release (i.e., SMOS
2.0) nearly two years after release 1.0. The developers in-
volved in our study worked on the evolution of SMOS during
these two years and, since then, they have been working for
more than three years in industry.

Design and Planning. To have a baseline for compari-
son, we asked the leader of the original SMOS development
team to generate the release note for version 2.0 of the sys-
tem. During the definition of the release note, the leader had
access to: (i) the source code of the two releases; (ii) the list
of changes (as extracted from the versioning system) per-
formed between the two releases; and (iii) information from
the issue tracker system containing the change requests im-
plemented in the time period between SMOS 1.0 and 2.0.
Finally, we asked him to report how much time he spent on
producing the release note.

We conducted this study in two stages. In the first stage,
the developers (excluding the project leader) evaluated the
release note generated by ARENA based only on their knowl-
edge of the system. As in Study I, we did not refer to this one
as an automatically generated note (but as Release note A).
We asked the developers to judge four statements with the
possible answers on a 4-points Likert scale (strongly agree,
weakly agree, weakly disagree, strongly disagree). We also
asked them to judge the extent to which the generated re-
lease note would be useful for developers in the context of a
maintenance task and what kind of additional information
should be included in the release note. In the second stage,
we asked the SMOS developers to evaluate—using the same
questionnaire—the release note manually produced by the
team leader, calling it Release note B.

Results. The team leader took 82 minutes to manually
summarize the 109 changes that occurred between releases
1.0 and 2.0. This resulted in a release note with 11 items,
each one grouping a subset of related changes. For example,
one of the items in this release note was:

Several changes have been applied in the system to im-
plement the Singleton design pattern in the classes ac-
cessing the SMOS database. Among the most important
changes, all constructors of classes in the storage pack-
age should now not be used in favor of the new methods
getInstance(), returning the single existing instance of
the class. This resulted in several changes to all methods
in the system using classes in storage.

In the meantime, the remaining four developers evaluated
the release note generated by ARENA. The results are re-
ported in Table 4 (see the numbers not in parenthesis).

Developers strongly agreed or weakly agreed on the fact
that the ARENA release note contains all the information
needed to understand the changes performed between the

two SMOS releases. In particular, the only developer an-
swering weakly agree (id 1 in Table 4) explained that “the
release note contains all what is needed. However, it would
be great to have a further level of granularity showing exactly
what changed inside methods”. In other words, this devel-
oper would like to see, on demand, the source code lines
modified in each changed code entity. While this informa-
tion is not present in ARENA’s release note, it would be
rather easy to implement. All other developers answered
with a strongly agree and one of them explained her score
with the following motivation: “I got a clear idea of what
changed in SMOS 2.0. Also, I noticed as I was not aware
about some of the reported changes”.

All developers strongly agreed on the correctness of the in-
formation reported in the release note generated by ARENA
(see Table 4): “after checking in the source code I think all
the reported information is correct.” Also, they strongly dis-
agreed about the presence of redundancy in the information
reported in the release note. In particular, one of them ex-
plained that “information is well organized and the hierar-
chical view allows visualizing exactly what you want, with
no redundancy.” Finally, all developers weakly agreed or
strongly agreed on the usefulness of the ARENA release note
for a developer in charge of evolving the software system,
for example, “the release note is very useful to get a quick
idea of what changed in the system and why.” The only de-
veloper answering weakly agree commented: “developers are
certainly able to get a clear idea about what changed in the
system. But they may still need to look in source code for
details.” This developer was the one asking for a line of code
granularity level.

In the second part of this study, we asked the same four
developers to evaluate (by using the same questionnaire)
the release note manually-generated by their team leader.
Table 4 reports these results in parenthesis. In this case,
three developers weakly agreed on the completeness of the
release note, while one weakly disagreed. As comparison, on
the completeness of the release note generated by ARENA
three developers strongly agreed and one weakly agreed. The
developer answering weakly disagree motivated her choice
explaining that“the level of granularity in this release note is
much higher as compared to the previous one. Thus, it is dif-
ficult to get a clear idea of what changed in the system. Also,
information about the updated libraries is missing”. When
talking about“the granularity”of the release note, the devel-
oper refers to the fact that changes are not always reported
at method level as it happened in the ARENA release note.
Three developers strongly agreed about the correctness of the
information reported in the manually-generated release note,
while one of them answered weakly agree, reporting an error
present in the release note: “the method daysBetweenDates

has been deprecated, not deleted”. Indeed, the manually-
generated release note contained such a mistake, avoided by
ARENA which reported: Method daysBetween(Date,Date)

9

Table 4: Evaluation provided by four original developers to the release note generated by ARENA for SMOS.
In parenthesis, the evaluation provided to the manually-generated release note.

