
Recommending Refactorings based on
Team Co-Maintenance Patterns

Gabriele Bavota1, Sebastiano Panichella1, Nikolaos Tsantalis2,
Massimiliano Di Penta1, Rocco Oliveto3, Gerardo Canfora1

1Department of Engineering, University of Sannio, Benevento, Italy
2Department of Computer Science & Software Engineering, Concordia University, Canada

3Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy
gbavota@unisannio.it, spanichella@unisannio.it, tsantalis@cse.concordia.ca,

dipenta@unisannio.it, rocco.oliveto@unimol.it, canfora@unisannio.it

ABSTRACT
Refactoring aims at restructuring existing source code when
undisciplined development activities have deteriorated its
comprehensibility and maintainability. There exist various
approaches for suggesting refactoring opportunities, based
on different sources of information, e.g., structural, seman-
tic, and historical. In this paper we claim that an addi-
tional source of information for identifying refactoring op-
portunities, sometimes orthogonal to the ones mentioned
above, is team development activity. When the activity of
a team working on common modules is not aligned with
the current design structure of a system, it would be possi-
ble to recommend appropriate refactoring operations—e.g.,
extract class/method/package—to adjust the design accord-
ing to the teams’ activity patterns. Results of a preliminary
study—conducted in the context of extract class refactoring—
show the feasibility of the approach, and also suggest that
this new refactoring dimension can be complemented with
others to build better refactoring recommendation tools.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation, Enhancement, Restruc-
turing, Reverse Engineering, and Reengineering

Keywords
Refactoring; Developers; Teams

1. INTRODUCTION
Software refactoring is“a disciplined technique for restruc-

turing an existing body of code, altering its internal structure
without changing its external behavior” [7]. Refactoring is
usually a direct consequence of an undisciplined evolution,
due to the lack of a rigorous and documented development
process, poor design decisions, or simply to the need for ap-
plying urgent patches to the software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642948.

In recent and past years, different approaches and tools
have been developed to identify refactoring opportunities.
Some of them [14] use structural information to identify the
need for refactoring, and then suggest a suitable refactoring
action. Others also exploit semantic information (i.e., tex-
tual information extracted from source code indicating the
implementation of similar responsibilities) [2], or historical
data [11] to identify refactoring solutions.

We conjecture that a fourth dimension can be highly ben-
eficial when recommending refactoring operations. Such a
dimension relates to changes performed by teams and it is
based on the assumption of congruence between social and
technical activities [4]. We define a team as a group of devel-
opers that, during the project history, worked on common
sets of source code entities (note that in this definition we
do not necessarily assume that such developers communi-
cate with each other). The basic idea is that code entities
frequently modified by the same team should be grouped to-
gether in a separate module. A straight-forward consequence
of that refactoring would be easing the release of individ-
ual components of the project and/or integration activities,
without waiting for other teams to complete their tasks.

Suppose that two different teams Ti and Tj usually work
on different code entities, and thus they are responsible for
maintaining and evolving different features of the system.
However, both Ti and Tj work on class C, but on different
parts of it, e.g., Ti works on members Cmi , while Tj on mem-
bers Cmj , where Cmi ∩Cmj = ∅. This could be a symptom
of heterogeneous responsibilities implemented in C, and thus
of an opportunity to perform Extract Class refactoring. We
claim that a better source code organization can be obtained
by separating Cmi from Cmj , because these distinct mem-
ber groups of C can be likely related to the features being
maintained by Ti and Tj , respectively. Note that, as it will
be clearer later in the paper, relying solely in change history
is insufficient. This is because history would just identify
co-changes, while in this context we need to identify code
entities co-maintained by the same team members.

In this paper we (i) introduce the approach named Team
Based Refactoring (TBR), to identify refactoring opportuni-
ties based on team co-maintenance patterns, (ii) instantiate
TBR to support Extract Class refactoring, and (iii) pro-
vide preliminary results showing that TBR is able to iden-
tify meaningful refactoring solutions and complementary in
many cases to other sources of information. This opens the
road towards better refactoring recommendation tools being
able to provide more accurate and/or more complete sugges-
tions by combining multiple sources of information.

