
Automatic Query Performance Assessment during the
Retrieval of Software Artifacts

Sonia Haiduc
Wayne State Univ.
Detroit, MI, USA

Gabriele Bavota
Univ. of Salerno

Fisciano (SA), Italy

Rocco Oliveto
Univ. of Molise

Pesche (IS), Italy

Andrea De Lucia
Univ. of Salerno

Fisciano (SA), Italy

Andrian Marcus
Wayne State Univ.
Detroit, MI, USA

sonja@wayne.edu, gbavota@unisa.it, rocco.oliveto@unimol.it, adelucia@unisa.it,
amarcus@wayne.edu

ABSTRACT

Text-based search is done by developers in the context of many

software engineering tasks, such as, concept location, traceability

link retrieval, reuse, impact analysis, etc. Solutions for software

text search range from regular expression matching to complex

techniques using text retrieval. In all cases, the results of a search

depend on the query formulated by the developer. A developer

needs to run a query and look at the results before realizing that it

needs reformulating. Our aim is to automatically assess the

performance of a query before it is executed. We introduce an

automatic query performance assessment approach for software

artifact retrieval, which uses 21 measures from the field of text

retrieval. We evaluate the approach in the context of concept

location in source code. The evaluation shows that our approach

is able to predict the performance of queries with 79% accuracy,

using very little training data.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, maintenance, and

Enhancement – corrections, enhancement.

General Terms: Measurement, Experimentation.

Keywords: Query performance, text retrieval, concept

location

1. INTRODUCTION
Text-based search and retrieval are frequently employed by

developers when looking for software artifacts that might be

helpful for their task at hand. For more than two decades, Text

Retrieval (TR) -based search is being successfully applied to a

multitude of software engineering (SE) tasks, including: concept

location [23], impact analysis [13], code reuse [24], traceability

link recovery [2], bug triage [12, 32], requirements analysis [6],

etc.

Approaches using TR usually require formulating a query and

return a list of ranked software artifacts. The developer examines

the list of artifacts and for each of them decides if it is relevant to

the current task or not. The performance of any TR-based search

technique used in SE depends strongly on the text query and its

relationship with the text contained in the software artifacts.

Writing good queries is not easy, especially when searching for

source code. One of the causes is the vocabulary mismatch

problem [10], i.e., developers often use different language to

describe the code and its behavior than they use to implement it.

In addition, most TR techniques rely on complex statistics, which

are rather opaque to the user, i.e., it is not always clear to the user

why a document is ranked high/low with respect to a query.

The performance of a query reflects how well the query retrieves

the desired documents when executed by a TR approach. A high-

performing query retrieves the relevant documents on top of the

results list. Conversely, a low-performing query either retrieves

the desired documents in the bottom part of the list of the results,

or it does not retrieve them at all. When low-performing queries

are executed, the developer will spend time and effort analyzing

irrelevant search results, before she decides to reformulate the

query.

Our goal is to overcome this problem by estimating the

performance of a query before it is executed. We want to identify

the queries that are likely to perform poorly, immediately after

they are written and notify the developer that a reformulation of

the query is likely needed.

In order to solve this problem, we get our inspiration from the

field of natural language (NL) document retrieval. In this field,

query performance prediction [5] has been actively researched

over the past decade. We found that, while similar, the query

performance problems for NL documents and software documents

have essential differences. One important difference is the fact

that for many SE tasks (e.g., concept location) it is more important

to improve the rank of one relevant artifact (i.e., find something

relevant quickly) rather than improving the rank of all the relevant

artifacts (as it is common in NL document retrieval). At the same

time, solutions in NL are usually based on measuring different

properties of the query and of the NL documents, which are not

always applicable to SE artifacts (e.g., the text extracted from the

source code is not always correct English). Thus, a careful

selection of measures that can be applied to software artifacts is

needed. Moreover, many solutions in NL require the execution of

the query in order to make an assessment of its performance (i.e.,

post-retrieval techniques). Since our goal is to offer quick

feedback to developers about their queries, we focus only on

predictions performed before retrieval (i.e., pre-retrieval

techniques). Most pre-retrieval techniques rely on measuring

some properties of the query (e.g., coherence) and their

relationship with the corpus (e.g., the similarity between the query

and the entire document collection).

We propose a solution to the problem of query performance

assessment in SE by adapting NL-inspired solutions and use them

on software data. Our approach uses 21 selected measures, which

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ASE’12, September 3–7, 2012, Essen, Germany.

Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

assess four different aspects that can influence the performance of

a query: specificity, similarity, coherency, and term relatedness.

Our technique uses classification trees to learn rules (constructed

using some of the 21 measures), which classify queries as having

high or low performance.

We evaluated the proposed approach in the context of TR-based

concept location in source code. The results on five software

systems indicate that our approach is able to correctly assess the

performance of queries for the task of concept location with an

accuracy of 79% (i.e., it classifies correctly 79% of the queries, in

average). The technique performs better than expected, as the

results are better than those achieved by state of the art

approaches in NL document retrieval [15, 30].

The paper is a premiere in SE, as no prior work addressed the

query performance prediction on software corpora. Considering

the good performance of our technique, we anticipate that it can

be used to help developers reformulate their queries faster, hence

saving effort and time while solving their SE tasks.

2. RELATED WORK
The need for an in-depth analysis of query performance surfaced

in the Text REtrieval Conference1 (TREC) community, as the

high variance in performance across different queries became

evident for the TR approaches participating in the TREC

competitions. In consequence, a special conference track was

created between 2004-2005 (i.e., the Robust track), where a new

challenge was introduced that required predicting the performance

of the participating TR approaches on each of the queries in the

competition [31]. The predictions of the query performance were

done based on different measures that captured various properties

of the queries, document collections, and list of search results.

The prediction power of each measure was determined by

correlating its values with the average precision (AP) values

achieved by the queries after execution. A high correlation would

indicate that the measure is able to predict the performance of a

query, in terms of AP. The correlations obtained were, however,

very low and even negative in some cases. This outcome of the

Robust track indicated that predicting the performance of queries

is a challenging problem, and sprouted the research on this topic.

