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Abstract—The amount of unstructured data available to
software engineering researchers in versioning systems, issue
trackers, achieved communications, and many other repositories
is continuously growing over time. The mining of such data
represents an unprecedented opportunity for researchers to in-
vestigate new research questions and to build a new generation of
recommender systems supporting development and maintenance
activities.

This paper describes works on the application of Mining
Unstructured Data (MUD) in software engineering. The paper
briefly reviews the types of unstructured data available to re-
searchers providing pointers to basic mining techniques to exploit
them. Then, an overview of the existing applications of MUD in
software engineering is provided with a specific focus on textual
data present in software repositories and code components.

The paper also discusses perils the “miner” should avoid while
mining unstructured data and lists possible future trends for the
field.
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I. INTRODUCTION

Unstructured data refer to information that is not organised
by following a precise schema or structure. Such data often in-
clude text (e.g., email messages, software documentation, code
comments) and multimedia (e.g., video tutorials, presentations)
contents and are estimated to represent 80% of the overall
information created and used in enterprises [1]. The situation
is not different in software projects: Archived communications
like projects’ mailing lists1 are by nature fully unstructured
and even when turning the attention to software repositories
one would expect to be highly structured (e.g., versioning
systems, issue trackers), the amount of unstructured data is
simply overwhelming. For example, let us have a look to the
repository of the Ruby on Rails project,2 just one of the
almost 22 million git repositories hosted on GitHub.3 This
repository contains information about 53K commits performed
by 3K contributors. Each commit, besides containing infor-
mation related to the code changes and the authors of those
changes, is accompanied by a commit note “describing” in
free (unstructured) textual form the goal of the change (e.g.,
“Remove wrong doc line about AC::Parameters”). Also, the
GitHub’s Ruby on Rails repository contains information
about 8K issues (e.g., bug reports, new features to implement,
etc.) that are characterised by a textual description and heavily
discussed by the project’s contributors: It is not uncommon to

1See e.g., http://apache.org/foundation/mailinglists.html.
2https://github.com/rails/rails
3https://github.com/

encounter issue’s discussions with dozens of comments mixing
together code snippets and free textual paragraphs.

The availability of unstructured data for software engineer-
ing researchers has grown exponentially in the past few years
with the high spread of software repositories. Just to report an
example, GitHub hosted 46K projects in 2009, 1M in 2010,
10M in 2013, and 27M in 2015 (i.e., 586 times more projects in
just six years) [2]. Besides the widely “mined” software repos-
itories, precious (unstructured) information for the software
engineering community is also available in Questions & An-
swers (Q&A) websites (e.g., discussions on Stack Overflow4),
video-sharing websites (e.g., programming tutorials hosted on
YouTube5), slide hosting services (e.g., technical presentations
hosted on SlideShare6), etc. As already observed for GitHub,
the growth rate of all these repositories is simply impressive:
Every hour 102K users look for help on StackExchange7 and
6K hours of new video contents are posted on YouTube.8

This steep growth of data available over the internet has
pushed the Mining of Unstructured Data (MUD) to become a
popular research area in the software engineering community,
where MUD techniques have been applied to automatically
generate documentation [3], [4], [5], [6], [7], [8], to summarise
bug reports [9], [10], [11] and code changes [12], [13], [14],
to assess [15], [16], [17] and improve [18] software quality,
to build recommenders supporting project managers in tasks
related to mentoring [19] and bug triaging [20], [21], [22] and
developers in their daily coding activities [23], [24], [25], [26],
[27], [28], [29] as well as in the identification of duplicated
bug reports [30]. Also, MUD techniques have been employed
to identify malicious mobile apps from their textual description
[31] and to automatically categorise reviews left by users in
mobile apps’ stores [32], [33]. Those are just some examples
of the wide applicability that MUD techniques have found in
the software engineering research field.

This paper aims at providing an overview of the techniques
used to mine unstructured data, of the type of relevant reposito-
ries containing unstructured data, and of (part of) the existing
literature applying MUD to software repositories/artefacts in
order to highlight what are the current trends in the field. Note
that the primary focus of the paper is on textual information,
representing the vast majority of the unstructured data used
by software engineering researchers. The paper also sets out
some directions for future work in the MUD field.

4http://stackoverflow.com
5https://www.youtube.com
6http://www.slideshare.net
7http://stackexchange.com/about
8https://www.youtube.com/yt/press/statistics.htm
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Paper structure. The rest of the paper is organised as
follows: Section II overviews some of the basic techniques to
mine unstructured data. Section III describes the most relevant
unstructured data for software engineering researchers together
with perils to avoid when mining such information. Section IV
describes (part of) the works performed in five research areas
where the MUD has been widely applied. Finally, Section VI
concludes the paper after a discussion of possible future work
directions in the MUD field (Section V).

II. TECHNIQUES FOR MINING UNSTRUCTURED DATA

This section describes three techniques that are widely
applied for the mining of unstructured data and, in particular,
of textual information: Pattern Matching, Information Retrieval
(IR), and Natural Language Processing (NLP).