Versioning
system

fine-grained
changes

Change history
extractor

Refactoring
recommender

Detection algorithm

Team identifier

emerging team 1

refactoring
opportunities

Figure 1: TBR: Team Based Refactoring

2. APPROACH
Figure 1 overviews the main steps of TBR. First, the en-

tire change history of a system under analysis is extracted
by mining the versioning system through a component called
Change history extractor. This information is then provided
as an input to the Team identifier component, in charge of
detecting teams as groups of developers usually working on
the same code entities. Finally, the change history infor-
mation and the identified teams—together with a specific
detection algorithm for a particular refactoring operation—
are provided to the Refactoring recommender, producing a
list of refactoring recommendations for the operation of in-
terest. In the following we detail each of the main steps
described above.

2.1 Extracting Change History Information
The Change history extractor mines the versioning sys-

tem log, identifying changes occurred on the system files
over time, as well as the authors of each change. Note that,
when the mining is performed from git (as in our study),
it allows to distinguish, when this information is available,
actual authors of a change from committers. The logs ex-
tracted through this operation report code changes at file
level of granularity. While this information is sufficient to
identify teams as groups of developers usually working on
the same code files, it is not enough for the Refactoring rec-
ommender. In fact, to detect solutions for several refactoring
operations the Refactoring recommender needs to know the
changes performed by developers in the code at a finer gran-
ularity level. To extract this information, a code analyzer
developed in the context of the Markos European project1

is used. The code analyzer parses the source code by relying
on the srcML toolkit [5] and extracts a set of facts concern-
ing the files, classes, methods, and attributes that have been
added, removed, and changed in each commit. As it will be
clear soon, this information can be used by the Refactoring
recommender to support different refactoring operations.

2.2 Identifying Teams
TBR identifies teams as groups of developers usually work-

ing on the same set of code files. Once again, we remark that
this may not correspond to actual teams of people struc-
tured by an organization/company; rather, it is a mean to
identify groups of people co-changing sets of code elements.
In accordance with this definition, there is a link between
two developers if they modify the same file during a specific

1http://www.markosproject.eu

time interval. The strength of a link between two developers
depends on the number of times the developers modify the
same file(s) in the considered time period. To identify teams
during the history of a project, the Team identifier splits the
history of the system into time windows, identifying teams
in each of them. This step is needed for two reasons:

1. Teams change during time. Thus, computing the teams
by considering the entire change history would not
make sense. A software engineer interested in identify-
ing refactoring solutions on the current version of the
system will focus her attention just on the last year(s)
of development, since very old teams are unlikely to
exist anymore.

2. To consider two developers as part of the same team,
we need to ensure that they work on the same files in
a specific (and limited) period of time. Otherwise, it
could happen to consider two developers as part of the
same team even if they modified the same file in two
distant time periods.

Choosing an appropriate time window length is impor-
tant. A longer time window captures more commits than
a shorten one, hence more information to cluster develop-
ers into teams. However, a long time window also implies
the risk of grouping people not really working on the file
in the same time period, but rather in two subsequent time
periods. The choice of the time window length depends on
factors that are very project specific, like, for instance, the
frequency of commits (the higher the commit frequency, the
shorter the time window could be), the average release in-
terval (for projects issuing releases very quickly a shorter
time window could be appropriate), and the stability of the
developers’ base (the more stable is the developers’ base, the
longer the time window could be).

For each time window, the Ward’s hierarchical clustering
algorithm [10] is applied to cluster developers into teams.
As a distance between the entities to cluster (i.e., develop-
ers), we adopt an Euclidean distance based on a dissimilarity
measure taking into account the common files two developers
modify in the considered time window. In particular, given
the generic pair of developers (Di,Dj), their dissimilarity d
is computed as:

d(Di, Dj) = 1− |commonlyModifiedF iles| −min
max−min

where |commonlyModifiedF iles| is the number of common
files modified by Di and Dj in the considered time win-
dow, and min (max) is the minimum (maximum) value of
|commonlyModifiedF iles| measured among all pairs of de-
velopers. As it can be noticed (i) d is normalized between
zero and one and (ii) in d, the higher the number of common
files two developers modify in the considered time window,
the lower their dissimilarity.

The output of the Ward’s algorithm is a dendrogram, a
tree diagram where the leafs of the tree represent the enti-
ties to cluster (developers) while the remaining nodes rep-
resent possible clusters (teams) the entities belong to, up
to the root representing a cluster containing all the enti-
ties. The distance between merged entities increases with
the level of the merge (starting from the leaves towards the
root). This means that nodes (i.e., clusters) at a higher level
group together entities having higher distance (lower simi-
larity) between them. To find the dendrogram cut-point

we need to determine an appropriate number of clusters.
To this aim, we relied on a widely adopted approach based
on the Silhouette coefficient [8], a measure of the quality
of the obtained clustering defined as the ratio between the
average intra-clustering and the average inter-clustering dis-
tance. We compute the Silhouette coefficient for each possi-
ble partition obtainable from the dendrogram produced by
the Ward’s algorithm, selecting the one exhibiting the high-
est Silhouette value to cluster developers into teams.