Since then, numerous approaches for predicting the performance

of a query have been proposed in the NL document retrieval field

[5], but the main goal has remained the same: predicting the AP of

a query based on measures that correlate with it.

A few papers in the field of NL document retrieval have

investigated the query performance prediction problem from the

perspective of classifying incoming queries into easy to answer

(high-performing) and hard to answer (low-performing) queries

[15, 30, 34]. In these works, several classification approaches

have been used for this purpose, and in each case, decision trees

were found to be the most adequate for this problem. While we

take inspiration from this work in using classifiers, and in

particular decision trees for predicting if a query exhibits low- of

high-performance, our work is significantly different in terms of

the measures used to train the classifiers and the timing of the

prediction (i.e., pre-retrieval vs. post-retrieval).

In terms of prediction measures, the approaches in NL document

retrieval usually use a combination of pre-retrieval measures

(based on the length and some linguistic properties of the query)

and post-retrieval measures, collected after the query is executed.

1 http://trec.nist.gov/

While we use pre-retrieval measures in our approach, we chose a

different set of measures, for two reasons. First, the measures

based on query length were proved to have little or no bearing on

the query performance [18]. Second, the other pre-retrieval

measures used were all based on linguistic properties of the query,

based on word relationships in NL. Software artifacts (e.g.,

source code) do not always follow the rules of discourse found in

NL documents [28]. Thus, the linguistic measures are not

generally applicable to software and, in consequence, we do not

use them in our approach.

Within SE, predicting the performance of queries has not been

tackled. The (somewhat) related work in SE deals with the

manual or automatic query reformulation and refinement [7, 8, 11,

14, 17, 26, 27], mostly based on relevance feedback mechanisms.

Also, some studies have investigated the results of formulating

different queries for the same information need [21, 29], which

highlighted the strong dependence of the retrieval performance on

the query and motivates our work.

3. PROPOSED APPROACH
We propose an approach for automatically assessing the

performance of queries before they are executed, in the context of

SE tasks. While predicting the performance of queries in the

context of SE tasks bares clear resemblances to the NL task, there

are some aspects that make SE tasks unique. First of all, in many

SE tasks, such as, concept location, it is more important that one

relevant artifact is found as soon as possible rather than retrieving

all relevant ones. Even when the retrieval of all relevant software

artifacts is needed, software data offers additional means for

retrieving the complete set of the relevant artifacts once the first

one is identified (e.g., dependencies in the code). For example, in

source code, a call graph can be used to identify the other relevant

artifacts, starting from the first one identified [25]. An approach

for query performance assessment that is applicable to certain SE

tasks would, therefore, benefit more from focusing on predicting

if the query leads to identifying the first relevant document in a

reasonable amount of time rather than predicting the AP (i.e.,

average precision). On the other hand, other SE tasks addressed

using TR, such as, traceability link recovery between software

artifacts, may be more interested in reducing the average precision

of the retrieval.

We chose to focus on the former category of tasks, as the solution

requires rethink exiting work from NL document retrieval. At the

same time, an approach that is to be used in the context of solving

SE tasks needs to offer a clear and pragmatic answer to the

developer, indicating if a query is worth pursuing or requires

reformulation. Our proposed approach offers such an answer by

classifying queries in two categories: i.e., high-performing or low-

performing, where the latter are queries that require reformulation.

The term query performance refers here to the ability of the query

to retrieve the relevant software artifacts to the task at hand in

such a way that they are easily accessible by developers (i.e., they

are placed close to the top of the result list). A query that

achieves this is considered a high-performing query, as opposed to

low-performing queries, which either fail to retrieve the relevant

documents altogether or they place them at high ranks in the list

of results, making them hard to reach by developers. Note that the

definition of high-performing and low-performing queries may

need to be reformulated, based on the current SE task. For

example, in some applications, a high-performing query may be

considered one that retrieves the highest ranking relevant artifact

within the top 20, whereas in other cases this threshold could be

set to 50.

Our proposed approach uses classification trees [4] in order to

assign queries to one of the two categories. Decision tree learning

has been previously applied successfully to query performance

prediction in NL [15, 30, 34], and also to analyzing SE data [20]

(i.e., for defect prediction). In order to train the classification

trees for predicting query performance, we make use of a set of

carefully selected, state-of-the-art pre-retrieval performance

prediction measures [5] from the field of TR. We selected 21

such measures from the set of pre-retrieval measures, which refer

to four aspects that can influence the performance of a query:

specificity, similarity, coherency, and term relatedness. The

measures were selected such that they can be applied to any type

of software artifacts. For example, measures making use of word

relationships based on WordNet2 were not selected, due to the fact

that the lexical relationships in software data have a different

nature than the ones in English [28].

The rest of this section is organized as follows. Subsection 3.1

presents an overview of the process followed in our approach,

followed by subsection 3.2, which presents the 21 measures used,

and subsection 3.3 which contains details about the classification

approach used.

3.1 Process
Our approach is applicable to any SE task that makes use of TR-

based search, and it consists of several steps, described below.

3.1.1 Collect training data
The first step in our approach deals with collecting the data

needed for training the classification trees. This data consists of

sets made of tuples, each containing: the query, the 21 pre-

retrieval measures for the query, and the class of the query (i.e.,

high-performing or low-performing). The queries may be

collected from different sources, depending on the SE task. For

example, in the case of traceability link recovery the queries may

be requirements documents or fragments of requirements, source

code, design documents, etc. In the case of concept location, the

queries are either formulated by developers or are automatically

extracted from bug and feature repositories. Once the queries are

collected, the 21 predicting measures are computed based on the

text of the query and on the software artifacts in the collection.

Last, the queries are executed using a TR engine and based on the

results their class is determined (i.e., high-performance or low-

performance).

3.1.2 Build the classification tree
At this point, the classification tree can be trained using the data

collected. After this initial training, the classifier rules are built

and they can be used to assess the performance of new queries.

There are two different approaches that can be used for training

the classifier. The first is based on training the classifier

independently for each new software system, thus using only the

training data from one system at the time. While this approach

might be able to assess the performance of queries better for a

particular system, as it adapts to its specific features, it may not be

applicable to new systems. The second approach is based on

training the classifier based on data from a set of systems, with the

purpose of creating a general model that can be applied to a set of

software system. We evaluate both approaches for the task of

concept location in our study, presented in Section 4.