A. Pattern Matching

In the MUD context, pattern matching mainly refers to
the checking of the existence of a specific pattern (i.e., a
sequence of textual tokens) inside a string. Pattern matching
is often implemented by using regular expressions describing
the sequence of tokens we are interested in identifying inside
a text, and represents a cheap yet powerful solution to deal
with a number of problems, including:

1) Identifying in a corpus of documents those likely
related to a specific topic. For example, given a set of
commit messages (documents’ corpus) we could filter
out those likely referring to changes applied in order
to reduce the energy consumption of a software project
(e.g., a mobile app) with the following regular expression:

(reduce[s,ed]?)*\s+((energy
(consumption)?)|(battery drain))

2) Trace related artefacts containing an explicit link
between them, as done by Bacchelli et al. [34] to
identify mail messages explicitly referring to a specific
code component (e.g., a Java class):

(.*) (\s|\.|\\|/) <packageTail>
(\.|\\|/)<EntityName>

((\.(java|class|as|php|h|c))|(\s))+ (.*)

The main limitation of pattern matching techniques is
represented by their low flexibility (i.e., the match usually
has to be exact). For example, while the regular expression
defined at point one is able to match the commit message
“Reduced energy consumption”, it is not able to identify
“Reduced battery consumption” as a relevant commit message.
Clearly, it is possible to improve such a regular expression in
order to also match this pattern. However, there will likely
be other patterns (e.g., “Improved battery life”) that are still
left uncovered by our regular expression. More sophisticated
techniques described in the next subsections, while being more
complex and computationally expensive, help in overcoming
such a limitation.

B. Information Retrieval

van Rijsbergen has defined Information Retrieval (IR) as
the process of actively seeking out information relevant to
a topic of interest. Indeed, IR is generally applied to look
for documents in a corpus relevant to a given query. For
example, in the context of concept location, IR-techniques have
been employed to look for code components (the documents’
corpus) relevant to a bug report (the query) [35], [36].

As opposed to the pattern matching techniques, IR ap-
proaches do not look for exact string matching and (some
of them) are even able to infer word relationships without
the use of a thesaurus (e.g., the words reduced and improved
have the same meaning when followed by the bigram energy
consumption).

The relevance of a document to a query9 is based on their
textual similarity measured by looking at the occurrences of
terms (words) within the query and the document. The extrac-
tion of the terms from the corpus is generally preceded by a
text normalisation phase aimed at removing most non-textual
tokens (e.g., operators, special symbols, some numbers) and
splitting into separate words source code identifiers composed
of two or more words separated by using the under score,
CamelCase notation, or by exploiting more advanced tech-
niques [38]. Common terms (e.g., articles, adverbs) that are not
useful to capture semantics of the documents are also discarded
using a stop word function, to prune out all the words having
a length less than a fixed threshold, and a stop word list, to
cut-off all the words contained in a given word list.

Natural Language Processing (NLP) techniques (Sec-
tion II-C) like stemming and abbreviations expansions can
also be applied. Stemming [39] removes suffixes of words
and extracts their stems (e.g., stemming and stemmed are both
represented with stem) while abbreviations can be expanded
into their full words (e.g., regex becomes regular expression)
[40].

The extracted information is generally stored in a m × n
matrix (called term-by-document matrix), where m is the
number of all terms that occur in all the documents, and
n is the number of documents in the corpus. A generic
entry wi,j of this matrix denotes a measure of the weight
(i.e., relevance) of the ith term in the jth document [41]. A
widely adopted term weighting schema is the term frequency
– inverse document frequency (td-idf) [41]. Term frequency
awards terms appearing in a document with a high frequency,
while inverse document frequency penalises terms appearing in
too many artefacts, i.e., non-discriminating terms. Thus, a term
is considered relevant for representing the document content
if it occurs many times in the document, and is contained in
a small number of documents.

Based on the term-by-document matrix representation,
different IR methods can be used to identify relevant docu-
ments for a given query. In the following three of them are
overviewed.

9Note that a query could also be a second document, as usual in IR-based
traceability recovery where the goal is to identify pairs of related documents
[37].



The first, is the Vector Space Model (VSM), in which
each document is represented as a vector of terms that occur
within the corpus [41]. In particular, each column of the term-
by-document matrix can be considered as a document vector
in the m-space of the terms. Thus, the similarity between
a query and a document is measured by the cosine of the
angle between their vectors in the m-space of the terms.
Such a similarity measure increases as more terms are shared
between the two vectors. VSM does not take into account
relations between terms and it suffers of the synonymy and
the polysemy problems (e.g., it is not able to infer that words
like car and automobile refer to the same concept).

Latent Semantic Indexing (LSI) [42] is an extension of the
VSM developed to overcome these limitations. In LSI the de-
pendencies between terms and between documents, in addition
to the associations between terms and documents, are explicitly
taken into account. For example, the terms car and automobile
are likely to co-occur in different documents with terms like
motor and wheel. To exploit information about co-occurrences
of terms, LSI applies Singular Value Decomposition (SVD)
[43] to project the original term-by-document matrix into a
reduced space of concepts, thus limiting the noise that terms
may cause. Basically, given a term-by-document matrix A, it
is decomposed into:

A = T · S ·DT

where T is the term-by-concept matrix, D the document-by-
concept matrix, and S a diagonal matrix composed of the
concept eigenvalues. After reducing the number of concepts
to k, the matrix A is approximated with:

Ak = Tk · Sk ·DT
k

Latent Dirichlet Allocation (LDA) [44] fits a generative
probabilistic model from the term occurrences in a corpus of
documents. The fitted model is able to capture an additional
layer of latent variables which are referred as topics. Basically,
a document can be considered as a probability distribution of
topics—fitting the Dirichlet prior distribution—and each topic
consists in a distribution of words that, in some sense, represent
the topic. In particular, each document has a corresponding
multinomial distribution over T topics and each topic has a
corresponding multinomial distribution over the set of words
in the vocabulary of the corpus. LDA assumes the following
generative process for each document di in a corpus D:

1) Choose N ∼ Poisson distribution (ξ)
2) Choose θ ∼ Dirichlet distribution (α)
3) For each of the N words wn:

a) Choose a topic tn ∼ Multinomial (θ).
b) Choose a word wn from p(wn|tn, β), a multinomial

probability conditioned on topic tn.