2.3 Detecting Refactoring Opportunities

2.3.1 General Approach
When the Refactoring recommender is invoked, the fol-

lowing information is available for each time window (i) the
teams existing in the time window, and (ii) the fine-grained
changes performed by each team in the time window. By
exploiting this information it is possible to support different
refactoring operations. Indeed, as said before, the general
idea behind TBR is that code entities frequently modified
by the same team should be grouped together in a separate
module. This idea can be instantiated to different refactor-
ing operations by considering different granularity levels for
code entities and modules.

Table 1 illustrates how TBR can be applied to different
types of refactoring opportunities. For instance, by consid-
ering a group of classes maintained by a specific team as the
code entities it is possible to improve the system package
modularization to better reflect the way developers work; a
typical refactoring in such a context is the Extract Package,
aimed at isolating a specific responsibility into a package,
representing our module granularity. Going at a finer level
of granularity and considering methods as the modules of
interest, Extract Method refactoring could be supported by
two means: 1) a code fragment (i.e., a subset of statements)
within a method maintained by a specific team of develop-
ers could indicate the existence of a distinct functionality
that can be extracted in a separate method, 2) similar code
fragments within different methods frequently modified by
a specific team could indicate the existence of change-prone
clones that can be merged into a single method. Addition-
ally, the modification of the code fragments by the same
team indicates that the developers are aware of the existence
of the clones and dedicate effort to update them consistently.

According to the particular characteristics and relation-
ships of the involved code entities, we can develop algorithms
for extracting different types of refactoring opportunities. In
the next subsection, we will describe a prototype approach
for the detection of Extract Class refactoring opportunities
using TBR.

2.3.2 TBR for Extract Class Refactoring
In this paper we instantiate TBR to Extract Class refac-

toring as described in Algorithm 1. Extract Class refactoring
is a technique for splitting classes with many responsibilities
into different classes. TBR identifies Extract Class solutions
in a given time window TW . Note that, a software engineer
interested in identifying refactoring solutions in a system S
today, will look for teams and changes performed by them
in the recent software history (of length TWlength).

TBR analyzes each class Ci ∈ S to verify, for each team
Tj existing in TW , if there exists a set of methods MTj

owned by Tj (lines from 6 to 13 in Algorithm 1). MTj is

Algorithm 1 TBR applied to Extract Class refactoring

1: TWlength ←1 year
2: TW ← from today to TWlength before
3: Teams← teams detected by the Teams identifier in TW
4: S ← the set of classes in the system under analysis
5: Refactorings← ∅
6: for each class Ci ∈ S do
7: for each team Tj ∈ Teams do
8: MTj

← ∅ . methods owned by Tj
9: for each method mk ∈ Ci do

10: if Tj owns mk then
11: MTj

← mk

12: end if
13: end for
14: if |MTj

| > λ and |Ci −MTj
| > λ then

15: ATj
← Ci attributes used more by MTj

than by

{Ci −MTj
}

16: RefToAdd← extract MTj
+ATj

from Ci

17: if satisfiesPreconditions(RefToAdd) then
18: Refactorings← RefToAdd
19: end if
20: end if
21: end for
22: end for
23: return Refactorings

owned by Tj during TW if, for each method mk in MTj , Tj

is responsible of at least 75% of all changes performed on mk

during TW [3]. Our conjecture is that the set of methods
MTj represents a precise responsibility, managed by Tj , that
can be extracted from Ci to facilitate its maintenance.

In order to consider the extraction of MTj from Ci as a
valid extract class refactoring opportunity we check that: (i)
the cardinality of MTj is at least λ, where λ is fixed in our
current implementation to three, otherwise it is unlikely that
MTj represents a well-defined set of responsibilities, and (ii)
the methods left in Ci when extracting MTj are more than
λ (for the same reason explained above)—see lines from 14
to 16 in Algorithm 1. Note that our choice of fixing λ = 3
is not random, but based on previous work [2]. However,
a deep investigation of such parameter is part of our future
research agenda.

