
In Medio Stat Virtus: Extract Class Refactoring
through Nash Equilibria

Gabriele Bavota1, Rocco Oliveto2, Andrea De Lucia1, Andrian Marcus3
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Abstract—Extract Class refactoring (ECR) is used to divide
large classes with low cohesion into smaller, more cohesive classes.
However, splitting a class might result in increased coupling in the
system due to new dependencies between the extracted classes.
Thus, ECR requires that a software engineer identifies a trade off
between cohesion and coupling. Such a trade off may be difficult
to identify manually because of the high complexity of the class
to be refactored. In this paper, we present an approach based
on game theory to identify refactoring solutions that provide
a compromise between the desired increment in cohesion and
the undesired increment in coupling. The results of an empirical
evaluation indicate that the approach identifies meaningful ECRs
from a developer’s point-of-view.

Index Terms—Design Quality, Refactoring, Game Theory.

I. INTRODUCTION

Software systems evolve inevitably during their life-time
to meet ever-changing user needs and to adapt to changes in
their environment. Software evolution is often a non-structured
process during which the pressure to reduce time to market
may lead to design erosion and the introduction of poor design
solutions, such as design antipatterns. A design antipattern is
“something that looks like a good idea, but which back-fires
badly when applied” [11]. It generally stems from experienced
developers’ expertise and describes common pitfalls in Object
Oriented (OO) programming, e.g., Brown’s 40 antipatterns [9].
An example of antipattern is the Blob [9], also called God
Class. It is represented by a large and complex class that
centralizes the behavior of a portion of a system and only uses
other classes as data holders, i.e., data classes. Blob classes
can rapidly grow out of control, making it harder and harder
for developers to understand them, to fix bugs, and to add new
features. They defeat the purpose of OO programming and of
separation of concerns and responsibilities among classes, and
usually have low cohesion.

Extract Class refactoring (ECR) is a widely used technique
to remove the Blob antipattern [15], [24]. ECR aims at
decomposing a class with several responsibilities into a set of
new classes having individually (i) a higher cohesion than the
original class and (ii) a better-defined set of responsibilities.
Although it is possible to perform ECR manually, ECR might
be very challenging and tool support is crucial [24]. Indeed,
studies in the literature, e.g., [20], highlighted that in large
software systems there might be several Blobs, some of
them having a huge size resulting from years of maintenance

conducted by several developers. It is then difficult for a
developer to gain the right knowledge to refactor them. Thus,
having suggestions/feedback from a tool is desirable.

Applying ECR is likely to improve the overall cohesion of
the system (desired effect). However, it is also likely that the
overall coupling of the system will increase because of new
dependencies between the extracted classes (side effect). Thus,
a trade-off between cohesion and coupling must be found.
Unfortunately, an optimal balance between contrasting goals
such as cohesion and coupling is not easy to identify manually.
Indeed, finding the partition of methods of a Blob class that
maximizes the cohesion limiting at the same time the increase
of coupling is a combinatorial multi-objective problem. Previ-
ous approaches addressed this problem (or similar problems,
like remodularization) by looking for an approximation of
the optimal solution. Search-based approaches reduced the
solution space by iteratively selecting a subset of solutions that
might lead to an optimal solution [29]. Clustering or graph-
based approaches aggregate methods into classes by exploiting
dependence or similarity measures between methods [4], [3],
[14]. We show in this paper that game theory [13] also
provides a suitable solution to the ECR problem. It is a
branch of mathematics widely applied in the social sciences,
especially in economics [25], to mathematically model the
behavior of individuals in strategic situations in which an
individual’s success in making choices depends on the choices
of others [13].

In this paper, we propose the use of game theory to
model the ECR problem as a game between n players. Each
player represents a class to be extracted from a given class
and seeks to maximize its cohesion while maintaining its
coupling as low as possible. A naive application of game
theory would be to search for the Nash equilibrium [25]
on a payoff matrix representing the quality of all possible
partitions of methods among the players in terms of cohesion
and coupling. However, such an application would have a
too large solution space because it would require to compute
all the possible partitions. Consequently, we model the ECR
problem as an iterative multi-round game. Players begin the
refactoring process with one seed method each, taken from
the original class to be refactored; then they contend for the
remaining methods to create new classes. This approach is
iterative because, at each step, each player can choose one of



the unassigned methods. The chosen methods correspond to
the Nash equilibrium computed on a payoff matrix that uses
similarity measures between methods to assess the effect of the
players’ choice on the cohesion and coupling of their classes.

Similarly to partitioning clustering algorithms, the proposed
approach requires as input the number of classes to be ex-
tracted, i.e., the number of players, and a seed method for
each player. This information might be difficult to derive from
the analysis of a class that must be refactored due to its size
and–or complexity. Thus, we propose a heuristic based on the
analysis of the topics captured in the source code of the class
to be refactored, using Latent Dirichlet Allocation (LDA) [8]
to identify the candidate number of players and a candidate
seed method for each player.

The proposed ECR approach and the new heuristic have
been evaluated in two different case studies. First, classes
with high cohesion in three open-source systems have been
merged to create artificial Blobs and then refactored using our
approach with the aim of reconstructing the original classes.
We use this study to assess the parameters and the performance
of the approach. Second, we performed a study in a real life
scenario to refactor seven Blobs of an open-source system,
namely GanttProject, to evaluate the actual usefulness of the
proposed approach for actual developers. In both studies we
compare the performances of the proposed approach with
those achieved by using a well-know partitioning clustering
algorithm, namely k-means. The results show the superiority
of our approach.

The remainder of this paper is organized as follows. Sec-
tions II and III discuss the related literature and report essential
background information. Section IV details our refactoring
approach while Sections V and VI report and discuss the case
studies in the artificial scenario and on real Blobs. Section VII
concludes the paper.