2 http://wordnet.princeton.edu/

3.1.3 Assess the performance of new queries
Once the classifier is built, it can be applied for assessing the

performance of new queries, based only on computing the subset

of the 21 measures of query performance which are included in

the rules of the classification tree. Thus, the classifier may be able

to determine if a query needs reformulation immediately after it

was formulated by the developer.

3.2 Query Performance Aspects and

Measures
This section presents the 21 pre-retrieval query performance

prediction measures used by our approach. As this is a new

problem in SE, in order to make the paper self-contained, we

included an Appendix with the definitions and the formulas used

to compute each of the 21 measures.

3.2.1 Specificity
Specificity refers to the ability of the query to represent the current

information need and discriminate it from others. A query

composed of non-specific terms commonly used in the collection

of documents is considered having low specificity, as it is hard to

differentiate the relevant documents from non-relevant ones based

on its terms. For example, when searching source code, the

flowing query “initialize members” could have low specificity, if

a comment containing this text would be found in most class

constructors in a system.

Specificity measures are usually based on the query terms’

distribution over the collection of documents. For our approach,

we considered eight specificity measures from the text retrieval

literature [5], namely: average inverse document frequency

(AvgIDF); maximum inverse document frequency (MaxIDF);

standard deviation of the inverse document frequency (DevIDF);

average inverse collection term frequency (AvgICTF); maximum

inverse collection term frequency (MaxICTF); standard deviation

of inverse collection term frequency (DevICTF); query scope

(QS); and simplified clarity score (SCS).

The first six measures are based on using the inverse document

frequency metric (IDF), which is the inverse of the number of

documents in the collection in which a term appears, and the

inverse collection term frequency (ICTF), which is the inverse of

the number of occurrences of a term in the entire document

collection. The assumption is that the more documents a term

appears in and the highest its frequency over the entire collection

is, the more difficult it is to discriminate the relevant documents

based on it. Thus, query terms should have high IDF and ICTF

values and a high-performance query should have a high AvgIDF,

and AvgICTF, which are the average IDF and ICTF among the

query terms. MaxIDF and MaxICTF, which represent the

maximum IDF and ICTF values across all query terms,

respectively, are popular variations of the average, and are also

expected to assume high values in the case of high-performance

queries.

DevIDF and DevICTF are the standard deviations of the IDF and

ICTF values over the query terms and assume that low variance

reflects the lack of dominant, discriminative terms in the query,

which may prevent the retrieval of relevant documents. In

consequence, DevIDF and DevICTF are expected to have high

values for high-performance, discriminative queries.

QS (query scope) measures the percentage of documents in the

collection containing at least one of the query terms. A high QS

value indicates that there are many candidates for retrieval thus

separating relevant documents from irrelevant ones might be

difficult. A query should, therefore, aim at having a low QS.

The last text retrieval specificity measure we considered is SCS

(the simplified clarity score), which measures the divergence of

the query language model from the collection language model, as

an indicator of query specificity. The measure considers that a

query is not specific if the language used in it is similar to the

language used in the entire collection of documents, which

indicates a large number of documents that could potentially be

retrieved. A high SCS, indicating a significant divergence of the

two language models, is thus desirable.

In addition to the metrics existent in the field of TR, we

considered four new metrics based on using information entropy

in order to identify discriminative, high-performance queries. In a

preliminary study [16], we have shown that entropy is a better

indicator of query specificity for SE tasks than the leading

specificity measures from text retrieval. Therefore, we defined

four query specificity measures using entropy: AvgEntropy, which

is the average entropy value among the query terms, MedEntropy

and MaxEntropy, which represent the median and the maximum

entropy values, respectively, among the entropy values of the

terms in the query, and DevEntropy, which is the standard

deviation of the entropy across all query terms. As low entropy

indicates high information content, the desirable values for a high-

performance query are low for the first three entropy-based

measures. For DevEntropy, high values are wanted.

3.2.2 Similarity
The similarity between the query and the entire document

collection is considered as being another indicator of query

performance. The argument behind this approach is that it is

easier to retrieve relevant documents for a query that is similar to

the collection since high similarity potentially indicates the

existence of many relevant documents to retrieve from.

The existing similarity approaches for query performance in the

field of text retrieval make use of a metric called collection query

similarity (SCQ). This is usually computed for each query term,

and is a combination of the collection frequency of a term (CTF)

and its IDF in the corpus. Three measures for a query’s

performance were defined based on it, namely SumSCQ, which is

the sum of the SCQ values over all query terms, AvgSCQ, which

is the average SCQ across all query terms, and MaxSCQ, which

represents the maximum of the query term SCQ values. In the

case of every SCQ-based measure, a high value is expected for

high-performance queries.

3.2.3 Coherency
Another performance indicator for queries is their coherency,

which measures how focused a query is on a particular topic. The

coherency of a query is usually measured as the level of inter-

similarity between the documents in the collection containing the

query terms. The more similar the documents are, the more

coherent the query is. The coherence score (CS) of a term is one

of the measures used for this performance aspect and it reflects

the average pairwise similarity between all pairs of documents in

the collection that contain the term. The CS of the query is then

computed as the average CS over all its query terms, and it is

expected to be high in the case of high-performance queries.

A second approach for measuring the query coherency is based on

measuring the variance (VAR) of the query term weights over the

documents containing them in the collection. The weight of a

term in a document indicates the importance, or relevance of the

term for that document and it can be computed in various ways.

One of the most frequent ways to compute it, which we also adopt

in our implementation, is TF-IDF, i.e., a combination between the

frequency of a term in the document (TF) and the term’s IDF

value over the document collection. The intuition behind

measuring the variance of the query term weights is that if the

variance is low, then the retrieval system will be less able to

differentiate between highly relevant documents and less relevant

ones, making the query harder to answer.