Attributes of Ci that are used by a greater proportion
of methods in MTj than by the methods left in Ci are
grouped in ATj to complete the extract class refactoring
solution (lines from 15 to 16 in Algorithm 1). At the end
of the process we examine the recommendations against the
preconditions proposed by [6] to filter out those that could
change program behavior or are not applicable in practice
(lines from 17 to 19 in Algorithm 1).

Note that by using the above described algorithm it is also
possible to identify different teams owning different subsets
of Ci’s methods. This would result in a whole new organi-
zation of the responsibilities implemented in Ci.

3. PRELIMINARY EVALUATION
The goal of our study is to evaluate the quality of the

refactoring solutions identified by TBR and the complemen-
tarity of the information it exploits as compared to other
sources of information typically used to support refactoring,
as structural, semantic, and historical information. The con-
text of the study consists of five software projects belonging
to the Android APIs, chosen for being very active projects
with a relatively large number of developers (see Table 2).

Table 1: Instantiation of TBR to Different Refactoring Operations

Code Entities
Module

Code Smell
Refactoring

Granularity Operation
A subset of methods and attributes within the same

Class
Single Responsibility

Extract Class
class frequently modified by the same team Principle violation

A method from one class (source) frequently co-modified
Class Feature Envy Move Method

with members of another class (target) by the same team

A subset of statements within a method frequently
Method

Non-Cohesive
Extract Method

modified by the same team Method

A set of similar code fragments within different methods
Method Duplicated Code Extract Method

frequently modified by the same team

A subset of classes under the same package or different
Package

Poor Package
Extract Package

packages frequently modified by the same team Organization

Table 2: Software systems used in the study.
Project from Andr. API Period KLOC
framework-opt-telephony Aug 2011-Jan 2013 73-78
frameworks-base Oct 2008-Jan 2013 534-1,043
frameworks-support Feb 2011-Nov 2012 58-61
sdk Oct 2008-Jan 2013 14-82
tool-base Nov 2012-Jan 2013 80-134

Our study aims at addressing two research questions:

• RQ1: Is the information derived from teams useful to
identify refactoring opportunities?

• RQ2: Is the information derived from teams comple-
mentary to the sources of information typically exploited
to identify refactoring opportunities?

To answer RQ1 we simulate the use of TBR to detect
refactoring opportunities. That is, given St the system snap-
shot at time t on which we are interested to perform refac-
toring, TBR identifies refactoring solutions by looking at
changes occurred in the period [t−TWlength, t]. Releases of
the Android APIs are generally issued every four/six months2.
However, since Android APIs are divided into sub-projects
(see Table 2), we observed that some of them did not change
(or rarely changed) in a four-months time interval. Because
of that, we considered possible values of TWlength between
six months and one year, finding one year to be sufficient to
capture enough changes for all subsystems, without risking
to merge teams working in very different time periods. We
plan to perform a thorough assessment of this parameter in
the future with the aim of defining heuristics to automati-
cally set the time window length based on specific charac-
teristics of the project on which TBR is applied.

Then, to assess the quality of the recommended refactor-
ings, two PhD students and one industrial developer (none
of them are authors, nor they know how the approach works)
evaluated each of them by answering the following questions:

• Q1: How do you perceive the cohesiveness/decoupling
of the classes involved in the refactoring? Assign a
score on a five points Likert scale: 1 (definitely worse),
2 (slightly worse), 3 (the same), 4 (slightly better), 5
(definitely better than before).

• Q2: Evaluate the effort of implementing the refactor-
ing operation by considering the impact on the source
code (e.g., addition of getter/setter methods, update of
references, etc). Assign a score on a five points Likert
scale: 1 (very low), 2 (low), 3 (medium), 4 (high), 5
(very high).

2http://tinyurl.com/4an7xgg

We also assess the evaluation agreement between the three
participants by computing the Kendall’s W coefficient of
concordance [9], which ranges between 0 (no agreement) and
1 (complete agreement).