II. RELATED WORK

The approach presented in this paper relates to extract class
refactoring and game theory applied to software engineering.

A. Extract Class Refactoring

In the last decade, a lot of effort has been devoted to the
definition of automatic and semi-automatic approaches for
software refactoring. A survey of the related literature can be
found in [24] while a discussion of more recent approaches can
be found in [3]. We focus our discussion on ECR techniques.

Bavota et al. [4], [3] propose two approaches that support
ECR based on graph theory. Both approaches represent the
class to be refactored as a weighted graph in which each
node represents a method of the class and the weight of an
edge that connects two nodes represents a combination of the
structural and semantic similarities of the two methods. In
both the approaches, the similarity matrix representing the
graph is first filtered to remove spurious relations between
methods. A MaxFlow-MinCut algorithm is used in [4] to split
the graph in two sub-graphs to obtain two sets of methods
that should be placed in the same class. This approach always

splits the class to be refactored in two classes, while the
approach proposed in [3] can split a class in more classes: the
transitive closure of the incident matrix is computed to identify
sets of methods representing the new classes to be extracted.
The game theory based ECR method proposed in this paper
exploits the same structural and semantic measures used in
these previous approaches. However, while the approaches in
[4], [3] mainly aim at maximizing the cohesion of the extracted
classes, our game theory approach is designed to find a fair
compromise between the increase of cohesion in the extracted
classes (desired effect) and the consequent increase in coupling
(side effect).

Fokaefs et al. [14] use a clustering algorithm to perform
ECR. Their approach analyzes the structural dependencies
between the instance variables and methods of a class to be
refactored. Using this information, they compute the entity
sets for each instance variable (the set of methods using it)
and for each method (all the methods invoked by it and all
the instance variables that are accessed by it) of the class.
Then, the Jaccard distance between all couples of entity
sets of the class is computed to cluster cohesive groups of
entities that can be extracted as separate classes. A hierarchical
clustering algorithm is used. Differently from our approach,
only structural information is taken into account.

B. Game Theory in Software Engineering
Only preliminary studies have been conducted on the appli-

cation of game theory in software engineering, yet they serve
as inspiration and support our decision to use game theory in
our work. Grechanik et al. [16] model software development
activities as a non-cooperative game involving the project
stakeholders. In such a scenario, the Nash equilibrium is used
to find a compromise between the contrasting goals of the
different stakeholders.

Sazawal et al. [31] highlight how game theory can model
software design decision-making. In fact, games naturally
model the sequence of design decisions that must be made
throughout the software development lifecycle, finding a com-
promise between contrasting goals, e.g, stand-alone architec-
ture vs. layered architecture.

Bavota et al. [6] propose a preliminary approach to ECR
based on game theory that can only to split a Blob class in two
classes and has been only experimented on artificial Blobs. In
this paper we generalize the approach to n players and present
an experimentation to (i) assess and calibrate the approach and
(ii) evaluate it in a real scenario.

III. BACKGROUND

We provide background information about two fundamental
aspects of our work: game theory and the structural and
semantic measures that we use to take into account the impact
of refactoring on cohesion and coupling.

A. Game Theory
The purpose of this section is to give a general introduction

to game theory focusing on non-cooperative games using the
prisoner’s dilemma [30], a famous game example.



TABLE I
PAYOFF MATRIX FOR THE PRISONER’S DILEMMA

Tom
confess not confess

Sally confess (5, 5) (0, 7)
not confess (7, 0) (4, 4)
In bold the Nash equilibrium

Two brokers, Sally and Tom, are accused of fraudulent
trading activities. Both Sally and Tom are being interrogated
separately and do not know what the other is saying. Both
want to minimize the amount of time spent in jail and here lies
their dilemma: Table I represents the payoff matrix for their
different possible choices, reporting the sentences for each
player in consequence of their selected strategy. In particular
(i) if Sally (Tom) confesses and Tom (Sally) does not confess,
Sally (Tom) will not receive any sentence while Tom (Sally)
will stay in jail for seven years; (ii) if both decide to confess,
both Sally and Tom will receive a sentence of five years; (iii)
if both decide not to confess, both Sally and Tom will receive
a sentence of four years.

Traditional applications of game theory attempt to find
equilibria in such games. The most studied equilibrium is the
Nash equilibrium [25]. Nash equilibrium is a solution to any
game involving two or more players, in which each player
is assumed to know the equilibrium strategies of the other
players and no player has anything to gain by changing only
his own strategy unilaterally. Each finite game, i.e., a game
with a finite number of players and actions, have at least one
Nash equilibrium in mixed strategies [25].

In Table I, there is only one Nash equilibrium: (confess,
confess). Indeed, if one of the players decides not to confess,
then the other player can confess to minimize his/her own
sentence. However, s/he would also sentence the other to the
maximum punishment. Therefore, given the non-cooperative
nature of the game, the minimum sentence for both players can
be obtained only if both players confess. Of course the best
solution for the two players is (non confess, non confess), i.e., a
Pareto optimum1. The game presents two other Pareto optima,
namely (non confess, confess) and (confess, non confess), but
these optima give the maximum payoff to only one of the
two players i.e., minimize only one of the sentences while the
other is actually maximized.

Defining an automatic heuristic to choose the best solu-
tion for a non-cooperative game is usually hard. In fact,
if we choose the solution with the minimum total sentence
(maximum total payoff), we should choose between (non
confess, confess) and (confess, non confess), which both
heavily penalize one of the two players. In this situation, the
Nash equilibrium gives a solution that it is not necessarily a
Pareto optimal solution but represents a compromise between
two competing goals. We show in the following that such a
compromise strategy is well suited for ECR.

1The Pareto optimum is achieved when it is not possible to improve the
gain of a player without making worse the gain of another player.