Three measures based on VAR have been defined, i.e., SumVAR,

which is the sum of the variances for all query terms, AvgVAR,

computed as the average VAR value across all query terms, and

MaxVAR, which is the maximum VAR value among the query

terms. As in the case of CS, high values are expected for high-

performance queries.

3.2.4 Term relatedness
Term relatedness measures make use of term co-occurrence

statistics in order to assess the performance of a query. The terms

in a query are assumed to be related to the same topic and are,

thus, expected to occur together frequently in the document

collection. We use two measures of term relatedness previously

used in text retrieval, both using the pointwise mutual information

(PMI) metric, which is based on the probability of two terms

appearing together in the corpus. The two PMI-based metrics are

AvgPMI and MaxPMI, which compute the average and the

maximum PMI values across all query terms.

3.3 The Classifier
As mentioned before, we use a classification tree [4] in order to

determine rules that can predict if queries are high- or low-

performing. A classification tree is a prediction model that can be

represented as a decision tree [4]. Such a prediction model is

suitable to solve classification-type problems, where the goal is to

predict values of a categorical variable from one or more

continuous and/or categorical predictor variables. In our work,

the categorical dependent variable is represented by the query

performance (high or low), while the 21 query performance

measures represent the predictor variables.

Training data, with pre-assigned values for the dependent

variables are used to build the classification tree. This set of data

is used by the classification tree to automatically select the

predictor variables and their interactions that are most important

in determining the outcome variable to be explained. The

constructed classification tree is represented by a set of yes/no

questions that splits the training sample into gradually smaller

partitions that group together cohesive sets of data, i.e., those

having the same value for the dependent variable. An example of

classification tree based on two pre-retrieval measures can be

found in Figure 1.

Figure 1. Example of classification tree

Low-performing

query

Low-performing
query

High-performing
query

AvgIDF < 8.4

MaxVAR < 0.23

TRUE FALSE

FALSE TRUE

Classification trees have some additional benefits. First, the

classification rules it produces are easy to understand by humans,

which is not true for other complex models, not based on decision

trees. Second, they offer automatic feature selection. This is a

very important property, as it allows using as input a large set of

measures that might capture a phenomenon, without worrying

about determining beforehand which ones represent the

phenomenon the best. This allows us to give as input all 21

performance measures, as our classification tree will determine

automatically the measures needed for the classification. Last,

classification is performed very fast when using classification

trees, which is an added advantage.

In our study, presented in Section 4, we use the CART

(Classification and Regression Tree) implementation provided in

R3.

4. EVALUATION
We evaluated our approach for concept (or feature) location in

source code, as many existing concept location techniques use

TR-based solutions [9, 23]. In the context of software change,

concept location is concerned with identifying a point of change

(e.g., a class or a method), given a change request.

4.1 Query Performance Assessment for

Concept Location
In order to collect the queries needed for the case study, we used

an approach frequently adopted in concept location empirical

studies based on change reenactment [19] and user simulation,

i.e., automatically extracting queries and the changed code from

bug reports found in online bug tracking systems. We collected

queries for five open source object-oriented (OO) systems from

different problem domains, implemented in Java and C++, which

are summarized in Table 1. Adempiere4 is a common-based peer-

production of open source enterprise resource planning

applications. ATunes5 is a full-featured media player and

manager. FileZilla6 is a graphical FTP, FTPS, and SFTP client.

JEdit7 is a programming editor and WinMerge8 is a document

differencing and merging tool.

Table 1. The systems used in the study and their properties

System Version Language KLOC #Methods #Queries

Adempiere 3.1.0 Java 330 28,355 32

ATunes 1.10.0 Java 80 3,481 32

FileZilla 3.0.0 C++ 240 3,240 36

JEdit 4.2 Java 250 5,532 28

WinMerge 2.12.2 C++ 410 8,012 36

Total - - 1,310 48,620 164

For each system, we built the source code corpus used by the TR

search by considering every method in the system as a separate

document. For each method we extracted the terms found in its

source code identifiers and comments. We then normalized the

3 www.r-project.org/

4 http://www.adempiere.org

5 http://www.atunes.org

6 http://www.filezilla-project.org

7 http://www.jedit.org

8 http://www.winmerge.org

text using identifier splitting (we also kept the original identifiers),

stop words removal (i.e., we removed common English words and

programming keywords), and stemming (we used the Porter

stemmer). The corpus was indexed by Lucene9, a popular

implementation of the Vector Space Model.

We then identified for each system a set bug reports that

correspond to bugs that are present in the version of the software

system used in our study, but fixed in a later version. We also

determined the set of methods that were modified in order to fix

each bug, based on the patches attached to the bug reports in the

online issue tracking systems. This set of methods represents the

oracle for concept location. We will refer to these methods as the

target methods.

For each change request, we created two queries, extracted from

the online issue tracking systems. The first query was obtained

from the title of the bug report (i.e., the short description), while

the second query was represented by the description of the bug

(i.e., the long description). As usually done for concept location,

any trace information or log files contained in these descriptions

were eliminated prior to the extraction. Also, the normalization

techniques previously applied for the corpus were applied on the

extracted queries as well. Table 1 reports the number of queries

we selected for each system. For example, from Bug #1605980 of

Adempiere, we obtained the following two queries after extraction

and normalization (in parenthesis is the original text extracted

from the bug reports, before the normalization):

 print invoic process draft select

(Print Invoices process - draft & selection)

 us garden world select date rang in todai all invoic select

regardless document statu client bad print post custom us

email option draft potenti cancel invoic sent

(Using Garden World, if you select a date range from

somewhere in 2001 to today then ALL invoices are selected

regardless of document status OR client!!! Not so bad if you

are printing them and posting them to customers but if you

use the email option then drafted (and potentially cancelled)

invoices are sent too!)

While fixing this bug, the following target method was changed

by the developers: doIt(), found in the process package, file

InvoicePrint.java, and class InvoicePrint. The document

corresponding to this method is the one that the queries are

supposed to retrieve.