Claim
Subject ID

1 2 3 4
The release note contains all the information needed to understand what changed between the old and the new release 3 (2) 4 (3) 4 (3) 4 (3)
All the information reported in the release note is correct 4 (3) 4 (4) 4 (4) 4 (4)
There is redundancy in the information reported in the release note 1 (1) 1 (1) 1 (1) 1 (1)
The release note is useful to a developer in charge of evolving the software system 3 (3) 4 (3) 4 (3) 4 (3)

1=strongly disagree, 2=weakly disagree, 3=weakly agree, 4=strongly agree

in Utility has been deprecated. Note that the error was rather
subtle, as only one of the developers was able to spot it.

Summary of Study III. The SMOS developers judged
the ARENA release note as more complete and precise than
the one created by the team leader (RQ1). Moreover, the ex-
tra information included in the generated release note makes
it to be considered more useful than the manual one (RQ2).

5. THREATS TO VALIDITY
Threats to construct validity concern the relationship be-

tween theory and observation. In this work such threats
mainly concern how the generated release notes were evalu-
ated. For Study I and Study II, we tried to limit the subjec-
tiveness in the answers by asking respondents to compare the
contents of the generated release note with that of the actual
one. In Study I we assigned each release note to two inde-
pendent evaluators. For Study III, although our main aim
was to collect qualitative insights, we still tried to collect
objective information by (i) involving multiple evaluators,
and (ii) using an appropriate questionnaire with answers in
a Likert scale, complemented with additional comments.

Threats to internal validity concern factors that could
have influenced our results. In Study I and Study III we have
tried to limit the evaluators’ bias by not telling them upfront
which were the original and automatically generated release
notes. Another possible threat is that the participants in
Study I and Study II have different level of knowledge of
the object projects. We must note that some of the re-
spondents in Study II were developers of the object projects
and their answers were in line with the answers of the other
participants. None of the participants in Study I were de-
velopers/contributors of the object projects. In Study III
we asked developers to perform the comparative evaluation
only after having provided a first assessment of the automat-
ically generated release note. This allowed us to gain both
an absolute and a relative assessment.

Threats to external validity concern the generalization of
our findings. In terms of evaluators, the paper reports re-
sults concerning the evaluation of release notes from the
perspective of potential end-users/integrators (Study I and
Study II) and of developers/maintainers (Study II and Study
III). In terms of objects, across all studies, release notes from
11 different releases were generated and evaluated.

6. RELATED WORK
To the best of our knowledge, no previous work has fo-

cused on automatically extracting and describing the system-
level changes occurring between two subsequent versions of
a software system. Some research has been conducted to
summarize changes occurring at a smaller granularity. Buse
and Weimer proposed DeltaDoc [20] a technique to gener-
ate a human-readable text describing the behavioral changes
caused by modifications to the body of a method. Such an
approach, however, does not capture why the changes were

performed. In this sense, Rastkar and Murphy [21] proposed
a machine learning-based technique to extract the content
related to a code change from a set of documents (e.g., bug
reports or commit messages). Differently from our approach,
these summaries focus on describing fine-grained changes at
method level. ARENA is meant to summarize sets of struc-
tural changes at system level and, where possible, relate
them to their motivation. The automatic generation of re-
lease notes relies on extracting change information from soft-
ware repositories and issue tracking systems. More research
work has been done in this area, especially in the context of
software evolution [22]. Related to our approach is the work
on traceability link recovery between the issues reported in
issue trackers and changes in versioning systems [17, 23, 24,
25]. While ARENA employs similar techniques to extract
change information, none of these approaches attempted to
produce a natural language description of the code changes
linked to the reports.