B. Similarity Measures for Refactoring

Current ECR approaches [3], [4], [14] use heuristics to ap-
proximate an optimal solution to the problem of decomposing
a class into two or more classes by maximizing the cohesion
and minimizing the coupling. These heuristics exploit depen-
dency or similarity measures that are the basis of cohesion
and coupling metrics, instead of directly using cohesion and
coupling metrics because ECR requires to analyze metrics at
the method-level rather than at the class-level.

For example, structural cohesion and coupling metrics [10],
[18], [21] take into account the amount of common instance
variables referenced by methods or of calls among methods,
while semantic cohesion and coupling metrics [22], [28] take
into account the textual similarity among methods.

Previous work [22] shows that structural and semantic
cohesion metrics do not correlate, which indicates that they
capture different aspects of cohesion. Consequently, in our
approach we use a combination of three structural and seman-
tic measures, namely Structural Similarity between Methods
(SSM) [18], Call-based Dependency between Methods (CDM)
[3], and Conceptual Similarity between Methods (CSM) [22].
These measures have been previously used to identify ECR
opportunities [3], [4] and they do not correlate [4].

The attribute references in methods are captured by Struc-
tural Similarity between Methods (SSM), used to compute the
cohesion metric ClassCoh [18]. Let Ii be the set of instance
variables referenced by method mi. The SSM of mi and mj

is calculated as:

SSM(mi,mj) =

{
|Ii∩Ij |
|Ii∪Ij | if |Ii ∪ Ij | 6= 0;

0 otherwise.

Thus, the higher the number of instance variables the two
methods share, the higher the likelihood that the two methods
should be in the same class. SSM values are in [0, 1].

The Call-based Dependency between Methods (CDM) [4]
takes into account the calls performed by the methods. Let
calls(mi,mj) be the number of calls performed by method
mi to mj and callsin(mj) be the total number of incoming
calls to mj . CDMi→j is defined as:

CDMi→j =

{
calls(mi,mj)
callsin(mj)

if callsin(mj) 6= 0;

0 otherwise.

CDMi→j values are in [0, 1]. If CDMi→j = 1, then mj

is only called by mi. Otherwise, if CDMi→j = 0, then mi

never calls mj . To ensure that CDM represents a commutative
measure (like the other two measures), the overall CDM of
mi and mj is:

CDM(mi,mj) = max {CDMi→j , CDMj→i}

Concerning the semantic information impacting cohesion and
coupling, we use the Conceptual Similarity between Methods
(CSM) introduced in [22] to define the Conceptual Cohesion
of Classes and used in [28] to define the Conceptual Coupling
between Classes. Two methods are conceptually related if their
(domain) semantics are similar, i.e., they perform conceptually



similar actions. To measure CSM, Latent Semantic Indexing
(LSI) [12] is used to represent each method as a vector that
spans a space defined by the vocabulary extracted from the
methods. The conceptual similarity between two methods is
then the cosine of the angle between their corresponding
vectors:

CSM(mi,mj) =
−→mi · −→mj

‖−→mi‖ · ‖−→mj‖
where −→mi and −→mj are the vectors corresponding to the methods
mi and mj , respectively, and ‖−→x ‖ represents the Euclidean
norm of the vector x. The higher the value of CSM , the higher
the similarity between two methods. Also CSM has values in
[0, 1].

IV. THE ECR APPROACH

The proposed ECR approach is based on an iterative al-
gorithm that incrementally assigns the methods of a Blob
class to n players P1, P2, . . . , Pn representing the classes to
be extracted. The algorithm takes as input a class C to be
refactored (e.g., a Blob [9]), the number n of classes that
should be extracted from C, and n seed methods (one for
each player). The n players then contend for the remaining
l−n methods of C (where l is the number of methods of C)
to build the new classes. The assignment of methods to the
players made at each iteration is based on the Nash equilibrium
computed on a payoff matrix that takes into account the effect
of the assignment on the cohesion and coupling of the classes
corresponding to the players.

In Section IV-A, we present the incremental ECR algorithm
while, in Section IV-B, we detail how the payoff matrix is
constructed. Finally, in Section IV-C, we present a heuristic
based on Latent Dirichlet Allocation (LDA) [8] to suggest the
input information for the ECR algorithm: number of players
and seed methods. Our ECR algorithm is independent of this
heuristic; we will study other heuristics in future work.

A. The Extract Class Refactoring Algorithm

Each player (i.e., class to be extracted) initially holds only
its seed method. The n players will then contend for the
remaining l − n methods of the class to be refactored. The
construction of the classes is incremental. At each iteration,
each player takes at most one of the unassigned methods of
the original class (two players cannot take the same method).
If a player does not take any method, then we say that it plays
the null move. The purpose of the null move is to increase the
rationality of a player, i.e., a player takes a method only if
there is a clear advantage in taking it. Without the null move,
the refactoring process might result in a trivial splitting of
the class to be refactored, where the original class is split in
n new classes having the same number of methods (in case
the number of methods of the original class is a multiple
of n). We prevent players from all playing the null move
at the same time, as this would stop the iterative algorithm
without assigning all the methods of the original class. Also,
players cannot yield methods that they already got in previous
iterations.

Let us consider the case of two players P1 and P2, one of
the following pairs of moves is allowed during an iteration:
• P1 takes mi and leaves mj to P2 (i 6= j);
• P1 takes mi while P2 plays the null move;
• P1 plays the null move, while P2 takes mj .

The combination of moves to be performed by the n players
during an iteration of the algorithm is chosen by finding the
Nash equilibrium in the payoff matrix [27]2. Thus, the payoff
matrix represents the core of the approach. Each entry of
the matrix corresponds to a combination of possible moves
for the n players P1, P2, . . . , Pn and contains a tuple of
payoffs (p1, p2, . . . , pn) for this combination (a payoff for
each player). At the first iteration, the size of the matrix is
(l − n + 1)n, as each player can take one of the unassigned
l−n methods of the original class or play the null move. For
example, in the case of two players, the matrix will contain
(l − 1) rows and columns.