While applying IR techniques is quite easy and straight-
forward also thanks to the availability of open source imple-
mentations (see e.g., the APACHE LUCENE search engine10),
empirical studies have shown how suboptimal configuration of
their parameters (e.g., the LDA’s α and β) might led to sub-
optimal performances when applied to software engineering

10https://lucene.apache.org/core/

related tasks [45], [46], [47], [48]. These works, also provide
hints on how to automatically identify an appropriate config-
uration of IR techniques.

C. Natural Language Processing

NLP techniques allow to automatically extract meaning
from pieces of text written in natural language. Besides the
already mentioned stemming and abbreviation expansions,
exemplar applications of NLP include (but are not limited to):

• Text summarisation: generate a natural language summary
from a longer text. E.g., summarise code components.

• Autocompletion: predicting which word (token) is likely
to follow a given sequence of words (tokens) (e.g., “blu”
is more likely to follow the trigram “the sky is” with re-
spect to “yellow”). Useful to support code autocompletion
in IDEs.

• Part-of-speech tagging: determine the part of speech for
each word in a given sentence (i.e., tagging each word as
noun, verb, adjective, adverb, etc.).

• Sentiment analysis: determine the polarity of sentences
(e.g., automatically tagging users’ reviews as positive or
negative).

• Topic segmentation: separate a given text into cohesive
fragments talking about a specific topic (e.g., segmenting
a discussion in an issue tracker based on the different
solutions proposed in it).

• Optical Character Recognition (OCR): extracting the tex-
tual information represented in an image (e.g., the source
code snippets reported in a frame of a video tutorial).

NLP techniques are often built on top of statistical machine
learners, able to derive linguistic rules from a large documents
corpora. Taking the autocompletion task as example, it is
possible to build a language model able to estimate the
probability that a specific word (e.g., wm) follows a given
n-gram (e.g., w1, w2, . . . , wn) as:

P (w1, w2, . . . , wn, wm) =

m∏
i=1

P (wi|w1, . . . wi−1)

Also in the context of sentiment analysis statistical tech-
niques are used to estimate the probability that a specific word
in a sentence is related to particular emotions [49]. Simpler
techniques assign a fixed weight (positive or negative) to each
word in a sentence, or build upon available knowledge bases
(see e.g., WordNet11) to estimate the sentiment of sentences.

The reader interested in applying NLP techniques can find
several software tools made available by the Stanford Natural
Language Processing Group.12

11https://wordnet.princeton.edu
12http://nlp.stanford.edu/software/



III. UNSTRUCTURED DATA IN SOFTWARE REPOSITORIES
AND ARTEFACTS

This section overviews the unstructured data present in
software artefacts and repositories by also highlighting perils
(indicated with 4! ) to avoid while mining such information.

Versioning Systems (e.g.,git, svn, cvs) are probably the
most mined repositories by MSR (Mining Software Reposi-
tory) researchers. The basic unit of information here is rep-
resented by commit activities performed by developers. By
mining such commits researchers can gather insights about
the complete change history of a software system, knowing
what (i.e., which code components) has been modified at a
given time, by who, and why. When talking about the why,
unstructured data comes in.

Developers usually describe the “reason” why a certain
commit has been performed in a commit message written
in natural language. The analysis of commit messages can
provide precious insights to researchers and find wide ap-
plication in empirical studies as well as in the building of
“golden sets” to evaluate software engineering recommenders.
For example, as previously mentioned pattern matching tech-
niques (Section II-A) can be applied to identify (and study)
commits related to specific development activities, e.g., com-
mits implementing refactoring operations can be identified by
looking for commit messages containing specific keywords,
like refactoring, refactored, and cleanup [50].13 The set of
identified commits can be exploited (possibly, after a manual
validation) to (i) study refactoring activities performed by
developers, and (ii) evaluate a (semi-)automated refactoring
recommender by comparing its recommendations against the
“golden set” containing actual refactoring operations manually
performed by developers over the change history of a software
system.

While representing a very lightweight approach, the use
of pattern matching techniques to identify commits related
to specific activities (e.g., refactoring) presents some perils.
4! Commit messages are not always detailed enough to
actually reflect what has been changed in a commit.
For instance, refactoring operations are often performed while
fixing a bug and the commit message is likely to only describe
the main activity performed in the commit (e.g., “Fixed bug
NA-85”). This problem is strictly related to what have been
defined by Herzig and Zeller [52] as “tangled changes”, i.e.,
commit activities grouping together different types of changes
(e.g., a bug fix and the implementation of new features).

The mining of commit messages, again performed by using
pattern matching techniques, can also be used to establish links
between commits and issues (e.g., bug fixes activities) present
in the project Issue Tracker: A commit message reporting
“Throw exception on negative values; Fixes IO-375” provides
an explicit link toward the issue having IO-375 as id. The peril
here are the 4! missing explicit links between commits and
issues [53]. A commit message “Throw exception on negative
values” does not provide any link to the issue it is related to.
This problem can be overcome by adopting more sophisticated

134! Note that the best way to identify refactoring operations is to
analyse the source code modified in a specific commit. However, tools
identifying refactoring operations by code analysis (e.g., Ref-Finder [51]) often
require the compiled source code that might not be available.

mining techniques like the RELINK approach by Wu et al.
[54]. RELINK exploits a set of heuristics to link commits and
issues, including the computation of IR-based textual similarity
(Section II-B) between the issue description and the commit
message as well as the analysis of information present in the
issue’s comments left by developers.