Concerning summarization of other software artifacts, dif-
ferent approaches have been proposed to automatically sum-
marize bug reports [26, 27, 28]. The focus of such approaches
is on identifying and extracting the most relevant sentences
of bug reports by using supervised learning techniques [26],
network analysis [27, 28], and information retrieval [28].
These summaries are meant to reduce the content of bug
reports. In a different way, the bug report summaries in-
cluded in the ARENA release notes are meant to describe
the changes occurred in the code of the software systems in
response to such reports. At source code level, the auto-
matic summarization research has focused on OO artifacts,
such as, classes and methods [1, 2, 29]. ARENA uses the
approach proposed by Moreno et al. [2] for generating de-
scriptions of the added classes in the new version of the
software.

7. CONCLUSION AND FUTURE WORK
We introduced ARENA, a technique that combines in a

unique way source code analysis and summarization tech-
niques with information mined from software repositories to
automatically generate complete release notes. Three empir-
ical studies were aimed at answering two research questions
and concluded that: (i) the ARENA release notes provide
important content that is not explicit or is missing in original
release notes, as considered by professional and open-source
developers; (ii) the ARENA release notes include more com-
plete and precise information than the original ones; and
(iii) the extra information included by ARENA makes its
release notes to be considered more useful. Based on this
work, the research on release note generation moves into a
distinct arena, where new research questions can be inves-
tigated, such as: What is the most important information
to include in the release notes and how to classify it? How
should release notes be presented to users? These are just
two items on our research agenda.

10

8. REFERENCES
[1] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and

K. Vijay-Shanker, “Towards automatically generating
summary comments for Java methods,” in Proceedings
of the IEEE/ACM international conference on
Automated software engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 43–52.

[2] L. Moreno, J. Aponte, G. Sridhara, A. Marcus,
L. Pollock, and K. Vijay-Shanker, “Automatic
generation of natural language summaries for Java
classes,” in Proceedings of the IEEE International
Conference on Program Comprehension, ser. ICPC
’13. IEEE, 2013, pp. 23–32.

[3] R. Koschke, “Atomic architectural component recovery
for program understanding and evolution,” in 18th
International Conference on Software Maintenance
(ICSM 2002), Maintaining Distributed Heterogeneous
Systems, 3-6 October 2002, Montreal, Quebec,
Canada. IEEE Computer Society, 2002, pp. 478–481.

[4] O. Maqbool and H. A. Babri, “Hierarchical clustering
for software architecture recovery,” IEEE Transactions
on Software Engineering, vol. 33, no. 11, pp. 759–780,
2007.

[5] A. Hassan and R. Holt, “Architecture recovery of web
applications,” in Software Engineering, 2002. ICSE
2002. Proceedings of the 24rd International Conference
on, 2002, pp. 349–359.

[6] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An
XML-based lightweight C++ fact extractor,” in 11th
International Workshop on Program Comprehension
(IWPC 2003), May 10-11, 2003, Portland, Oregon,
USA. IEEE Computer Society, 2003, pp. 134–143.

[7] G. Antoniol, M. Di Penta, and E. Merlo, “An
automatic approach to identify class evolution
discontinuities,” in 7th International Workshop on
Principles of Software Evolution (IWPSE 2004), 6-7
September 2004, Kyoto, Japan. IEEE Computer
Society, 2004, pp. 31–40.

[8] M. W. Godfrey and L. Zou, “Using origin analysis to
detect merging and splitting of source code entities,”
IEEE Trans. Software Eng., vol. 31, no. 2, pp.
166–181, 2005.

[9] L. Moreno, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Jsummarizer: An automatic
generator of natural language summaries for java
classes,” in Proceedings of the IEEE International
Conference on Program Comprehension, Formal Tool
Demonstration, ser. ICPC ’13. IEEE, 2013, pp.
230–232.

[10] D. M. Germán, Y. Manabe, and K. Inoue, “A
sentence-matching method for automatic license
identification of source code files,” in ASE 2010, 25th
IEEE/ACM International Conference on Automated
Software Engineering, Antwerp, Belgium, September
20-24, 2010. ACM, 2010, pp. 437–446.