For an entry in the matrix, the tuple of payoffs
(p1, p2, . . . , pn) measures the effect of the corresponding
tuple of moves on the cohesion and coupling of the classes
under construction (see Section IV-B). The final goal of the
refactoring algorithm is to split the original class in n classes
by attempting to maximize their cohesion and minimize their
coupling. Thus, at each iteration the higher the payoff for all
players, the higher the expected increase of cohesion of the
classes under construction and the lower the expected increase
of coupling among them.

Once the tuple of moves to be performed has been iden-
tified, the methods taken by the players are added to the
corresponding classes and removed from the payoff matrix that
is then recomputed as follows: (i) the vectors corresponding
to the assigned methods are removed from the matrix for all
the players, as these methods cannot be assigned further (for
example, in case of two players the rows and columns of the
assigned methods are removed from the matrix) and (ii) the
payoffs are re-computed to take into account the changes in
the classes being extracted. The algorithm stops when each
method of the original class is assigned to one of the n players,
i.e., one of the extracted classes.

Finally, the instance variables of the original class are
distributed among the extracted classes according to how
they are used by the methods in the new classes, i.e., each
instance variable is assigned to the new class having the higher
number of methods using it. If a private field must be shared
among the extracted classes, the implementation of the needed
getter/setter methods is left to the developer. This implemen-
tation would not change dramatically the cohesion/coupling
of the extracted classes because shared instance variables are
considered by the SSM measure.

B. Computing the Payoffs

The payoffs in the matrix must take into account the
effect of the moves (e.g., adding a method to a class under

2If more than one Nash equilibrium is present in the payoff matrix, the
exploited algorithm [27] always returns only one Nash equilibrium.



TABLE II
PAYOFFS FOR TWO-PLAYERS EXTRACT CLASS REFACTORING

p1 p2 Combination of moves
Sim(C1,mi)− Sim(C1,mj) Sim(C2,mj)− Sim(C2,mi) P1 takes the method mi and P2 takes the method mj

ε1 − Sim(C1,mj) Sim(C2,mj)− ε2 P1 plays the null move and P2 takes the method mj

Sim(C1,mi)− ε2 ε1 − Sim(C2,mi) P1 takes the method mi and P2 plays the null move
−1 −1 P1 and P2 take the same method or both play the null move

construction) on the cohesion and coupling of the new classes.
We capture the effect of the moves on cohesion and coupling
using a combination of the similarity measures presented in
Section III, i.e., SSM, CDM, and CSM. We compute the
overall similarity between two methods mi and mj as:

sim(mi,mj) = wSSM · SSM(mi,mj)+

wCDM · CDM(mi,mj) + wCSM · CSM(mi,mj)

where wSSM +wCDM +wCSM = 1 and their values express
the confidence (i.e., weight) in each measure. These weights
are empirically established and assessed in Section V.

The similarity between two methods is used to compute
the similarity between a class under construction and a single
method mh that a generic player Pk can take during an
iteration of our approach:

Sim(Ck,mh) =
1

|Ck|
∑

ml∈Ck

sim(ml,mh)

where Ck represents the set of methods already assigned to
player Pk (i.e., the class).

During an iteration of the game the goal of each player is
to take a method having a high similarity with the class it is
building and to leave methods having a low similarity with its
class to the other players. Each player tries to maximize the
cohesion of its class keeping low the coupling with the other
classes under construction. The definition of the payoffs for
a tuple of moves should balance these goals for the different
players. For example, suppose that at a given iteration player
Pk takes method mi and leaves a non empty set of methods
Mk to the other players. Then, the higher the similarity
between Ck and mi, the higher the expected increase of
cohesion for Ck, the higher the payoff for the player Pk. On
the contrary, the higher the similarity between Ck and the
methods in Mk, the higher the expected increase of coupling
between Ck and the other classes, the lower the payoff for the
player Pk. Thus, we define the payoff pk for player Pk as:

pk,i = Sim(Ck,mi)−
∑

mj∈Mk
Sim(Ck,mj)

|Mk|
We also allow a player Pk to play the null move. This move is
still desirable for Pk if the methods in Mk taken by the other
players3 have low similarity with the class Ck. Therefore, we
define the payoff pk as:

pk,null = ε1 −
∑

mj∈Mk
Sim(Ck,mj)

|Mk|
The value of ε1 balances the negative effect of the similarity of
class Ck with methods in Mk left to the other players: when

3If player Pk plays the null move, then Mk is not empty.

the similarity between the class Ck and the methods in Mk is
low, the payoff pk encourages Pk to take the null move rather
than taking a method with low similarity with its class.

Finally, a player Pk could be the only one taking a method
mi during an iteration, i.e., all the other players play the null
move. In this case, we cannot compute the average similarity
between the class Ck and the methods left to the other players
during this move, as the set Mk is empty and then the payoff
pk is defined as:

pk,i = Sim(Ck,mi)− ε2
The value of ε2 balances the positive effect of the similarity of
class Ck with method mi and is used to discourage Pk to take
a method with low similarity with Ck when the other players
play the null move. Heuristics for the values for ε1 and ε2 are
determined empirically in Section V.

As said in Section IV-A, we want to avoid that during
an iteration two or more players take the same method or
that all the players play the null move at the same time. For
these combinations of moves, the payoff of all the players
is −1 (the lowest possible payoff), which guarantees that
such a combination of moves does not correspond to a Nash
equilibrium and is not selected by the game theory algorithm.
Table II shows the payoffs for the possible pairs of moves in
case of two players.