Establishing links between commits and issues is partic-
ularly useful, among other things, when performing qualita-
tive analyses. Indeed, by reading the issue’s description it
is possible to complement the commit message and gather
a better understanding of the changes that are applied in
a given commit. Also, researchers could “tag” the commits
based on their main purpose, as indicated by the type of issue
(e.g., bug fix, new feature, enhancement, etc.) they are linked
to. However, 4! empirical studies have highlighted the
presence of issue misclassifications in issue trackers [55],
[56]. Finally, by mining the comments posted by developers
in the related discussion it is possible to extract the rationale
behind specific implementation choices.

Archived Communications, like mailing lists and chat logs,
report information about messages exchanged by developers
and other project’s stakeholders. Here, the vast majority of the
information is unstructured and written in natural language.
These repositories can be mined to identify communica-
tion networks representing developers who are likely to co-
operate in a project [57]. Note that 4! resolving ambiguities
(e.g., developers using different names/emails on different
communication channels) might be needed when mining
archived communications [58]. For example, a developer
could use the nickname gbavota in a chat and the email
address gabriele.bavota@unibz.it in the project’s mailing list.
The analysis of his social network requires the disambiguation
of his different identifiers [58]. This also holds when applying
topic modelling techniques (e.g., LDA) to identify the topics
characterising the communications of a specific developer.
Such information could be exploited to identify people knowl-
edgeable about a specific topic (e.g., the developer more indi-
cated to fix a bug—bug triaging). Also, the MUD techniques
can be used to link developers’ communications to other
software artefacts (e.g., source code classes), enriching the
knowledge available about those artefacts (see e.g., Bacchelli
et al. [34]).

Online Forums refer to both specialised discussion forums
(see e.g., Apache Lounge14) as well as to general purpose
forums like Q&A websites. Among those, Stack Overflow
is by far the most mined by researchers in the software
engineering community. While discussions are generally or-
ganised by topics via tagging mechanisms, the amount of
unstructured information in such websites is prevalent. Also,
Stack Overflow’s discussions are rich of code snippets. For
this reason, 4! MUD techniques must often be exploited
in combination with island parsers [59] to effectively mine
information from these repositories (e.g., to identify relevant
discussions for a given piece of code [23]).

14http://www.apachelounge.com



Another repository in which mining unstructured data
is represented by the Mobile App Stores [60]. Apps on the
stores are characterised, among other things, by (i) a textual
description reporting its main features/updates with respect to
the previous releases, and (ii) a set of users’ reviews, written in
natural language and accompanied by a rating indicating the
user’s satisfaction. MUD techniques, and in particular NLP,
can be applied in such a context to extract useful pieces
of information from users’ reviews (e.g., to identify bugs
experienced by the user base [33]), or to estimate the apps’
success based on their reviews [61]. A peril to avoid when
mining information from apps’ reviews is to 4! consider
all reviews as equally important and informative. Indeed,
as recently shown by Chen et al. [32], only a small percentage
of reviews are informative (i.e., contain useful information for
the apps’ developers).

The mining of the apps’ textual description could instead
help in identifying similar apps (competitors) or in checking
the consistency of the app description with what is actually
implemented [31].

Finally, it is worth remembering as the Source Code itself
and the Software Artefacts like high- and low- level docu-
mentation are themselves a rich source of unstructured data.
For example, comments left inside the code can be treated
with NLP techniques to summarise code components [62] and
the terms present in code comments and identifiers can be
exploited via IR techniques to assess the quality of the code
itself [16] or to link it to other software artefacts [37]. Clearly,
4! techniques exploiting textual information present in the
source code assume the use of meaningful terms in the
code comments and identifiers, which is not always the
case [17], [63].

IV. EXISTING APPLICATIONS OF MUD TECHNIQUES

MUD techniques have been applied in software engineering
to support a wide range of tasks and as an instrument to
perform dozens of empirical studies. The goal of this section
is not to provide a complete review of all these works, but
instead to discuss some of the research areas in which MUD
techniques play a major role.

A. Generating Documentation

NLP techniques have been used to summarise changes oc-
curred to code components [12], [13], [14]. Buse and Weimer
proposed DeltaDoc [12], a technique to generate a human-
readable text describing the behavioural changes caused by
modifications to the body of a method. To this aim, the
modified statements are statically located and the control flow
paths conducting to them are symbolically executed to obtain
the changes in the method’s behaviour. This information is
embedded into templates that constitute the description of what
changed in a method.

Summarisation techniques have been applied by Cortes-
Coy et al. [13], who proposed ChangeScribe, an Eclipse plug-
in15 that describes a given set of source code changes based
on its stereotype, type of changes, and the impact set of the

15https://github.com/SEMERU-WM/ChangeScribe

changes. Similarly, Rastkar and Murphy [14] exploit multi-
document summarisation to automatically infer the rationale
behind a code change from a set of textual documents (e.g.,
bug reports or commit messages).

MUD techniques have also been used to summarise bug
reports [9], [10], [11]. The focus of such approaches is on
identifying and extracting the most relevant sentences of bug
reports by using supervised learning techniques [9], network
analysis [10], [11], and information retrieval [11].

Recently, Moreno et al. [3] presented ARENA,16 a tool
to automatically generate complete release notes. ARENA
mines the project versioning system and issue tracker to
identify changes performed between two releases. Then, it uses
NLP techniques, and in particular text summarisation [64], to
remove redundancy and create a compact yet complete release
note.