During concept location, it is important that developers find their

target method (i.e., the method where they have to start the

change) as fast as possible. Other methods that will change are

identified during impact analysis. When reenacting concept

location, the success criterion is translated into the rankings of the

target methods (as opposed to many other TR applications where

recall and precision are considered). In other words, if any of the

target methods ranks in among the top retrieved results, we

consider it a successful retrieval. A rule used in concept location

application is that finding a target method among the top 20

ranked results is considered a good result, based on the

assumption that most developers would look at no more than 20

methods before reformulating their query. Hence we define a

query as high performing if any of the target methods is retrieved

in the top 20 results. Otherwise, we consider the query as low

performing. In the above example, if a query returns the target

method in top 20, then it is considered high performing. The rank

9 http://lucene.apache.org

of the target method in the result list retrieved by the two queries

in the previous example, as well as the classification of the two

queries and the values of the 21 measures of query performance

are presented in Table 2.

Table 2. The 21 pre-retrieval measures of the short and long

description queries for Bug #1605980 in Adempiere

Measure Short Long Measure Short Long

AvgIDF 3.69 4.83 SCS 1.93 0.75

MaxIDF 6.40 10.25 AvgVAR 0.04 0.04

DevIDF 3.14 11.60 MaxVAR 0.11 0.12

AvgICTF 2.72 4.04 SumVAR 0.17 1.18

MaxICTF 6.08 10.25 CS 0.13 0.39

DevICTF 3.88 13.03 AvgSCQ 28.45 28.78

AvgEntropy 0.60 0.53 MaxSCQ 33.03 37.53

MedEntropy 0.67 0.60 SumSCQ 113.81 777.03

MaxEntropy 0.70 1.00 AvgPMI 0.06 0.13

DevEntropy 0.28 1.08 MaxPMI 1.13 5.02

QS 0.16 0.40 Rank (class) 125 (low) 1 (high)

We classify in this way all the 164 queries used in our evaluation.

Table 3 reports the number of high and low performing queries

for each system.

Table 3. High and low performing queries

System High-performing queries Low-performing queries

Adempiere 15 17

aTunes 14 18

FileZilla 8 28

JEdit 13 15

WinMerge 18 18

Total 68 96

4.1.1 Validation method
In order to evaluate the ability of the proposed methodology in

predicting the query performance, we performed two types of

validation: single-system and cross-system validation. For the

single-system validation, the classification model was trained on

each system individually and a 4-fold cross-validation was

performed. The process for the single-system validation is

composed of five steps: (i) randomly divide the set of queries for a

system into 4 approximately equal subsets, (ii) set aside one query

subset as a test set, and build the classification model with the

queries in the remaining subsets (i.e., the training set), (iii)

classify the queries in the test set using the classification model

built on the query training set and store the accuracy of the

classification, (iv) repeat this process, setting aside each query

subset in turn, (v) compute the overall accuracy of the model. The

misclassification of the model has been evaluated in terms of

Type I and Type II classification errors. A Type I

misclassification is when the model wrongly classifies a high

performing query as low performing, while a Type II

misclassification is when the model wrongly classifies a low

performing query as high performing.

As for the cross-system validation, we perform the same 4-fold

cross-validation process considering all the 164 queries from the

different object systems as a single dataset. When dividing the

datasets into 4 approximately equal subsets, we ensured that in

both training and test sets there was the same percentage of

queries belonging to the different object systems. In this way we

have a uniform distribution of queries belonging to the different

systems.

These two types of validation, i.e., single-project and cross-

project, were needed to derive guidelines on how to use historical

data to build the classifier. In particular, we aim at analyzing

whether a specialized model is required for each system or it is

possible to define a generic model that can be applied on several

systems.

4.1.2 Baselines
In the context of our study we compared our approach based on

classification trees with four baseline approaches: logistic

regression, a random classifier, and two variants of a constant

classifier (pessimistic and optimistic). The random classifier

randomly selects a prediction from the possible values, i.e., high

or low. The two values have the same probability to be selected.

The constant classifier always predicts a specific value

disregarding the instance. In particular, the pessimistic constant

classifier always classifies a query as low, while the optimistic

constant classifier works in the opposite way, i.e., it always

classifies a query as high. It is worth noting that a classifier is

useful only if it outperforms a random or constant classifier.

Logistic regression is used for prediction of the probability of

occurrence of an event by fitting data to a logistic function [1]. It

is one of the most commonly used classification techniques, and it

has been applied to software engineering problems as well as

other experimental fields. For this reason we decided to use it as

an additional baseline for comparison in our study. Given the

novelty of our work, there is no prior state-of-the-art technique to

compare our results with.

Formally, the multivariate logistic regression model is based on

the formula:

 ()

where are the independent variables (i.e., the 21 pre-retrieval

measures) and is a value on the logistic regression

curve. In a logistic regression model, the dependent variable is

commonly a dichotomous variable, and thus, assumes only two

values, i.e., it states whether a query is high (1) or low (0). In our

study we used the WEKA10 tool for the definition of a logistic

model. Before applying logistic regression to a dataset, it is a

common approach to perform feature selection in order to

determine which features should be considered when building the

logistic model. We performed feature selection among the 21 pre-

retrieval measures using the gain ratio technique implemented in

WEKA.

4.2 Experimental Results
Figure 2 and Table 4 report the results achieved in the single-

system evaluation. In particular, Table 4 shows the number of

Type I and Type II misclassifications performed by the

experimented classifiers. The total number of errors performed by

the classification tree (CART) is 34 (11 Type I + 23 Type II),

compared to 82 for the logistic regression (49 Type I + 33 Type

II), 96 for the optimistic constant model (all of Type II), 68 for the

pessimistic constant model (all of Type I) and 72 for the random

predictor (25 of Type I + 47 of Type II). This indicates that the

10 http://www.cs.waikato.ac.nz/ml/weka/

model built using the classification tree significantly outperforms

all the baseline classifiers, by correctly classifying 79% of the

examined queries, i.e., 130 out of 164 (see Figure 2). In

comparison, the model built using the logistic regression correctly

classified only 82 queries (50%), the optimistic and pessimistic

constant predictors classified correctly 68 (41%) and 96 (59%),

respectively, and the random classifier was able to correctly assess

92 queries (56%).