C. Identifying the Players

The proposed approach requires as input the number of
classes to be extracted, i.e., the number of players, and a
seed method for each player. This information is difficult to
derive from the analysis of a Blob class due to its size and–
or complexity. The problem is not unique to our solution, as
other partitioning techniques also require similar inputs, e.g.,
k-means [19], requires the number of classes and a centroid
for each cluster.

The simplest solution is to leave this decision to the de-
velopers. However, in a Blob class, a manual identification of
the set of different responsibilities of the class is intrinsically
tedious and error prone. Thus, we employ a topic analysis
technique using Latent Dirichlet Allocation (LDA) [8] to
provide the developers with such information. The LDA based
heuristic is rather simple, with little overhead, and it leverages
the textual information present in the code. In some sense,
it mimics the way a developer would read the code and
assess the main responsibilities of the methods of a class
based on the identifier names and comments, without a deeper
structural analysis. LDA is a generative probabilistic model for
collections of discrete data, such as text document corpora.
In LDA, documents are modeled as a mixtures of various
topics and a topic represents a set of words from the document



corpus. Our conjecture is that the main topics in the methods
might be representative of the main responsibilities in the class
to be refactored. These topics are captured by the textual
information in the source code (identifiers and comments).
Each method corresponds to a document in the corpus under
analysis. Given a Blob to be refactored, we parse it to extract
its methods and use LDA to extract from the methods a set
of topics. LDA associates each method with a set of relevant
topics together with a relevance score for each topic.

LDA requires as input the number of topics to be extracted.
This might be a problem in large document corpora, where
knowing the number of topics a priori is hard. In the context
of ECR, we assume that a Blob cannot have more than
10 responsibilities: we ask LDA to extract 10 topics. Our
experimental validation showed that this number of topics is
reasonable and that, in most Blobs, the number of respon-
sibilities is actually overestimated when using 10 topics. We
deal with the overestimation by merging related topics. Indeed,
we can extract similar topics, i.e., topics described by a set
of similar words, which could be representative of the same
responsibility. To obtain a better estimation of the unique
topics representing the responsibilities of the class, we identify
similar topics and merge them in a single topic. The similarity
between two topics Ti and Tj is computed using the Jaccard
similarity coefficient:

sim(Ti, Tj) =
|Wi ∩Wj |
|Wi ∪Wj |

where Wk represents the set of words describing the topic
Tk. We merge two topics if their similarity is higher than a
threshold s. We fix such a threshold at 0.5, i.e., topics that
share more than half of the words describing them are merged
together. The final set of topics represents the responsibilities
of the class to be refactored, which defines the number of
players that will take part in the game. In addition, the seed
method assigned to each player is the method with the highest
relevance score with the topic corresponding to the player.
The extracted information (set of players) is shown to the
developers that can accept the suggestion or propose a different
set of players. Note that while LDA could be suitable to
identify the main topics embedded in a class, it does not
represent a complete ECR solution. In fact, grouping together
methods only based on textual overlap would completely miss
structural dependencies existing between methods representing
important cohesion/coupling indicators (see Section III).

V. ASSESSMENT OF THE APPROACH

The goal of this assessment study is to analyze the impact of
the configuration parameters, i.e., the weights of the similarity
measures (wSSM , wCDM , and wCSM ) and the balancing
parameters (ε1 and ε2), on the performance of our approach.
We also assess the LDA-based heuristic to identify the input
for the refactoring algorithm. For replication purposes, we
posted more details and data online [7]. The study has been
conducted on three open-source software systems: ArgoUML
0.16 (1,071 classes and 97 KLOC), GanttProject 1.10.2 (273

classes and 28 KLOC), and JHotDraw 6.0 b1 (275 classes
and 29 KLOC). These systems have been previously used for
assessing refactoring approaches [3], [4], [5]. An analysis of
their quality based on commonly used metrics, namely Lack
of Cohesion of Methods (LCOM2) [10], Conceptual Cohesion
of Classes (C3) [22], Coupling Between Object classes (CBO)
[10], and Message Passing Coupling (MPC) [21] indicates
comparable levels of design quality (except for some outlier
classes), which suggests, even without a quality model, that
the overall quality of the systems is “good”, especially as one
of them, JHotDraw, has been developed as a design exercise.

A. Planning

To analyze the influence of the configuration parameters, we
identified different refactoring solutions on the same classes
using different weights for the adopted similarity measures
and different values for the balancing parameters. To perform
an automated assessment, we artificially created classes with
more responsibilities and low cohesion from classes of the
original systems having high cohesion. For each system, we
randomly selected 150 classes with a cohesion higher than
the average cohesion. Then, we randomly created groups of
two or three classes and merged together the classes of the
same group to create artificial Blobs, i.e., we created a new
class containing all the methods (except the constructors) and
instance variables of the classes to be merged. For each system,
we obtained 50 artificial Blobs merging three classes and
150 artificial Blobs merging two classes, because, from each
artificial Blob composed of three classes C1, C2, and C3,
we generated three different artificial Blobs composed of two
classes, i.e., B1 = C1+C2, B2 = C1+C3, and B3 = C2+C3.

The proposed approach was then applied to split the arti-
ficial Blobs and to reconstruct the original classes. Given the
observed quality of all the merged classes (higher than average
cohesion), we consider them (i.e., the original classes) as a
golden standard. Hence, to evaluate the results, the refactored
classes are compared with the original classes to count the
number of methods correctly and incorrectly moved in the split
classes. We use the F-measure [2], which is the harmonic mean
of recall and precision, to quantify the reconstruction accuracy.