At the source code level, automated summarisation re-
search has focused on describing Object Oriented artefacts,
such as classes and methods, by generating either term-
based (i.e., bag of words) [65], [66], [67], [68], [69] or text-
based [62], [64] summaries. In both cases, the information to
be included in the summaries is selected through structural
heuristics and transformed into human-readable phrases by
using NLP techniques. In such a context, interesting are the
results reported by De Lucia et al. [66], who investigated
how source code artefact labelling that is performed by IR
techniques would overlap (and differ) with labelling performed
by humans. They asked 17 undergraduate students to manually
label 20 Java classes by using up to ten keywords for each of
them. Then, the authors exploited four automatic labelling ap-
proaches to extract summaries from the same 20 classes. Three
of them where IR techniques, and in particular VSM, LDA, and
LSI. The fourth one, was a simple automatic labelling heuristic
in which each class was labeled by considering only words
composing (i) the class name, (ii) the signature of methods, and
(iii) the attribute names. Among this set of words, the authors
selected the most representative ones by ranking them using
their tf-idf, however always considering the words contained
in the class name as part of the summary. The effectiveness
of each labelling technique has been evaluated in terms of
words overlap it achieved with respect to the manual labelling.
Surprisingly, the highest overlap was obtained by using the
simplest heuristic, while the most sophisticated techniques, i.e.,
LSI and LDA, provided the worst accuracy. The results of
this study highlight as not always more complex techniques
represent the panacea to achieve the best results when mining
unstructured data.

MUD techniques have also been successfully used in con-
junction with structural code analysis to automatically generate
code examples [5], [6], [7], [70], [8]. MAPO, proposed by Xie
and Pei [5] and extended by Zhong et al. [6], mines abstract
usage examples for a given API method. MAPO analyses code
snippets retrieved by code search engines to extract all the
call sequences involving the desired API method. A subset
of sequences covering all method calls is identified and then
clustered into similar usage scenarios, according to heuristics
based on method names, class names, and called API methods
composing each sequence. For each cluster, MAPO identifies

16https://seers.utdallas.edu/ARENA/



usage patterns based on frequent call sequences, and, finally, it
ranks the patterns based on their similarity with the developer’s
code context. The similarity here includes textual information
extracted from the terms present in the code identifiers.

UP-MINER [7] is a variation of MAPO that reduces the
redundancy in the resulting example list. To this end, UP-
MINER clusters the extracted method sequences based on n-
grams and discovers a pattern for each cluster by applying a
frequent sequence mining algorithm. As these patterns might
be similar, UP-MINER executes another clustering round on
them. The resulting patterns are ranked according to their
frequency and presented as probabilistic graphs.

Buse and Weimer [70] proposed to generate documented
abstract API usages by extracting and synthesising code ex-
amples of a particular API data type. Their approach mines
examples by identifying and ordering (i) code instantiations
of the given data type and (ii) the statements relevant to
those instantiations as defined by previously extracted path
predicates, computed from intra-procedural static traces. The
examples are then clustered based on their statement ordering
and data type usage. For each cluster, an abstract example
(i.e., a usage pattern) is formed by merging its code examples,
and finally documented according to predefined heuristics that
depend on the kind of statement and most frequent names in
the mined code.

More recently, Moreno et al. [8] presented MUSE, a
technique for mining and ranking actual code examples that
show how to use a specific method. Here, MUD techniques
are employed to automatically comment the generated code
examples. Given a method mi for which MUSE generated
an usage example, MUSE automatically extracts information
from the mi’s Javadoc documentation and includes it in the
code examples. In particular, MUSE extracts the textual de-
scriptions of mi’s parameters (identified with the tag @param)
and includes them as inline comments to explain the arguments
passed to mi invocation right where it occurs.

B. Identifying Related Software Artefacts

IR techniques have been applied to the problem of recov-
ering traceability links between different categories of high-
(e.g., requirements) and low-level (e.g., source code) software
artefacts. The conjecture here is that artefacts containing sim-
ilar terms (i.e., having a high textual similarity as captured by
the IR technique) have a higher likelihood of being related with
respect to artefacts characterised by different vocabularies. A
complete treatment of the IR-based traceability topic can be
found in [37]. In a similar fashion IR techniques have also been
applied to the concept location task with the goal of identifying
relevant code components for a specific bug report [35].

Wang et al. [30] used both natural language information
and execution information to detect duplicate bug reports.
Given a newly submitted bug report bn their approach exploits
IR techniques to compute the similarity between bn and all
already existing bug reports. Given two bug reports under
analysis (i.e., bn and one of the already existing reports) the
IR-based similarity is computed at two different levels: First,
between the title and the description of the two reports. Second,
between the terms of the execution traces reported for the two

bugs. Pairs of reports exhibiting high values of similarity are
candidate to be marked as duplicated.

Bacchelli et al. [34] exploited pattern matching techniques
to link e-mails and source code artefacts. Their approach, based
on simple regular expressions (see Section II-A) matching the
name of the code artefacts in the email body, outperformed
more complex IR techniques in an evaluation conducted over
six software systems. This finding supports what we previously
observed while discussing the work by De Lucia et al. [66]:
Not always employing more sophisticated techniques leads to
better results in the mining of unstructured data. However, as
also noticed by the authors, the pattern matching technique
implemented via regular expression immediately showed its
limitations (i.e., its low flexibility) when moving from java
based systems toward different programming languages. In-
deed, the authors had to adapt their technique (i.e., to extend
the exploited regular expression) in order to effectively deal
with syntactic features of the new programming languages.
Also, while IR techniques provide a ranked list of relevant
results indicating the relevance of each document (here, a
code artefact) for a given query (here, an e-mail), for pattern
matching methods a document (the e-mail) either matches or
not the regular expression. Thus, if n e-mails match a regular
expression, the developers have to analyse all of them to
identify the ones actually relevant for the code artefact.