Figure 2. Accuracy achieved in the single-system evaluation

In addition to the significantly better results obtained by the

classification tree-based predictor over the baseline approaches,

our results are better than even state-of-the-art results from the NL

document retrieval field. By comparison, the best approaches in

NL document retrieval correctly classify, on average, between

62% [15] and 74% [30] of the queries.

It is worth noting that the accuracy achieved by the proposed

classifier (79%) was obtained using very small training samples;

the average dimension of the employed training samples is 24

queries. Thus, the proposed approach is able to provide excellent

results with relatively little training. Such results emphasize the

applicability of the proposed approach, as it does not require a

large training set that might be not available for some software

projects.

The classification tree is the most accurate predictor on all the

systems except FileZilla. On this system, CART is able to

correctly classify only 72% of the queries, whereas the pessimistic

constant predictor achieves a correct classification on 77% of the

queries. These results are explained by the fact that in FileZilla

most of the queries are low-performing queries (28 out of 36), as

shown in Table 3. This has the following consequences, which

affect our results: (i) the classification tree faces an increased

difficulty in identifying the characteristics of the high-performing

queries, given that only a small number of such queries are

available in the training set and (ii) the pessimistic constant

predictor obtains a very good performance, as it always classifies

queries as low-performance, and is, thus, correct in classifying all

the low-performing queries, which represent the majority of the

data.

The classification tree built on the Adempiere software system is

reported in Figure 3. Based on the rule of this classification tree,

we can see that the short description query for Bug #1605980 in

Adempiere is correctly classified as a low–performing query as its

SumSCQ is 113.81, which is smaller than 160.3 (see Table 2). At

the same time, the long-description query of the same bug is also

correctly classified, but as a high–performing query, having the

SumSCQ equal to 777.03, thus greater than 160.3.

In our single-system evaluation the decision tree always selected

one measure to discriminate between high-performing and low-

performing queries (in the example reported in Figure 3, the

measure SumSCQ was selected). However, the measure used to

build the classification tree was often different among the

software systems and sometimes even among the different

training samples used in the 4-fold validation on the same system.

Table 5 shows the measures selected in each run of the single-

system evaluation for each system.

The fact that the measure selected for building the classification

tree is generally different among the object systems highlights the

fact that different software corpora, having different

characteristics (e.g., verbosity, vocabulary dimension, etc.) may

require different classifiers to estimate the performance of a

query. This is confirmed also by the cross-system evaluation,

whose results are presented in Table 6.

Figure 3. A classification tree on Adempiere

Table 4. Type I and Type II errors achieved in the single-system evaluation.

System

CART Logistic Regression Optimistic Constant Pessimistic Constant Random

Type I Type II Type I Type II Type I Type II Type I Type II Type I Type II

Adempire 0 (0%) 3 (9%) 10 (31%) 8 (25%) 0 (0%) 17 (53%) 15 (47%) 0 (0%) 5 (16%) 8 (25%)

aTunes 3 (9%) 4 (13%) 7 (22%) 5 (16%) 0 (0%) 18 (56%) 14 (44%) 0 (0%) 3 (9%) 9 (28%)

FileZilla 2 (6%) 8 (22%) 14 (39%) 4 (11%) 0 (0%) 28 (78%) 8 (22%) 0 (0%) 3 (8%) 13 (36%)

JEdit 3 (11%) 3 (11%) 11 (39%) 6 (21%) 0 (0%) 15 (54%) 13 (46%) 0 (0%) 8 (29%) 9 (32%)

WinMerge 3 (8%) 5 (14%) 7 (19%) 10 (28%) 0 (0%) 18 (50%) 18 (50%) 0 (0%) 6 (17%) 8 (22%)

Low-performing
query

High-performing
query

SumSCQ < 160.3

FALSE TRUE

Table 5. Predictor selected by the classification tree in the

single-system evaluation

System 1st fold 2nd fold 3rd fold 4th fold

Adempiere SumSCQ SumSCQ SumSCQ SumSCQ

aTunes DevIdf MedEntropy DevIdf DevIdf

JEdit DevIdf MedEntropy DevIdf MedEntropy

FileZilla MaxSCQ DevIdf AvgIdf AvgIdf

WinMerge AvgEntropy AvgEntropy AvgEntropy AvgEntropy

The results illustrate that the cross-system classification tree

performs poorly, as it correctly classifies only 51% of the queries.

Its results are also comparable to the results of the baseline

techniques, which never achieve a correct classification rate

higher than 53%. This indicates that the assessment of query

performance is strongly dependent on the system. In

consequence, training needs to be performed on each system

independently in order obtain a correct classification of the

performance of incoming queries (for the same system).

Table 6. Type I and Type II errors achieved in the cross-

system evaluation

Method Type I Type II Type I & II Correct

CART 44 (27%) 37 (22%) 81 (49%) 83 (51%)

Logistic

Regression
49 (30%) 31 (19%) 80 (49%) 84 (51%)

Optimistic

constant
0 (0%) 91 (55%) 91 (55%) 73 (45%)

Pessimistic

constant
77 (47%) 0 (0%) 77 (47%) 87 (53%)

Random 49 (30%) 43 (26%) 92 (56%) 72 (44%)

4.3 Threats to Validity
This section discusses the main threats to validity [33] that could

affect our results.

Construct validity threats concern the relationship between theory

and observation. We evaluated the proposed predictor through

two metrics (i.e., Type I and Type II errors) that are widely used

to evaluate predictor models [1]. In addition, we analyze and

compare the overall classification accuracy of the proposed

approach taking into account the number of queries correctly and

wrongly classified.

Concerning the internal validity, in our experimentation we

automatically extracted the set of queries from the online bug

tracking system of the object systems. In particular, we extracted

two different queries, one derived from the title of the bug report

and one from the description of the bug. This choice could affect

the results of our study since such queries are approximations of

actual user queries. However, developers are often faced with

unfamiliar systems, in which cases they must rely on outside

sources of information, such as issue reports, in order to formulate

queries during TR-based concept location. Therefore, we believe

that the approach used in our experimentation resembles to real

usage scenarios. Nevertheless, empirical studies conducted with

users are required to evaluate our predictor in a real usage

scenario and we plan to perform such studies in the near future.

The external validity refers to the generalization of our findings.