The study was organized in two parts. In the first part, we
focus on the assessment of the parameters while in the second
part we analyze the accuracy of the LDA-based heuristic to
identify the input for the refactoring algorithm. For this reason,
in the first part, we provided as input the exact number of
players (i.e., the number of original classes merged in the
artificial Blob) as well as an exact seed method for each
player (i.e., a randomly selected non-constructor method of the
original class). We refactored 200 artificial Blobs obtained by
merging three classes (50 Blobs) or two classes (150 Blobs) for
each system (600 artificial Blobs in total), experimenting all
the possible combinations of configuration parameters (starting
at 0 and increasing each parameter until 1 by a step of 0.1).
This study resulted in 4,792,200 refactoring operations on
the three systems. The large number of refactoring operations
needed to exercise the many parameter configurations made



a manual evaluation prohibitive and justifies our choice to
refactor artificial Blobs and automatically compare the results
with the original classes.

In the second part of the study, we analyzed the accuracy
of the initial game configuration provided by LDA on the 600
artificial Blobs created in the three systems. Given an artificial
Blob Bm created merging m classes, namely C1, C2, . . . , Cm,
we expected that the LDA-based heuristic identifies m dif-
ferent responsibilities in Bm. Also, the proposed heuristic
should assign to the identified responsibilities m different seed
methods, each one belonging to a different original class, i.e.,
C1, C2, . . . , Cm. Therefore, we analyzed the accuracy of the
LDA-based heuristic measuring the percentage of times that (i)
the number of classes to be extracted and the seed method for
each class are correctly identified (LDA Correct), (ii) the num-
ber of classes to be extracted is correct while the seed methods
chosen for them are wrong (LDA Wrong Seed Methods), and
(iii) the number of classes is wrong (LDA Wrong # Classes).
In addition, we evaluated the reconstruction accuracy of the
proposed refactoring algorithm when the number of players
and the seed methods are provided as input by the LDA-based
heuristic. We used the parameter configurations resulting in the
best reconstruction accuracy, identified in the first part.

B. Results

We analyzed the reconstruction accuracy achieved by our
approach with all the possible combinations of configuration
parameters. As for the balancing parameters ε1 and ε2, we
observed that the performances of our approach are stable
across different combinations of these two parameters. In
particular, the values of the balancing parameters hardly affect
the results when our approach is applied on Blobs composed
of two classes. However, slightly better results are achieved
when ε2 is smaller than or equal to 0.4. When the number
of merged classes is three, the performance of our approach
seems to be slightly more sensitive to the values assigned to ε1
and ε2. The best reconstruction accuracy is achieved with any
combination of balancing parameters having ε1 ≥ 0.3. These
observations are similar for all the systems [7].

To analyze the impact of the weights assigned to the
similarity measures, i.e., wSSM , wCDM , and wCSM , on the
performances of our approach we set ε1 = 0.5 and ε2 = 0.2,
i.e., one of the optimal configurations previously identified for
both cases of merging two and three classes. The results reveal
that the weight for the semantic measure (wCSM ) should be
higher than 0.3. In fact, any combination of weights having
wCSM ≥ 0.4 has a reconstruction accuracy almost equal to the
best one. Moreover, even if our approach is stable across all the
configurations of weights having wCSM ≥ 0.4, it shows slight
decrease of performances when one (or both) the structural
measures are set to zero.

Table III reports descriptive statistics of the reconstruction
accuracy achieved with one of the optimal configurations (i.e.,
wCSM = 0.5, wSSM = 0.1, wCDM = 0.4, ε1 = 0.5, and
ε2 = 0.2) on all the systems. There is no major difference
between the results obtained on the three systems, indicating

TABLE III
RECONSTRUCTION ACCURACY ACHIEVED WITH THE BEST

CONFIGURATION PARAMETERS (F-MEASURE)

System Merging 2 Classes Merging 3 Classes
Mean Median Std.dev. Mean Median Std.dev.

ArgoUML 0.89 1.00 0.18 0.82 0.84 0.11
GanttProject 0.85 0.90 0.18 0.82 0.84 0.08
JHotDraw 0.92 1.00 0.13 0.86 0.85 0.08

a high reconstruction accuracy as well as a high stability of
the identified configuration parameters. We report on all the
possible combination of parameters in [7].

Regarding the LDA-based heuristic to identify the initial
game configuration, we applied LDA using the MALLET
tool [23], which is an implementation of Gibbs’ sampling
algorithm. We run the tool for 100,000 sampling iterations, the
first half of which are used for optimization [17]. We set the
number of topics to extract to 10 and each topic is described
by 20 words. Figure 1 reports the results achieved. The LDA-
based heuristic identifies the correct number of classes and
a correct seed method for each class in 65% of the cases
on average. When the information provided by the LDA-
based heuristic is correct, the performances of our approach
(Game Theory + LDA Correct in Figure 1) are almost equal
to the performances achieved when manually providing to our
approach the actual number of players derived from the oracle
(Game Theory + Manual Correct in Figure 1). Figure 1 also
highlights that when the heuristic fails, in 31% of the cases
on average, it fails in the identification of the correct number
of classes because the approach uses the wrong seed method
picked from the wrong topics. The heuristic correctly identifies
the number of classes but provides the wrong seed methods
only in 4% of the cases on average. In all these cases, as
expected, the performances of the proposed ECR algorithm
decrease.

C. Discussion

The approach used to assess and calibrate the proposed
refactoring technique implies an important assumption, i.e., the
original classes represent a golden standard. Even if the object
systems are generally well designed [4], there is the risk that
the original classes are not an appropriate oracle, i.e., classes
with a high cohesion level and–or low coupling. This is a
possible explanation that 100% accuracy was never achieved in
average. To mitigate such a threat, we only considered classes
having high cohesion (higher than the average cohesion of the
classes of the considered system). To avoid biasing the study,
the mutation of the original system was performed by a tool
that randomly selected the classes to be merged from these
chosen quality classes.