C. Generating Recommendations for Software Developers and
Managers

Several works apply MUD techniques to identify docu-
ments, discussions, and code samples relevant for a given
(development) task. Chatterjee et al. [71] and Keivanloo et
al. [72] use textual similarity to return a ranked list of abstract
examples relevant to a natural language (NL) query formulated
by the user and expressing her task at hand. Keivanloo et
al.’s approach combines textual similarity and clone detection
techniques to find relevant code examples, and ranks them
according to (i) their textual similarity to the query and (ii)
the completeness and popularity of their encoded patterns.
In a similar token, but generating a ranked list of concrete
API usage examples, the Structural Semantic Indexing (SSI),
proposed by Bajracharya et al. [73], combines heuristics based
on structural and textual aspects of the code, based on the
assumption that code entities containing similar API usages
are also similar from a functional point of view.

Other work focused on suggesting relevant documents, dis-
cussions and code samples from the web to fill the gap between
the IDE and the Web browser. Examples are CODETRAIL [27],
MICA [28], FISHTAIL [74], and DORA [75]. Subramanian et
al. [29] presented an approach to link webpages of different
nature (e.g., javadoc, source code, Stack Overflow) by harness-
ing code identifiers. They recommend augmented webpages by
injecting code that modifies the original web page.

Among the various sources available on the Web, Q&A
Websites and in particular Stack Overflow, have been the target
of many recommender systems [24], [25], [26], [23]. Pon-
zanelli et al. proposed PROMPTER17 [23], an Eclipse plug-in
continuously tracking the Eclipse’s code context every time a
change in the source code occurs. The extracted code context is

17http://prompter.inf.usi.ch



treated with NLP techniques to extract the most discriminating
terms representing it and automatically generate a textual query
which is sent to search engines (Google, Bing) to perform
a Web search on the Stack Overflow’s website. Then, every
retrieved discussion is ranked according to a Ranking Model
taking into account textual and structural information extracted
from the developer’s code context. The top ranked discussion
is pushed directly in the IDE if its similarity with the code
context is higher than a given threshold.

Canfora et al. presented YODA18 [19], an approach to
identify likely mentors in software projects by mining data
from software repositories, and to support the project manager
in recommending possible mentors when a newcomer joins a
project. YODA adopts a two-step process. First, it laverages So-
cial Network Analysis methods to identify candidate mentors
in the past history of a software project (e.g., a good mentor
should be quite active in the project). Once identified the set
of project’s members who are good candidates to be mentors,
MUD techniques are exploited in the second YODA’s step to
select the most appropriate mentor for a given newcomer p.
Suppose that p joins the project at time tx and that a set of n
mentors M = {m1, . . . ,mn} has been identified, in the first
step, the period before tx. An IR process is used to rank the
available mentors, where each document di with i = 1, . . . , n
in the corpus consists of the union of the text of all emails
exchanged by the mentor mi before tx, while the query qp is
represented by a request for help submitted by the newcomer
p. Note that, the IR-based methodology exploited by YODA
is very similar to those applied in the context of bug triaging
[20], [21], [22], where the goal is to assign a bug to the most
appropriate fixer.

D. Classifying Textual Artefacts

MUD techniques have been applied to help mobile apps
developers in identifying useful requirements (e.g., bugs to fix,
suggestions for new features) from reviews left by their users.
Galvis and Winbladh [76] extract the main topics in app store
reviews and the sentences representative of those topics with
the goal of capturing the mood and feelings of the apps’ users.

Iacob and Harrison [77] provided empirical evidence of the
extent users of mobile apps rely on reviews to describe feature
requests, and the topics that represent the requests. Among
3,279 reviews manually analyzed, 763 (23%) expressed feature
requests. Then, linguistic rules were exploited to define an
approach, coined as MARA, to automatically identify feature
requests.

Linguistic rules have also been recently exploited by
Panichella et al. [33] in conjunction with sentiment analysis
to classify sentences in app reviews into four categories:
Feature Request, Problem Discovery, Information Seeking,
Information Giving. Through a manual inspection of 500
reviews, the authors identified 246 recurrent linguistic patterns
in users’ reviews, and defined NLP heuristics to automatically
recognise them. For example, by using NLP is possible to
catch patterns in the form:

[someone] should add [something]

18http://www.ifi.uzh.ch/seal/people/panichella/tools.html

These patterns clearly indicate a suggestion for new fea-
tures in the user’s review. As for the sentiment analysis,
Panichella et al. exploited Naive Bayes to classify the sen-
timent of a review in a range between -1 (negative review)
and 1 (positive review). Similar techniques for labelling app
reviews have also been proposed by McIlroy et al. [78] and
by Villarroel et al. [79].

Chen et al. [32] pioneered the prioritisation of user re-
views with AR-MINER, a tool to automatically filter and
rank informative reviews. Informative reviews are identified
by using a semi supervised learning-based approach exploiting
textual features, and in particular the terms present in the
reviews. Reviews like “This is a crap app” are categorised
as non-informative, while those containing potentially useful
feedbacks (e.g., “The app crashes when touching the home
button”) are tagged as informative. Once discriminated in-
formative from non-informative reviews, AR-MINER groups
them into topics and ranks the groups of reviews by priority.
The grouping step is realised by exploiting topic modelling
techniques (LDA) and the Aspect and Sentiment Unification
Model (ASUM) [80].