In order to address this threat, we selected a set of five software

systems from diverse domains, implemented in two programming

languages, i.e., Java and C++. A larger set of queries and more

systems would clearly strengthen the results from this perspective.

One threat to the external validity of our results is the fact that we

used the results of only one TR engine in order to classify the

queries as high-performing and low-performing. More precisely,

we used the rank of the first target method retrieved by a query

submitted to the Lucene TR-engine, which is an implementation

of the VSM technique. Since several other TR methods have been

previously used to support concept location [3, 22], further

experimentation is needed to analyze whether the proposed

predictor works well also with other TR methods.

The last threat to external validity is related to the fact that we

only evaluated the proposed approach for the task of TR-based

concept location. Thus, we cannot (and do not) generalize the

results to other SE tasks. We plan to evaluate the proposed

predictor in other contexts, such as, traceability recovery.

Finally, conclusion validity refers to the degree to which

conclusions reached about relationships between variables are

justified. In our case study, we only draw conclusions referring to

the use of different classifiers, which we support with evidence in

the form of classification correctness and type I and II errors.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed an approach that estimates the

performance of a text query before it is executed, in the context of

TR-based concept location. The proposed approach can be used

for other SE tasks and it allows the identification of queries that

are likely to perform poorly immediately after they are written.

This can save the developer time and effort, as she can be notified

right away when a query in unlikely to lead to satisfactory results

and would likely need reformulation. The proposed approach is

based on using classification trees and 21 pre-retrieval query

performance measures selected from the field of text retrieval.

Our empirical evaluation showed that the classification trees built

using very small training samples, are able to correctly classify

79% of queries in average, strongly outperforming several

baseline approaches.

In our future work, we plan to perform a more extensive

experimentation by evaluating several different classifiers (e.g.,

Bayesian, neural networks, random forests, etc.), using more TR

techniques to classify the queries as high- and low-performing

(e.g., LSI, LDA, etc.), and applying our approach to other TR-

based SE tasks (e.g., traceability recovery, code reuse, etc.).

Another direction we plan to pursue is the tool supported

reformulation of low-performing queries. In particular, once a

low-performing query is identified, we plan to provide support to

the developer to reformulate the query, suggesting terms that can

improve its performance. Such an approach can help developers

find helpful software artifacts faster and finish their tasks sooner.

6. REFERENCES
[1] Agresti, A., Categorical Data Analysis, Wiley-Interscience,

2002.

[2] Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.,

"Information Retrieval Models for Recovering Traceability

Links between Code and Documentation", in Proc. of Int.

Conf. on Software Maintenance, 2000, pp. 40-51.

[3] Asuncion, H. U., Asuncion, A., and Taylor, R. N., "Software

Traceability with Topic Modeling", in Proceedings of 32nd

ACM/IEEE International Conference on Software

Engineering, 2010, pp. 95-104.

[4] Breiman, L., Friedman, J., Stone, C., and Olshen, R. A.,

Classification and Regression Trees, Chapman and Hall,

1984.

[5] Carmel, D. and Yom-Tov, E., Estimating the Query Difficulty

for Information Retrieval, Morgan & Claypool, 2010.

[6] Castro-Herrera, C., Cleland-Huang, J., and Mobasher, B.,

"Enhancing Stakeholder Profiles to Improve

Recommendations in Online Requirements Elicitation", Int.

Requirements Engineering Conf., 2009, pp. 37-46.

[7] Cleland-Huang, J., Czauderna, A., Gibiec, M., and Emenecker,

J., "A machine learning approach for tracing regulatory codes

to product specific requirements", in Proc. of International

Conf. on Software Engineering, 2010, pp. 155-164.

[8] De Lucia, A., Oliveto, R., and Sgueglia, P., "Incremental

Approach and User Feedbacks: a Silver Bullet for Traceability

Recovery", in Proc. of IEEE International Conf. on Software

Maintenance, 2006, pp. 299-309.

[9] Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D.,

"Feature location in source code: a taxonomy and survey",

Journal of Software Maintenance and Evolution: Research and

Practice 2011, pp. to appear.

[10] Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais,

S. T., "The Vocabulary Problem in Human-System

Communication", Communications of the ACM, vol. 30, no.

11, 1987, pp. 964-971.

[11] Gay, G., Haiduc, S., Marcus, A., and Menzies, T., "On the

Use of Relevance Feedback in IR-Based Concept Location",

in Proceedings of IEEE International Conference on Software

Maintenance, 2009, pp. 351-360.

[12] Gegick, M., Rotella, P., and Xie, T., "Identifying security bug

reports via text mining: An industrial case study", in Proc. of

Int. Working Conf. on Mining Software Repositories, 2010,

pp. 11 - 20.

[13] Gethers, M., Kagdi, H., Dit, B., and Poshyvanyk, D., "An

Adaptive Approach to Impact Analysis from Change Requests

to Source Code", in Proceedings of International Conference

on Automated Software Engineering, 2011.

[14] Gibiec, M., Czauderna, A., and Cleland-Huang, J., "Towards

mining replacement queries for hard-to-retrieve traces", in

Proceedings of IEEE/ACM International Conference On

Automated Software Engineering, 2010, pp. 245-254.

[15] Grivolla, J., Jourlin, P., and De Mori, R., "Automatic

Classification of Queries by Expected Retrieval

Performance", in Proceedings of ACM Special interest Group

on Information Retrieval, 2005.

[16] Haiduc, S., Bavota, G., Oliveto, R., Marcus, A., and De

Lucia, A., "Evaluating the Specificity of Text Retrieval

Queries to Support Software Engineering Tasks", in

Proceedings of 34th International Conference on Software

Engineering - NIER Track, 2012, pp. to appear.

[17] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K., "Advancing

candidate link generation for requirements tracing: the study

of methods", IEEE Transactions On Software Engineering,

vol. 32, no. 1, 2006, pp. 4-19.

[18] He, B. and Ounis, I., "Inferring Query Performance Using

Pre-retrieval Predictors", in Proc. of International Conference

String Processing and Information Retrieval, 2004, pp. 43–54.