[11] A. Bacchelli, M. Lanza, and R. Robbes, “Linking
e-mails and source code artifacts,” in Proceedings of
the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010. ACM, 2010, pp.
375–384.

[12] J. Ratzinger, T. Sigmund, and H. Gall, “On the

relation of refactorings and software defect
prediction,” in Proceedings of the 2008 International
Working Conference on Mining Software Repositories,
MSR 2008, Leipzig, Germany, May 10-11, 2008.
ACM, 2008, pp. 35–38.

[13] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta,
“How changes affect software entropy: an empirical
study,” Empirical Software Engineering, 2012.

[14] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim,
“Template-based reconstruction of complex
refactorings,” in 26th IEEE International Conference
on Software Maintenance (ICSM 2010), September
12-18, 2010, Timisoara, Romania. IEEE Computer
Society, 2010, pp. 1–10.

[15] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and
Y.-G. Guéhéneuc, “Is it a bug or an enhancement?: a
text-based approach to classify change requests,” in
Proceedings of the 2008 conference of the Centre for
Advanced Studies on Collaborative Research, October
27-30, 2008, Richmond Hill, Ontario, Canada, 2008,
p. 23.

[16] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a
feature: how misclassification impacts bug prediction,”
in 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013. IEEE Computer Society, 2013, pp.
392–401.

[17] M. Fischer, M. Pinzger, and H. Gall, “Populating a
release history database from version control and bug
tracking systems,” in 19th International Conference on
Software Maintenance (ICSM 2003), The Architecture
of Existing Systems, 22-26 September 2003,
Amsterdam, The Netherlands. IEEE Computer
Society, 2003, pp. 23–.

[18] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink:
recovering links between bugs and changes,” in
SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13rd European Software Engineering
Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. ACM, 2011, pp. 15–25.

[19] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval. Addison-Wesley, 1999.

[20] R. P. Buse and W. R. Weimer, “Automatically
documenting program changes,” in Proceedings of the
IEEE/ACM international conference on Automated
software engineering, ser. ASE ’10. New York, NY,
USA: ACM, 2010, pp. 33–42.

[21] S. Rastkar and G. C. Murphy, “Why did this code
change?” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp.
1193–1196.

[22] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey
and taxonomy of approaches for mining software
repositories in the context of software evolution,” J.
Softw. Maint. Evol., vol. 19, no. 2, pp. 77–131, Mar.
2007.

[23] J. Wu, A. E. Hassan, and R. C. Holt, “Comparison of
clustering algorithms in the context of software
evolution,” in Proceedings of 21st IEEE International
Conference on Software Maintenance. Budapest,

11

Hungary: IEEE CS Press, 2005, pp. 525–535.

[24] A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu,
and A. Bernstein, “The missing links: bugs and
bug-fix commits,” in Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, 2010, Santa Fe, NM, USA,
November 7-11, 2010. ACM, 2010, pp. 97–106.

[25] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K.
Lukins, “Recovering traceability links between source
code and fixed bugs via patch analysis,” in Proceedings
of the 6th International Workshop on Traceability in
Emerging Forms of Software Engineering, ser. TEFSE
’11. New York, NY, USA: ACM, 2011, pp. 31–37.

[26] S. Rastkar, G. C. Murphy, and G. Murray,
“Summarizing software artifacts: a case study of bug
reports,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, ser. ICSE ’10. New York, NY, USA: ACM,

2010, pp. 505–514.

[27] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the
’hurried’ bug report reading process to summarize bug
reports,” in 28th IEEE International Conference on
Software Maintenance, ICSM 2012, Riva del Garda,
Trento, Italy, September 23-28, 2012. IEEE
Computer Society, 2012, pp. 430–439.

[28] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey,
“Ausum: approach for unsupervised bug report
summarization,” in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, ser. FSE ’12. New York, NY,
USA: ACM, 2012, pp. 11:1–11:11.

[29] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On
the use of automated text summarization techniques
for summarizing source code,” in Proceedings of 17th
IEEE Working Conference on Reverese Engineering.
Beverly, MA: IEEE CS Press, 2010, pp. 35–44.

12