Bacchelli et al. [81] presented an approach to classify the
text present in email messages at line level granularity. Each
line is classified into one of the following five categories: text,
junk, code, patch, or stack trace. The approach uses machine
learners to perform a term based classification of the email’s
lines and island parsers to deal with specific cases and improve
the overall classification accuracy. An important lesson from
this work is that while simple IR techniques can be easily
used to mine unstructured data (and in the specific case, to
obtain a first classification), adopting customised solutions for
the problem at hand can lead to much better results.

Gorla et al. [31] exploited MUD techniques in CHABADA,
a tool aimed at verifying if the advertised behaviour of An-
droid apps correctly reflects the implemented behaviour. The
advertised behaviour is extracted from the natural language
apps’ descriptions available in the Google Play store (see
Section III), while the implemented behaviour is represented
by the invoked Android Application Programming Interfaces
(APIs). CHABADA uses LDA to assign each app (i.e., each
app description) to a set of topics and then cluster together
apps by related topics (e.g., it is reasonable to think that mes-
saging apps share similar topics characterised by words like
“message”, “send”, “reply”, etc.). Then, CHABADA extracts
the sensitive19 APIs each app invokes and identifies “outliers
behaviours” inside each cluster of apps. For example, it would
be suspicious if a sms messaging app requires the device’s
location. CHABADA can thus be used to identify malicious
apps’ behaviours (i.e., to classify the app’s description as
suspicious or not).

19Sensitive APIs are those requiring an user permission, like the ones
providing access to the device’s location.



E. Assessing and Improving Code Quality

IR techniques have been used to assess the quality of object
oriented classes in terms of cohesion and coupling. Poshy-
vanyk et al. [15] proposed the Conceptual Coupling Between
Classes (CCBC). CCBC is based on the textual information
(terms) present in code comments and identifiers. Two classes
are conceptually related if their (domain) semantics are similar,
i.e., their terms indicate similar responsibilities. CCBC has
been shown to capture new dimension of coupling, which are
not captured by the conventional structural metrics (e.g., those
measuring coupling as the number of structural dependencies
between two classes). Similarly, Marcus et al. [16] presented
the Conceptual Cohesion of Classes (C3), assessing the cohe-
sion of a class as the average textual similarity between all
unordered pairs of methods in it.

Still in the context of assessing code components’ quality
by analysing the textual information they contain, Arnaoudova
et al. [17], [63] introduced the concept of linguistic anti-
patterns, related to inconsistencies (i) between method signa-
tures, documentation, and behaviour and (ii) between attribute
names, types, and comments.

Finally, textual information extracted from code compo-
nents have been used to semi-automatise refactoring activities
[82], [18], [83]. Such information is particularly useful when
building tools aimed at recommending refactoring solutions
moving code components inside the software system to better
organise the implemented responsibilities (e.g., extract class,
move method, move class, etc.). Indeed, by analysing textual
relationships between code components (e.g., the conceptual
coupling between classes previously described) it is possible,
for example, to spot classes placed in the wrong package as the
ones having a low CCBC with the classes in the package they
belong to and a high CCBC with classes in another package.

V. FUTURE TRENDS IN MUD

This section describes a set of possible future trends
the author expects for the MUD research in the software
engineering context. Clearly, the listed future trends are the
results of a very personal (and partial) view.

A. MUD to Support Qualitative Analysis

Nowadays the empirical research in software engineer-
ing is pushing toward the combination of quantitative and
qualitative findings. Indeed, while quantitative data that is
collected through carefully designed experiments can provide
us with a statistically significant piece of evidence about a
phenomenon (e.g., classes exhibiting specific characteristics
are more bug-prone than other classes) they hardly tell why
we obtained such a result (e.g., why developers introduce more
bugs while working on such classes). To properly investigate
the “why side” of an experiment, complementing quantitative
and qualitative findings can be the way to go.

In this context, the mining of unstructured data can play
a major role. Let us consider the example of a researcher
who performs a quantitative study aimed at understanding the
relationship between the code readability (as assessed by a
specific metric, see e.g., Buse and Weimer [84]) and the code
bug-proneness. In other words, the researcher is interested in

investigating if developers tend to introduce more bugs when
working on code components having a low readability. Let us
suppose that the quantitative results collected by the researcher
highlights that there is a strong, statistically significant negative
correlation between code readability and bug-proneness (i.e.,
the higher the code readability, the lower the code bug-
proneness). The problem here is that correlation 6= causation
and the reason behind such a result (the “why side”) might be
less obvious than it appears. Indeed, it could be that: (i) low
code readability hampers code comprehension, thus favouring
the bug introduction, or (ii) frequent bug fixes possibly applied
in a rush negatively affect the code quality, thus decreasing
its readability. In these cases, MUD can help in extracting
qualitative data aimed at better understanding the phenomenon
and avoid unsupported claims.

For instance, pattern matching analysis or more sophis-
ticated NLP techniques can be used to automatically isolate
developers’ discussions (e.g., those archived in the projects’
mailing list, issue trackers, etc.) related to the code components
exhibiting low readability and/or high bug-proneness, in order
to understand what are the issues discussed by the developers,
e.g., are they complaining about difficulties in comprehending
the code or about the few hours they have to fix the bug? Note
that most of the times MUD techniques can only provide a first
filtering of the qualitative data (in this case, the developers’
discussions) that then must be manually analysed.

A strongly recommended paper highlighting the need for
qualitative analysis to complement the quantitative findings is:
“Failure is a four-letter word: a parody in empirical research”
by Zeller et al. [85].