[19] Jensen, C. and Scacchi, W., "Discovering, Modeling, and

Reenacting Open Source Software Development Processes",

New Trends in Software Process Modeling Series in Software

Eng. and Knowledge Eng., vol. 18, 2006, pp. 1-20.

[20] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S.,

"Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings.",

IEEE Transactions On Software Engineering, vol. 34, no. 4,

2008, pp. 485-496.

[21] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V.,

"Feature Location via Information Retrieval based Filtering of

a Single Scenario Execution Trace", in Proc. of Int. Conf. on

Automated Software Engineering, 2007, pp. 234-243.

[22] Marcus, A. and Maletic, J., "Recovering Documentation-to-

Source-Code Traceability Links using Latent Semantic

Indexing", in Proceedings of 25th IEEE/ACM International

Conference on Software Engineering, 2003, pp. 125-137.

[23] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An

Information Retrieval Approach to Concept Location in

Source Code", in Proceedings of 11th IEEE Working

Conference on Reverse Engineering, 2004, pp. 214-223.

[24] McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and

Fu, C., "Portfolio: Finding Relevant Functions And Their

Usages", in Proceedings of 33rd IEEE/ACM International

Conference on Software Engineering, 2011, pp. 111-120.

[25] Petrenko, M. and Rajlich, V., "Variable Granularity for

Improving Precision of Impact Analysis", in Proc. of Int.

Conf. on Program Comprehension, 2009, pp. 10-19

[26] Petrenko, M., Rajlich, V., and Vanciu, R., "Partial Domain

Comprehension in Software Evolution and Maintenance", in

Proc. of Int. Conf. on Program Comprehension, 2008, pp. 13-

22.

[27] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on

Assessing Feature Location Techniques", in Proceedings of

17th IEEE International Conference on Program

Comprehension, 2009, pp. 218-222.

[28] Sridhara, G., Hill, E., Pollock, L., and Shanker, V.,

"Identifying Word Relations in Software: A Comparative

Study of Semantic Similarity Tools", in Proceedings of 16th

Int. Conf. on Program Comprehension, 2008, pp. 123-132.

[29] Starke, J., Luce, C., and Sillito, J., "Searching and Skimming:

An Exploratory Study", in Proceedings of International

Conference on Software Maintenance, 2009, pp. 157-166.

[30] Vercoustre, A.-M., Pehcevski, J., and Naumovski, V., "Topic

Diffculty Prediction in Entity Ranking", in Proceedings of 7th

International Workshop of the Initiative for the Evaluation of

XML Retrieval, 2008, pp. 280-291.

[31] Voorhees, E., "The TREC robust retrieval track", ACM

SIGIR Forum, vol. 39, no. 1, 2005, pp. 11-20.

[32] Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J., "An

Approach to Detecting Duplicate Bug Reports using Natural

Language and Execution Information", in Proc. of 30th Int.

Conf. on Software Engineering, 2008, pp. 461-470.

[33] Yin, R. K., Case Study Design: Design and Methods, 3rd ed.,

SAGE Publications, 2003.

[34] Yom-Tov, E., Fine, S., and Darlow, D. C. A., "Learning to

Estimate Query Difficulty", in Proc. of ACM Special Interest

Group on Information Retrieval, 2005, pp. 512-519.

Appendix. The 21 pre-retrieval measures of query performance

Property Measure Description Formula

Specificity

AvgIDF
Average of the Inverse Document Frequency (idf) values over all

query terms

 ∑ ()

MaxIDF
Maximum of the Inverse Document Frequency (idf) values over all

query terms
 (())

DevIDF
The standard deviation of the Inverse Document Frequency (idf)

values over all query terms √

 ∑ (())

AvgICTF
Average Inverse Collection Term Frequency (ictf) values over all

query terms

 ∑ ()

MaxICTF
Maximum Inverse Collection Term Frequency (ictf) values over all

query terms
 (())

DevICTF
The standard deviation of the Inverse Collection Term Frequency (ictf)

values over all query terms √

 ∑ (())

AvgEntropy Average entropy values over all query terms

 ∑ ()

MedEntropy Median entropy values over all query terms (())

MaxEntropy Maximum entropy values over all query terms (())

DevEntropy The standard deviation of the entropy values over all query terms √

 ∑ (())

QS
Query Scope – the percentage of documents in the collection

containing at least one of the query terms

 ⋃

SCS
Simplified Clarity Score – the Kullback-Leiber divergence of the

query language model from the collection language model
∑ () (

 ()

 ()
)

Coherency

AvgVAR
Average of the variances of the query term weights over the

documents containing the query term (VAR), over all query terms

 ∑ ()

MaxVAR
Maximum of the variances of the query term weights over the

documents containing the query term (VAR), over all query terms
 (())

SumVAR
Sum of the variances of the query term weights over the documents

containing the query term (VAR), over all query terms
∑ ()

CS
Coherence Score – the average of the pairwise similarity between all

pairs of documents containing one of the query terms (cs) among all

 ∑ ()

Similarity

AvgSCQ
The average of the collection-query similarity (SCQ) over all query

terms

 ∑ ()

MaxSCQ
The maximum of the collection-query similarity (SCQ) over all query

terms
 (())

SumSCQ The sum of the collection-query similarity (SCQ) over all query terms ∑ ()

Term

relatedness

AvgPMI
Average Pointwise Mutual Information (PMI) over all pairs of terms in

the query

 ()

()
∑ ()

MaxPMI
Maximum Pointwise Mutual Information (PMI) over all pairs of terms

in the query
 (())

 () (

) ()

 ()

 ()

 (()) () () ∑ () ()

 () (

 ()
) ()

 ()

 () ((()) () ()

 ()

 () ()

 ̅

∑ () ()

 ()

 ()

∑ ()()

 ()
 () √

∑ (() ̅)

 ()

Q –the set of query terms; q – a term in the query; D – the set of documents in the collection; Dt –the set of documents containing term t

d – a document in the document collection D; tf(t,D) – the frequency of term t in all docs; tf(t,d) – the frequency of term t in d

tf(t,Q) – the frequency of term t in the query; sim(di,dj) – the cosine similarity between the vector-space representations of di and dj