To answer RQ2, we take each of the classes recommended
by TBR in RQ1 and refactor them by applying approaches
exploiting different sources of information. In particular, we
apply the Extract Class refactoring approach by Bavota et
al. [2]. This approach exploits a combination of structural
(i.e., method calls and shared attributes) and semantic (i.e.,
textual similarity between methods) information to group
together cohesive groups of methods and attributes to ex-
tract from a given class. We apply the approach by Bavota
et al. [2] by forcing it to exploit only structural or only
semantic information. This can be easily done by tuning
the weight (importance) assigned to each source of infor-
mation when identifying refactoring solutions (e.g., setting
the weight of the semantic information to zero results in
refactoring solutions identified only by exploiting structural
information). From now on we refer to these two techniques
simply as structural and semantic. Also, we refactor each
class using historical information based on the approach pro-
posed by Palomba et al. [12]. Specifically, we use association
rule discovery [1] to detect subsets of methods in the same
class that often change together (and thus can be extracted
to a new class). From now on we refer to this approach sim-
ply as historical. Note that, to distribute attributes among
classes, we use the same heuristics of TBR, i.e., we place
each attribute in the class with the largest proportion of
methods using it.

Then, we compute the percentage of classes recommended
by TBR that have been also recommended by at least one
of the other three techniques to assess the complementarity
of the alternative techniques. For each class decomposed by
both TBR and the competitive approaches, we compute the
MoJo eFfectiveness Measure (MoJoFM) [15] between the
decomposition suggested by TBR and the one suggested by
the alternatives to evaluate their similarity. The MoJoFM is
a normalized variant of the MoJo distance and is computed
as follows:

MoJoFM(A,B) = 1− mno(A,B)

max(mno(∀A,B))

where mno(A,B) is the minimum number of Move or Join
operations to perform in order to transform the partition
A into B, and max(mno(∀ A,B) is the maximum possi-
ble distance of any partition A from partition B. Note
that in our case, a partition represents the sets of members
(methods and attributes) in which the class under investi-
gation is decomposed applying a given technique. Thus, a

Table 3: Answers Provided by the Three Participants.
Q1: How do you perceive the cohesiveness/decoupling of the classes involved in the refactoring?

Participant definitely worse slightly worse the same slightly better definitely better
PhD1 3 (13%) 3 (13%) 4 (17%) 8 (35%) 5 (22%)
PhD2 4 (17%) 2 (9%) 6 (26%) 6 (26%) 5 (22%)
Industrial 4 (17%) 3 (13%) 5 (22%) 7 (30%) 4 (17%)
Q2: Evaluate the effort of implementing the refactoring by considering the impact on the source code
Participant very low low medium high very high
PhD1 4 (17%) 6 (26%) 8 (35%) 3 (13%) 2 (9%)
PhD2 4 (17%) 8 (35%) 6 (26%) 2 (9%) 3 (13%)
Industrial 2 (9%) 6 (26%) 9 (39%) 6 (26%) 2 (9%)

MoJoFM value of 0 means that the decomposition solutions
derived from two techniques have nothing in common, while
a MoJoFM value of 1 indicates an identical decomposition.

3.1 Results
The application of TBR to the five projects resulted in 23

Extract Class refactoring recommendations.
RQ1: Is the information derived from teams use-

ful to identify refactoring opportunities? The answers
provided by participants (from now on PhD1, PhD2, and
industrial) to the two questions assessing the quality of the
refactoring recommendations by TBR (i.e., Q1 and Q2) are
reported in Table 3. In particular, when answering Q1,
participants found meaningful from 11 (47%, industrial and
PhD2) up to 13 (57%, PhD1) of the 23 refactoring recom-
mendations, assigning them a 5-score or a 4-score. Interest-
ingly, the 11 recommendations evaluated as meaningful by
industrial and PhD2 are the same, and represent a subset
of the 13 highly scored by PhD1. Additional recommenda-
tions (on average 5, 22%) were assigned a 3-score, showing
how the proposed refactoring represents an alternative to
the original design but, from the participants’ point of view,
does not justify the need for a change. On average, only
six out of the 23 suggestions (26%) were considered as bad
refactoring recommendations, receiving a 2-score or a 1-score
(see Table 3). When computing the Kendall’s W coefficient
to evaluate the level of agreement between the three partic-
ipants in judging the 23 refactorings, we obtained a value
equal to 0.897, indicating a very high level of concordance
in the participants’ evaluations (W is very close to 1).

Regarding the effort needed to implement the 23 recom-
mended refactorings (Q2), the median rating assigned by
the participants was 2 (low) for PhD2, and 3 (medium) for
PhD1 and the industrial developer. On average, for six rec-
ommendations (26%) the evaluators felt that a high or a
very high effort would be required to implement them. Also
in this case the Kendall’s coefficient showed a high level of
agreement between participants, with W=0.791.