B. Crosscutting Analysis

When mining (unstructured) data from a software repos-
itory, researchers should be aware of the very partial view
it could give about a specific phenomenon. An example is
provided in the work by Panichella et al. [86], where the
authors analysed developers’ communications over different
channels (mailing lists, issue trackers, IRC chat) to understand
to what extent findings drawn by looking in isolation in a
specific communication channel also generalise to the other
channels.

Results of the study highlighted that analysing developers
collaboration/communication through specific channels would
only provide a partial view of the reality, and that differ-
ent channels may provide different perspectives of develop-
ers’ communication. In particular, (i) not all developers use
all communication channels; and (ii) people mainly interact
through two out of three communication channels, whereas the
third one is only used sporadically. Therefore, if using specific
collaboration/communication networks for various purposes—
e.g., identifying experts or mentors—one should be careful as
different channels may lead to more or less accurate—and in
any case different—results.

The take-away here is that, when possible, MUD re-
searchers should look at different sources of information and
integrate the pieces of evidence in each of them to strength
claimed findings or gather a better knowledge of the studied
phenomenon.



C. Inter-domain Recommendations

As discussed in Section IV-C, MUD techniques have been
exploited to build several different types of recommenders.
Some of these recommenders could be defined as “intra-
domain”: they look into a specific fenced gardens for things to
recommend, without ever climb over the fence. Let us consider
the example of the recommenders built to extract requirements
from mobile apps’ reviews (see e.g., references [32], [33], [77],
[78], [79], discussed in Section IV-D). Given a mobile app
Appi, the goal of these tools is to provide Appi’s developers
with useful information to plan Appi’s next release: Which
features should be implemented? Which bugs should be fixed?
etc. These recommenders are intra-domain since they look
for requirements (things to recommend) only among Appi’s
reviews (the fenced garden).

Suppose that Appi is a word processor app. An inter-
domain recommender in this context could look on the app
store for all reviews belonging to word processor apps, thus
climbing over the fence and recommending, for example,
features that have been suggested not only by Appi’s users, but
also by those of all word processors in the app store. Similarly,
one could spot features that are particularly appreciated by
users’ of competitive apps. Clearly, there would be a number
of non-trivial problems to overcome: (i) how to detect similar
apps among the millions available in the app store, (ii) how
to discard features recommended for a word processor Appj
that are already implemented in Appi, (iii) how to discriminate
between successful and unsuccessful features discussed in the
users’ comments, etc.

MUD techniques really fit in the building of this type
of inter-domain recommenders, since the MUD infrastructure
developed to extract data in a specific context can generally be
easily extended to wider contexts, increasing the possibilities
such recommenders offer.

D. Mining Multimedia Contents

When talking about mining unstructured data in the soft-
ware engineering context most of people think to textual
information spread in software repositories. This is also clear
by the (partial) analysis of the MUD literature presented in
Section IV. However, unstructured data are also, by defi-
nition, multimedia contents, like images and videos. These
unstructured data are nowadays almost ignored in the software
engineering community but, as also confirmed by a very recent
study conducted by MacLeod et al. [87], they embed very
precious information.

MacLeod et al. performed an empirical study aimed at
investigating how and why developers create video tutorials
and host them on YouTube. They found that they share, among
other things, demonstrations of code, personal development
experiences, implementation approaches, and also provide the
audience with live demonstrations showing the execution of the
implemented code. The study also highlighted key advantages
of video tutorials compared to other resources. In particular,
the authors highlight that [87]:

“Unlike other documentation methods that are primarily text
based, screencasts allow developers to share their coding
practices through live interactions. These video captured

interactions allow developers to present tacit knowledge
would be otherwise difficult to present through textual

methods.”

These observations, and in particular the complementarity
of multimedia contents with respect to textual information,
highlight the strong potential of mining more unconventional
unstructured data, like videos (e.g., the mentioned tutorials),
and images (e.g., slides projected during a recorded Univer-
sity’s lesson). The only work in this direction is the CODE-
TUBE tool developed by Ponzanelli et al. [88], and able to
mine video tutorials found on the web enabling developers
to query their contents. The video tutorials are processed and
split into coherent fragments, to return only fragments related
to the query.

E. Consumer-related and Task-related Customisation of MUD
Techniques

MUD techniques are often applied out of the box to
support software engineering tasks. For instance, summari-
sation algorithms have been exploited to summarise object
oriented code artefacts (see Section IV-A). The content of the
generated summary generally represents an overview of the
main responsibilities implemented in the code component e.g.,
in a class.

While these approaches are certainly valuable, they do not
customise the generated summaries on the basis of who (con-
sumer) will read them and to support which task. Indeed, it is
reasonable to think that a developer newcomer needs different
information in the summary with respect to an experienced
developer. Also, a developer in charge of writing the unit tests
for a given class is likely interested in different things (e.g.,
the covered statements) with respect to a developer in charge
of writing the class documentation for third-party usage of
the class’s methods. For these reasons, consumer-related (who
will consume the summary) and task-related (for what the
summary will be used) summarisation techniques could led
to the generation of more useful pieces of documentation.

The summarisation is just an example of the MUD tech-
niques that could be exploited in a consumer-related and/or
task-related customisation fashion.

VI. SUMMARY

This paper has provided an overview of the mining of
unstructured data in the software engineering field, by focusing
on the analysis of textual information in software repositories.
Widely adopted MUD techniques have been illustrated and a
description of the software repositories containing unstructured
data has been provided.

The survey about the current trends in applying MUD
techniques in software engineering had the goal of providing
the reader with a general idea of what can be done with such
techniques, while the listed future trends reflect the personal
author’s view of five promising research areas. The take away
of the paper is summarised in Fig. 1.
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