Another threat related to the design of our case study
concerns the quality of the merged classes, i.e., the artificial
Blobs. In particular, the merged classes must have a low
cohesion to test an ECR approach, i.e., they approximate
well real Blobs. We measured the cohesion, through LCOM2
and C3, for the original classes, the merged classes, and the
refactored classes. The analysis reveals that the artificial Blobs
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Fig. 1. Performances of Game Theory when using LDA to set-up the players.

used in our case study simulate well the type of classes that
may be candidates for the ECR [7].

Another threat that could affect the results is represented
by the input provided to the proposed iterative refactoring
algorithm. In the first part of the study, we provided the
number of classes to be split as well as randomly chosen
correct seed methods to start the game. Even if such an
approach is acceptable to assess the parameters of the approach
in the ideal case, there is the risk that the artificial Blobs
are too easy to refactor. For this reason, we compared the
reconstruction accuracy of the proposed approach with the
ones achieved by using a well-know partitioning clustering
algorithm, namely k-means, because it takes similar inputs,
i.e., number of clusters to extract (corresponding to the players
of our approach) and a method to be used as centroid for
each cluster (corresponding to the seed method assigned to
each player in our approach). To compare the two approaches
exactly in the same conditions, the distance measure used by
k-means was based on the same combination of similarity
measures used by our approach. For k-means, we repeated
the same study made for our approach to assess the weights of
the similarity measures [7]. The achieved results indicate that
our approach always overcome the reconstruction accuracy
obtained with k-means, i.e., on all the object systems, when
merging two or three classes, and for all combinations of
weights. The average difference of F-measure is about 11%.
This result highlights that the refactoring of the artificial Blobs
does not represent a trivial task for ECR approaches.

To analyze the practical effect of the LDA-based heuristic
on the reconstruction accuracy of the proposed refactoring
approach, we provided as input to the refactoring algorithm
the information derived by using LDA. The results highlighted
that when LDA correctly identifies the number of classes and
seed methods, the accuracy of the refactoring algorithm is not
affected at all. On the contrary, when LDA fails to identify
the correct information, we observed a strong decrease of the
reconstruction accuracy. To verify if the decrease of accuracy
is related to our refactoring approach, we also used the same
information to set the number of clusters and the centroids
in the k-means partitioning technique. The achieved results

indicated that with k-means there is also a similar decrease
when the LDA-based heuristic fails to identify the correct
number of classes to extract from the artificial Blobs or the
correct seed methods for the classes. When the LDA-based
heuristic correctly identifies the classes to be extracted, the
reconstruction accuracy of the game theory-based approach
overcomes the one obtained with k-means in all cases [7].
Future work includes an exhaustive study of the parameters
of LDA, i.e., the number of topics and the similarity threshold
used to merge similar topics.

VI. EVALUATION

We also evaluated the proposed ECR approach in a real-
life usage scenario. Our approach was used to refactor seven
Blobs of the GanttProject open-source software system, which
have been manually identified and reported previously in the
literature [20]. To refactor the Blobs, we used one of the best
configurations identified during the assessment of the approach
(see Section V), i.e., wCSM = 0.5, wSSM = 0.1, wCDM =
0.4, ε1 = 0.5, and ε2 = 0.2. LDA was used to determine the
number of players and the seed methods.

A. Empirical study planning

We formulate the following research questions:
• RQ1: Do the extracted classes have a higher cohesion

than the original classes?
• RQ2: Are the extracted classes meaningful from a func-

tional point of view as assessed by developers?
To respond to our first research question, we compared the

cohesion (measured by LCOM2 and C3) of the Blobs and of
the refactored classes. We also computed coupling to verify
that the proposed refactoring does not increase class coupling
dramatically. To this aim, we used the MPC metric because
it allows to understand if the extracted classes have a high
method interactions.

For the second research question, we analyzed the refactored
classes from a functional point of view. Two Ph.D. students
and six M.Sc. students evaluated three different refactoring
operations for each of the seven Blobs of the GanttProject
system: (i) the refactoring suggested by our approach, (ii)
the refactoring suggested by k-means, and (iii) a random



TABLE IV
RESULTS OBTAINED REFACTORING SEVEN BLOBS FROM THE GANTTPROJECT SYSTEM.

Blob Class # Split Classes Pre-refactoring Post-refactoring
LOC Methods LCOM2 C3 MPC LOC Methods LCOM2 C3 MPC

GanttGraphicArea 2 2,160 44 845 0.13 575 2,005 40 733 0.21 525
166 6 1 0.33 56

GanttOptions 3 513 69 2,100 0.18 472
471 59 1,515 0.23 478
31 5 8 0.49 3
41 10 31 0.64 0

GanttProject 2 2,269 92 2,318 0.08 1,528 1,892 80 1,513 0.18 1,379
409 13 23 0.69 155

GanttTaskPropertiesBean 1 1,685 28 183 0.13 276 Not Split

GanttTree 2 1,730 49 649 0.14 358 1,382 43 493 0.22 262
423 7 15 0.36 106

ResourceLoadGraphicArea 2 1,060 30 252 0.17 447 633 22 123 0.31 331
442 9 20 0.41 118

TaskImpl 3 329 48 884 0.27 45
234 32 119 0.31 42
69 12 58 0.38 6
44 6 3 0.41 4

refactoring. The latter option was considered only to verify
whether participants seriously considered this assignment4. We
set k-means with its best configuration of parameters identified
in our first case study, i.e., wCSM = 0.5, wSSM = 0.1,
wCDM = 0.4. Moreover, also for k-means, LDA was used to
determine the number of clusters to extract and the centroids
for the clusters. For each of the proposed refactoring, the
students had to express their level of agreement to the claim
“The proposed refactoring results in an appropriate division of
responsibilities” proposing a score using a Likert scale [26]: 1:
Strongly disagree; 2: Disagree; 3: Neutral; 4: Agree; 5: Fully
agree.