In summary, almost 50% of the refactoring recommenda-
tions by TBR have been highly appreciated by participants
with only 26% of them, on average, negatively evaluated.
Also, the effort needed to apply the suggested refactorings
seems to be reasonable in most cases.

RQ2: Is the information derived from teams com-
plementary to the sources of information typically ex-
ploited to identify refactoring opportunities? Table 4
shows (i) the percentage of the 23 classes recommended by
TBR that have been also recommended by each of the three
alternative techniques (i.e., structural, semantic, and histori-
cal) and (ii) the MoJoFM between the refactorings suggested
by TBR and those proposed by each of the other techniques.
Also, the last row of Table 4 shows the percentage of the 23
classes that is recommended by at least one of the three
competitive techniques.

Table 4: Overlap between the recommendations
made by TBR and the other techniques.

Technique Overlap MoJoFM
structural 30% 0.77
semantic 43% 0.67
historical 35% 0.73
structural ∪ semantic ∪ historical 70% -

As it can be easily noticed, the overlap between TBR and
the other three techniques is present, but is not particularly
high. In particular, the technique based on structural in-
formation recommends 30% of the classes for which TBR
suggests a decomposition, semantic information 43%, and
historical information 35%. Also, for 30% of the classes (i.e.,
seven classes) recommended by TBR, none of the three com-
petitive techniques proposes an Extract Class refactoring
solution. This means that the information extracted from
teams is to some extent complementary to the structural,
semantic, and historical information. In the evaluation con-
ducted in the context of RQ1, the refactorings proposed by
TBR on these seven classes were positively evaluated by all
three participants in four cases (achieving a 4- or a 5-score),
and with a median 2-score for what concerns the difficulty to
apply them (Q2). Thus, even if only TBR recommends to
refactor these classes, at least four out of the seven recom-
mendations have been positively evaluated by participants.

When measuring the MoJoFM between the refactorings
suggested by TBR and the refactorings proposed by each
of the other techniques (see Table 4) we obtained, an aver-
age value of 0.77 for the classes also recommended by the
structural, 0.67 for the semantic, and 0.73 for the historical
technique. Thus, the decompositions proposed by TBR have
commonalities to those obtained by exploiting other sources
of information, but also differences.

For instance, TBR, structural, and semantic techniques,
consistently recommend an Extract Class refactoring for the
class BluethoothAdapter, composed of 43 methods. This
class, as stated in its Javadoc, represents the local device
bluetooth adapter. It allows to perform fundamental blue-
tooth tasks, such as device discovery, query a list of paired
devices, instantiate a BluetoothDevice using a known MAC
address, and create a BluetoothServerSocket to listen for
connection requests from other devices. TBR identified on
this class a set of 14 methods owned by a team composed
of three developers that should be extracted in a separate
class. In particular, all 14 methods managed by this team
are related to a precise responsibility implemented in the
BluethoothAdapter class, i.e., creating a BluetoothServer-

Socket to listen for connection requests from other devices.
Examples of these methods are listenUsingRfcommOn, lis-
tenUsingRfcommWithServiceRecord, and createNewRfcomm-

SocketAndRecord. Also, TBR identified in BluethoothAdapter

a set of 18 methods (owned by a team of 14 developers)
mostly related to another responsibility of the class, i.e., de-

vice discovering. Examples of methods contained in it are
setScanMode, startDiscovery, and cancelDiscovery.

The structural technique recommends, instead, the ex-
traction of a single class that has a subset of the members
of the first responsibility identified by TBR (i.e., the one
managing the creation of a BluetoothServerSocket). In
particular, it contains 5 of the 14 methods suggested to be
extracted by TBR. While the remaining 9 methods are not
structurally related to the 5 clustered together, they are still
conceptually related to the management of a Bluetooth-

ServerSocket. For instance, the structural approach does
not group together the methods listenUsingRfcommWith-

ServiceRecord and listenUsingEncryptedRfcommOn.
Concerning the semantic technique, it recommends the

extraction of two classes from BluetoothServerSocket: one
is also in this case a subset of the first responsibility identi-
fied by TBR. In this case it contains 8 out of the 14 methods
grouped together by TBR. The other class suggested to be
extracted is composed of 10 methods, but from our man-
ual inspection, it is very difficult to relate them to a precise
responsibility implemented in the BluethoothAdapter class.