B. Results

Table IV compares the original Blobs and the classes
refactored using our approach to answer our first research
question (RQ1). The first column of the Table contains the
name of the Blob class while the second column contains the
number of classes resulting after refactoring (# Split Classes).
The table also reports statistics concerning the LOC and the
number of methods as well as the cohesion and the coupling
for each Blob and for each extracted class. The results are
positive. For almost all the classes, the cohesion is sensibly
improved. Moreover, the refactoring solutions resulted in a
very small increase of the total MPC value.

A particular case is represented by the class GanttTaskProp-
ertiesBean, where our approach could not split the original
class in two or more new classes. This is an Entity class having
67 instance variables and 28 methods. All the methods share
many instance variables with the other methods and the calls
among methods are many. Indeed, this Blob can be classified
as “Data God Class” or “Lazy Class” [15] because the class
holds a lot of the system’s data in terms of number of instance
variables. In this case, as suggested in [15], other types of
refactoring should be applied to improve the quality of the
class.

In summary, excluding the case of GanttTaskProperties-
Bean, we obtained an average improvement of about 72%
and 128% in terms of LCOM2 and C3, respectively. The
average increase in terms of MPC is about 1%. Considering

4The students involved in the experimentation were not aware of the
employed refactoring techniques.

the significant improvement in terms of cohesion, we believe
that the small increment in coupling is acceptable.

Concerning the qualitative assessment of our approach
(RQ2), Table V reports the answers provided by the subjects
expressing their level of agreement to our claim. The subjects
gave higher scores on the Likert scale to the refactoring
proposed by our approach. Indeed, the median of the scores
given to our approach is 4 (Agree) against 3 (Neutral) achieved
by k-means and 1 (Strongly Disagree) achieved by the random
refactoring. Moreover, the refactoring suggested by k-means
was never preferred over the refactoring suggested by our
approach.

The overall results allow us to conclude that the ECRs iden-
tified by our approach lead to classes with higher cohesion than
the original classes. The new classes only slightly increases the
overall coupling of the system highlighting the ability of our
approach to identify refactorings that provide a compromise
between cohesion and coupling. The ECRs are also meaningful
from a functional point of view as assessed by developers.

C. Threats to Validity and Discussion

The main threat to the validity of our study that could affect
the generalizability of the reported results is represented by
the subjects, i.e., students, who evaluated the meaningfulness
of the identified refactorings. Students had good analysis,
development, and programming experience, and they can be
considered close to junior industrial analysts. In addition,
as highlighted by Arisholm and Sjoberg [1], the difference
between students and professionals is not always easy to
identify. Nevertheless, there are several differences between
industrial and academic contexts. We plan to replicate the
experiment with industrial subjects to corroborate the results.
Another threat to the generalization of our results is related
to the limited number of real Blobs analyzed. We plan in the
future to replicate the experiment on a larger number of Blobs.

The resulting evaluation could have some degree of sub-
jectivity, because the subjects did not have an extensive
knowledge of the object system, i.e., GanttProject. However,
the evaluation aimed at giving us some qualitative insights to
confirm the quantitative empirical evidence about the quality
of the extracted classes previously measured in terms of
cohesion and coupling. The subjects did not know the goal
of our experimentation to avoid bias.



TABLE V
ANALYSIS OF THE REFACTORING OPERATIONS.

Class
Game Theory k-means Random
PhD PhD Master Students PhD PhD Master Students PhD PhD Master Students

I II I II III IV V VI I II I II III IV V VI I II I II III IV V VI
GanttGraphicArea 4 4 4 4 3 5 4 5 3 2 2 3 3 2 3 3 1 1 2 1 1 1 1 1
GanttOptions 4 4 5 5 4 4 5 4 2 2 3 4 3 2 2 3 1 1 1 1 1 1 2 1
GanttProject 5 4 5 5 5 5 4 4 3 3 4 3 3 3 2 1 1 1 1 2 1 1 2 1
GanttTree 4 3 4 5 4 4 5 5 2 3 2 1 3 3 1 3 1 1 1 2 1 2 1 1
ResourceGraphicArea 4 4 4 5 4 4 4 4 3 2 3 3 2 3 3 3 1 2 1 1 1 1 1 1
TaskImpl 4 4 5 4 5 5 5 5 4 3 4 3 4 4 3 3 1 1 2 1 1 2 1 2

Finally, GanttProject has been used in both studies presented
here, i.e., the former aimed at assessing and calibrating the
approach and the latter aimed at evaluating the proposed
refactoring solutions. However, we are confident that this does
not bias the results for two reasons: (i) the parameters of our
approach are stable and not sensible to the different systems
used in the assessment study and (ii) the classes used in the
first experimentation (good quality classes) are different from
the classes used in the second experimentation (Blobs).

VII. CONCLUSION

We presented an iterative algorithm to support the Extract
Class Refactoring (ECR) that incrementally assigns the meth-
ods of a Blob class to n players representing the classes
to be extracted. The assignment of methods to the players
made at each iteration is based on the Nash equilibrium
computed on a payoff matrix that takes into account the effect
of the assignment on the cohesion and coupling of the classes
corresponding to the players. To increase the usability of the
approach, we also proposed a heuristic based on topic analysis
using LDA to identify the candidate number of players and a
candidate seed method for each player. Case studies showed
that the proposed approach can refactor Blob classes into
new meaningful classes with higher cohesion and marginal
increment of coupling. Future work will be devoted to further
automate our approach, extend its empirical validation, and
compare the Nash equilibrium with other approaches within
the iterative refactoring algorithms. In addition, we also plan
to investigate other heuristics for the initialization step.
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