This example highlights that the four different sources of
information, applied on the same class, can produce quite
different and orthogonal results. Thus, refactoring recom-
mendation tools could benefit from the combination of dif-
ferent sources of information. For instance, a “hybrid” Ex-
tract Class refactoring recommendation approach could be
obtained in a similar fashion to what has been done in [2]
to combine structural and semantic information. First, for
each source of information a similarity measure between
pairs of methods should be defined. Such a measure already
exists for structural and semantic information [2] and can
be easily defined for historical and team-based information.
The underlying idea is that two methods are similar from
the historical point of view if they often co-change during
time, while from the team point of view they are similar if
they are frequently maintained by the same team(s). Once
defined, these four similarity measures can be combined in
order to obtain an overall similarity between pairs of meth-
ods helping in identifying clusters of cohesive methods in-
side a class of interest. Of course, the weight of each of the
four sources of information (i.e., of each of the four similar-
ity methods) must be carefully assessed by (i) experiment-
ing different configurations, (ii) exploiting machine learning
techniques, or (iii) using search-based techniques to find the
best configuration [13].

4. CONCLUSION AND FUTURE WORK
We proposed a novel refactoring approach named TBR

(Team Based Refactoring), that exploits team co-mainte-
nance patterns to recommend refactorings. It exploits the
assumption that code entities frequently modified by the same
team should be grouped together in a separate module.

In a preliminary evaluation conducted in the context of
Extract Class refactoring we achieved results indicating that,
overall, the recommended refactoring operations are mean-
ingful and in 30% of the cases complementary to those sug-
gested by alternative techniques. This is promising enough
to conduct future work, focusing on (i) the instantiation of
TBR to other refactoring operations, and (ii) the combina-
tion of information derived by teams with other sources of
information typically used in the refactoring field.

Acknowledgment
Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta,
and Sebastiano Panichella are partially funded by the EU
FP7-ICT-2011-8 project Markos, contract no. 317743. Niko-
laos Tsantalis is partially funded by NSERC. Any opinions,
findings, and conclusions expressed herein are the authors’
and do not necessarily reflect those of the sponsors.

5. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large
databases. In ACM DATA, pages 207–216, 1993.

[2] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto.
Automating extract class refactoring: an improved
method and its evaluation. Empirical Software
Engineering, Accepted on Apr 2013.

[3] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. T.
Devanbu. Don’t touch my code!: examining the effects
of ownership on software quality. In
SIGSOFT/FSE’11, pages 4–14, 2011.

[4] M. Cataldo, J. D. Herbsleb, and K. M. Carley.
Socio-technical congruence: A framework for assessing
the impact of technical and work dependencies on
software development productivity. In ESEM 2008,
pages 2–11. ACM.

[5] M. L. Collard, H. H. Kagdi, and J. I. Maletic. An
XML-based lightweight C++ fact extractor. In IWPC
2003, pages 134–143. IEEE Computer Society.

[6] M. Fokaefs, N. Tsantalis, E. Stroulia, and
A. Chatzigeorgiou. Identification and application of
extract class refactorings in object-oriented systems.
J. Syst. Softw., 85(10):2241–2260, Oct. 2012.

[7] M. Fowler. Refactoring: improving the design of
existing code. Addison-Wesley, 1999.

[8] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis.
Wiley-Interscience, 2005.

[9] M. G. Kendall and S. Babington. The problem of m
rankings. Annals of Mathematical Statistics, pages
275–287, 1939.

[10] F. Murtagh and P. Legendre. Ward’s hierarchical
clustering method: Clustering criterion and
agglomerative algorithm. CoRR, abs/1111.6285, 2011.

[11] A. Ouni, M. Kessentini, H. A. Sahraoui, and M. S.
Hamdi. The use of development history in software
refactoring using a multi-objective evolutionary
algorithm. In GECCO, pages 1461–1468. ACM, 2013.

[12] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, and D. Poshyvanyk. Detecting bad
smells in source code using change history
information. In ASE, 2013.

[13] A. Panichella, B. Dit, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia. How to effectively
use topic models for software engineering tasks? an
approach based on genetic algorithms. In ICSE 2013,
pages 522–531, 2013.

[14] N. Tsantalis and A. Chatzigeorgiou. Identification of
move method refactoring opportunities. IEEE TSE,
35(3):347–367, 2009.

[15] Z. Wen and V. Tzerpos. An effectiveness measure for
software clustering algorithms. In IWPC 2004, pages
194–203.

